The accuracy requirements on this are exquisite.
This routine computes the asymptotic cylindrical Bessel and Neumann functions of order nu:
,
.
References: (1) Handbook of Mathematical Functions, ed. Milton Abramowitz and Irene A. Stegun, Dover Publications, Section 9 p. 364, Equations 9.2.5-9.2.10
See Abramowitz & Stegun, 9.1.10 Abramowitz & Stegun, 9.6.7 (1) Handbook of Mathematical Functions, ed. Milton Abramowitz and Irene A. Stegun, Dover Publications, Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
60 _GLIBCXX_BEGIN_NAMESPACE_VERSION
87 template <
typename _Tp>
89 __gamma_temme(_Tp __mu,
90 _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
92 #if _GLIBCXX_USE_C99_MATH_TR1
93 __gampl = _Tp(1) / std::tr1::tgamma(_Tp(1) + __mu);
94 __gammi = _Tp(1) / std::tr1::tgamma(_Tp(1) - __mu);
96 __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
97 __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
100 if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
101 __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
103 __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
105 __gam2 = (__gammi + __gampl) / (_Tp(2));
125 template <
typename _Tp>
127 __bessel_jn(_Tp __nu, _Tp __x,
128 _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
137 else if (__nu == _Tp(1))
147 __Nnu = -std::numeric_limits<_Tp>::infinity();
148 __Npnu = std::numeric_limits<_Tp>::infinity();
152 const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
158 const int __max_iter = 15000;
159 const _Tp __x_min = _Tp(2);
161 const int __nl = (__x < __x_min
162 ?
static_cast<int>(__nu + _Tp(0.5L))
163 :
std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
165 const _Tp __mu = __nu - __nl;
166 const _Tp __mu2 = __mu * __mu;
167 const _Tp __xi = _Tp(1) / __x;
168 const _Tp __xi2 = _Tp(2) * __xi;
169 _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
171 _Tp __h = __nu * __xi;
174 _Tp __b = __xi2 * __nu;
178 for (__i = 1; __i <= __max_iter; ++__i)
182 if (std::abs(__d) < __fp_min)
184 __c = __b - _Tp(1) / __c;
185 if (std::abs(__c) < __fp_min)
188 const _Tp __del = __c * __d;
192 if (std::abs(__del - _Tp(1)) < __eps)
195 if (__i > __max_iter)
196 std::__throw_runtime_error(__N(
"Argument x too large in __bessel_jn; "
197 "try asymptotic expansion."));
198 _Tp __Jnul = __isign * __fp_min;
199 _Tp __Jpnul = __h * __Jnul;
200 _Tp __Jnul1 = __Jnul;
201 _Tp __Jpnu1 = __Jpnul;
202 _Tp __fact = __nu * __xi;
203 for (
int __l = __nl; __l >= 1; --__l )
205 const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
207 __Jpnul = __fact * __Jnutemp - __Jnul;
210 if (__Jnul == _Tp(0))
212 _Tp __f= __Jpnul / __Jnul;
213 _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
216 const _Tp __x2 = __x / _Tp(2);
217 const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
218 _Tp __fact = (std::abs(__pimu) < __eps
219 ? _Tp(1) : __pimu / std::sin(__pimu));
220 _Tp __d = -std::log(__x2);
221 _Tp __e = __mu * __d;
222 _Tp __fact2 = (std::abs(__e) < __eps
223 ? _Tp(1) : std::sinh(__e) / __e);
224 _Tp __gam1, __gam2, __gampl, __gammi;
225 __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
226 _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
227 * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
229 _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
230 _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
231 const _Tp __pimu2 = __pimu / _Tp(2);
232 _Tp __fact3 = (std::abs(__pimu2) < __eps
233 ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
234 _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
237 _Tp __sum = __ff + __r * __q;
239 for (__i = 1; __i <= __max_iter; ++__i)
241 __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
242 __c *= __d / _Tp(__i);
243 __p /= _Tp(__i) - __mu;
244 __q /= _Tp(__i) + __mu;
245 const _Tp __del = __c * (__ff + __r * __q);
247 const _Tp __del1 = __c * __p - __i * __del;
249 if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
252 if ( __i > __max_iter )
253 std::__throw_runtime_error(__N(
"Bessel y series failed to converge "
256 __Nnu1 = -__sum1 * __xi2;
257 __Npmu = __mu * __xi * __Nmu - __Nnu1;
258 __Jmu = __w / (__Npmu - __f * __Nmu);
262 _Tp __a = _Tp(0.25L) - __mu2;
264 _Tp __p = -__xi / _Tp(2);
265 _Tp __br = _Tp(2) * __x;
267 _Tp __fact = __a * __xi / (__p * __p + __q * __q);
268 _Tp __cr = __br + __q * __fact;
269 _Tp __ci = __bi + __p * __fact;
270 _Tp __den = __br * __br + __bi * __bi;
271 _Tp __dr = __br / __den;
272 _Tp __di = -__bi / __den;
273 _Tp __dlr = __cr * __dr - __ci * __di;
274 _Tp __dli = __cr * __di + __ci * __dr;
275 _Tp __temp = __p * __dlr - __q * __dli;
276 __q = __p * __dli + __q * __dlr;
279 for (__i = 2; __i <= __max_iter; ++__i)
281 __a += _Tp(2 * (__i - 1));
283 __dr = __a * __dr + __br;
284 __di = __a * __di + __bi;
285 if (std::abs(__dr) + std::abs(__di) < __fp_min)
287 __fact = __a / (__cr * __cr + __ci * __ci);
288 __cr = __br + __cr * __fact;
289 __ci = __bi - __ci * __fact;
290 if (std::abs(__cr) + std::abs(__ci) < __fp_min)
292 __den = __dr * __dr + __di * __di;
295 __dlr = __cr * __dr - __ci * __di;
296 __dli = __cr * __di + __ci * __dr;
297 __temp = __p * __dlr - __q * __dli;
298 __q = __p * __dli + __q * __dlr;
300 if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
303 if (__i > __max_iter)
304 std::__throw_runtime_error(__N(
"Lentz's method failed "
306 const _Tp __gam = (__p - __f) / __q;
307 __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
308 #if _GLIBCXX_USE_C99_MATH_TR1
309 __Jmu = std::tr1::copysign(__Jmu, __Jnul);
311 if (__Jmu * __Jnul < _Tp(0))
314 __Nmu = __gam * __Jmu;
315 __Npmu = (__p + __q / __gam) * __Nmu;
316 __Nnu1 = __mu * __xi * __Nmu - __Npmu;
318 __fact = __Jmu / __Jnul;
319 __Jnu = __fact * __Jnul1;
320 __Jpnu = __fact * __Jpnu1;
321 for (__i = 1; __i <= __nl; ++__i)
323 const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
328 __Npnu = __nu * __xi * __Nmu - __Nnu1;
350 template <
typename _Tp>
352 __cyl_bessel_jn_asymp(_Tp __nu, _Tp __x, _Tp & __Jnu, _Tp & __Nnu)
354 const _Tp __mu = _Tp(4) * __nu * __nu;
355 const _Tp __mum1 = __mu - _Tp(1);
356 const _Tp __mum9 = __mu - _Tp(9);
357 const _Tp __mum25 = __mu - _Tp(25);
358 const _Tp __mum49 = __mu - _Tp(49);
359 const _Tp __xx = _Tp(64) * __x * __x;
360 const _Tp
__P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx)
361 * (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx));
362 const _Tp __Q = __mum1 / (_Tp(8) * __x)
363 * (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx));
365 const _Tp __chi = __x - (__nu + _Tp(0.5L))
366 * __numeric_constants<_Tp>::__pi_2();
367 const _Tp __c = std::cos(__chi);
368 const _Tp __s = std::sin(__chi);
370 const _Tp __coef = std::sqrt(_Tp(2)
371 / (__numeric_constants<_Tp>::__pi() * __x));
372 __Jnu = __coef * (__c * __P - __s * __Q);
373 __Nnu = __coef * (__s * __P + __c * __Q);
406 template <
typename _Tp>
408 __cyl_bessel_ij_series(_Tp __nu, _Tp __x, _Tp __sgn,
409 unsigned int __max_iter)
412 return __nu == _Tp(0) ? _Tp(1) : _Tp(0);
414 const _Tp __x2 = __x / _Tp(2);
415 _Tp __fact = __nu * std::log(__x2);
416 #if _GLIBCXX_USE_C99_MATH_TR1
417 __fact -= std::tr1::lgamma(__nu + _Tp(1));
419 __fact -= __log_gamma(__nu + _Tp(1));
421 __fact = std::exp(__fact);
422 const _Tp __xx4 = __sgn * __x2 * __x2;
426 for (
unsigned int __i = 1; __i < __max_iter; ++__i)
428 __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
430 if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
434 return __fact * __Jn;
452 template<
typename _Tp>
454 __cyl_bessel_j(_Tp __nu, _Tp __x)
456 if (__nu < _Tp(0) || __x < _Tp(0))
457 std::__throw_domain_error(__N(
"Bad argument "
458 "in __cyl_bessel_j."));
459 else if (__isnan(__nu) || __isnan(__x))
460 return std::numeric_limits<_Tp>::quiet_NaN();
461 else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
462 return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
463 else if (__x > _Tp(1000))
466 __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
471 _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
472 __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
494 template<
typename _Tp>
496 __cyl_neumann_n(_Tp __nu, _Tp __x)
498 if (__nu < _Tp(0) || __x < _Tp(0))
499 std::__throw_domain_error(__N(
"Bad argument "
500 "in __cyl_neumann_n."));
501 else if (__isnan(__nu) || __isnan(__x))
502 return std::numeric_limits<_Tp>::quiet_NaN();
503 else if (__x > _Tp(1000))
506 __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
511 _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
512 __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
531 template <
typename _Tp>
533 __sph_bessel_jn(
unsigned int __n, _Tp __x,
534 _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
536 const _Tp __nu = _Tp(__n) + _Tp(0.5L);
538 _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
539 __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
541 const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
544 __j_n = __factor * __J_nu;
545 __n_n = __factor * __N_nu;
546 __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
547 __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
566 template <
typename _Tp>
568 __sph_bessel(
unsigned int __n, _Tp __x)
571 std::__throw_domain_error(__N(
"Bad argument "
572 "in __sph_bessel."));
573 else if (__isnan(__x))
574 return std::numeric_limits<_Tp>::quiet_NaN();
575 else if (__x == _Tp(0))
584 _Tp __j_n, __n_n, __jp_n, __np_n;
585 __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
604 template <
typename _Tp>
606 __sph_neumann(
unsigned int __n, _Tp __x)
609 std::__throw_domain_error(__N(
"Bad argument "
610 "in __sph_neumann."));
611 else if (__isnan(__x))
612 return std::numeric_limits<_Tp>::quiet_NaN();
613 else if (__x == _Tp(0))
614 return -std::numeric_limits<_Tp>::infinity();
617 _Tp __j_n, __n_n, __jp_n, __np_n;
618 __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
623 _GLIBCXX_END_NAMESPACE_VERSION
__inline unsigned char unsigned int unsigned int unsigned int * __P
Definition: adxintrin.h:35
const _Tp & min(const _Tp &__a, const _Tp &__b)
Equivalent to std::min.
Definition: base.h:144
const _Tp & max(const _Tp &__a, const _Tp &__b)
Equivalent to std::max.
Definition: base.h:150