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Chapter 1

Introduction

This thesis presents computational methods for creating semantic representations of natu-
ral language utterances and some early applications of such representations in various com-
putational semantics tasks. All software presented in this thesis is free and open-source,
distributed under an MIT license and downloadable from the URLs listed in Section 1.3.
This introductory chapter presents the theses of the dissertation, acknowledges contribu-
tions from colleagues, and for each system presented, provides links to the software and
references to key publications.

The remainder of the thesis is structured as follows: Chapter 2 gives a short review
of existing theories of word meaning, with special focus on their applicability to natural
language processing. Chapter 3 provides an overview of the 4lang formalism for modeling
meaning, but will not attempt a full discussion, since the 4lang formalism is the prod-
uct of joint work by half a dozen researchers (Kornai et al., 2015), rather than being a
contribution of this thesis. Chapter 4 presents the dep_to_4lang pipeline, which creates
4lang-style meaning representations from running text, Chapter 5 describes its applica-
tion to monolingual dictionary definitions, dict_to_4lang, used to create large concept
lexica automatically. Chapter 6 presents applications of the text_to_4lang module to
various tasks in Computational Semantics, including a competitive system for measuring
semantic textual similarity (STS) (Recski & Ács, 2015), and a hybrid ML-based system
for measuring the similarity of English word pairs, which at the time of submission is the
top-scoring algorithm on the popular SimLex benchmark dataset (Recski, Iklódi, et al.,
2016). The chapter also briefly describes an experimental framework for natural language
understanding (Nemeskey et al., 2013) based on 4lang representations. Chapter 7 presents
the architecture of the ca. 3000-line 4lang codebase, serving both as an overview of how
the main tools presented in the thesis are implemented and as comprehensive software
documentation. Finally, Chapter 8 discusses our plans for future applications.
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1.1 Theses

The main theses of the disseration are the following:

(T1) The text_to_4lang tool for building 4lang-style semantic representations from En-
glish and Hungarian raw text

(T2) The dict_to_4lang tool for building 4lang definition graphs from monolingual
dictionaries of English and Hungarian

(T3) A competitive system for measuring the semantic similarity of English sentence pairs
using definition graphs built by dict_to_4lang

(T4) The current state of the art algorithm for measuring the semantic similarity of En-
glish word pairs using features extracted from 4lang graphs

1.2 Contributions

The 4lang principles outlined in Chapter 3 are the result of collaboration with current and
former members of the Research Group for Mathematical Linguistics at the Hungarian
Academy of Sciences: Judit Ács, Gábor Borbély, András Kornai, Márton Makrai, Dávid
Nemeskey, Katalin Pajkossy, and Attila Zséder. The systems presented in Chapters 4 and 5
constitute the author’s work with only minor exceptions: the functions performing graph
expansion (Section 5.3) are a result of joint work with Gábor Borbély, and a parser for the
Collins Dictionary was contributed by Attila Bolevácz. The SemEval system presented in
Section 6.1 were built in collaboration with Judit Ács, the more recent wordsim system
presented in Section 6.2 is a result of joint work with Eszter Iklódi (Department of Au-
tomation and Applied Informatics, Budapest University of Technology and Economics),
key ML components were contributed by Katalin Pajkossy. The experimental systems
described in Section 6.3 were implemented together with Dávid Nemeskey and Attila
Zséder.

1.3 Software

All software presented in the thesis is available for download under an MIT license, URLs
are listed in Table 1.1. The text_to_4lang and dict_to_4lang tools (T1-T2) are parts
of the 4lang library, some dependencies are included in the package pymachine. The
state of the 4lang codebase at the time of submission of this thesis is preserved in the

7



System Code Main publication

4lang github.com/kornai/4lang (Recski, 2016)

pymachine github.com/kornai/pymachine

semeval github.com/juditacs/semeval (Recski & Ács, 2015)

4lang github.com/recski/wordsim (Recski, Iklódi, et al., 2016)

Table 1.1: Software libraries presented in this thesis

branch recski_thesis. The sentence similarity system (T3) is preserved in the semeval
repository, the word similarity system (T4) is part of the wordsim package. All external
dependencies of these systems are freely downloadable under various open-source licenses.
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Chapter 2

Theories of word meaning

This chapter gives a survey of approaches to modeling the semantics of natural language,
focusing on key ideas in representing word meaning. Our overview is neither complete,
nor does it provide a full introduction to any theory in particular, it is merely an overview
of major contributions to word meaning representation. We begin with a short overview
of the historically central Katz and Fodor’s Structure of a Semantic Theory (Section 2.1),
followed by reviews of several graph-based models of word meaning in Section 2.2, among
others the Semantic Memory Model of Quillian, the KL-ONE family of formalisms, or the
more recent Abstract Meaning Representation framework. An overview of Montagovian
approaches to word meaning is given in Section 2.3. Finally, in Section 2.4, we discuss
continuous vector space semantics, the approach to representing word meaning that is
currently most widely used in natural language processing.

2.1 Katz and Fodor’s semantics

In their paper The Structure of a Semantic Theory, Katz and Fodor (1963) set a lower
bound on what a theory of semantics must include. Their examples show three skills
of a competent speaker to be independent of their knowledge of grammar: (i) handling
ambiguity (the bill is large, but need not be paid), (ii) detecting anomaly (the paint is
silent) and (iii) paraphrasing (What does the note say? Does it say X?).

In setting an upper bound on the domain of semantics, they disown the issue of disam-
biguating between various readings of the same sentence (in isolation) based on context,
since that would require modeling all extralinguistic knowledge:

“...if a theory of setting selection is to choose the correct reading for the sentence
Our store sells alligator shoes, it must represent the fact that, to date, alligators

9



do not wear shoes, although shoes for people are sometimes made from alligator
skin”. (Katz & Fodor, 1963, p.178)

Katz and Fodor conclude that the upper bound on a semantic theory should be that of
semantic interpretation - a function that maps each sentence to a set of semantic represen-
tations, one corresponding to each possible reading of the sentence. They make clear that
they impose this limit merely for practicality, because they “cannot in principle distinguish
between the speaker’s knowledge of his language and his knowledge of the world, because
(...) part of the characterization of a LINGUISTIC ability is a representation of virtually
all knowledge about the world that speakers share.” (Katz & Fodor, 1963, p.179, emphasis
in original) In Section 3.3 we shall also argue that any apparatus capable of representing
the meaning of natural language utterances must be capable of representing all of (naive,
non-technical) world knowledge.)

In describing the components of a semantic theory, Katz and Fodor define the lexicon
to contain separate entries for multiple senses of each word, and at the same time they
state that the grammar and the lexicon together are still insufficient for a deterministic
semantic interpretation, because of the multiple senses associated with most word forms.
A projection rule that selects the appropriate sense of each word form in a sentence is
postulated. This rule requires the senses of each word to be structured in the lexicon as
exemplified in Figure 2.1. In Chapter 3 we shall describe the 4lang representation of word
meaning that is radically monosemic, i.e. makes as little use of word senses as possible
and would map a word such as bachelor to a single representation that is compatible with
all uses of the word.

Note that the representation of lexical items in Figure 2.1 also includes a theory of
semantic primitives (human, male, animal, etc., Katz and Fodor refer to these as semantic
markers), much in the spirit of Prague-style phonological theory (Trubetzkoy, 1958). A
significant problem with this approach is that they have little to say about where the
set of all semantic markers available might come from, i.e. what the primitives of their
representation should be. All remaining lexical information about a word sense that is
not contained in the semantic markers, i.e. the parts in square brackets in Figure 2.1 are
called distinguishers. This distinction between the layers of markers and distinguishers is
not unlike that between Aristotle’s genus and differentia (Smith, 2015). Katz and Fodor
also claim that distinguishers are out of reach for a theory of semantics:

“The distinction between markers and distinguishers is meant to coincide with
the distinction between that part of the meaning of a lexical item which is
systematic for the language and that part which is not. In order to describe the
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bachelor

noun

(Animal)

(Male)

[young fur
seal when
without
a mate

during the
breeding
time]

(Human)

[who has
the first
or lowest
academic
degree]

(Male)

[young
knight
serving

under the
standard
of another
knight]

[who
has never
married]

Figure 2.1: Decomposition of lexical items (Katz & Fodor, 1963, p.186)

systematicity in the meaning of a lexical item, it is necessary to have theoretical
constructs whose formal interrelations compactly represent this systematicity.
The semantic markers are such constructs. The distinguishers, on the other
hand, do not enter into theoretical relations within a semantic theory. The part
of the meaning of a lexical item that a dictionary represents by a distinguisher
is the part of which a semantic theory offers no general account.” (Katz &
Fodor, 1963, p.178)

What this last statement amounts to is that the (finite) set of semantic markers is a set of
universal primitives that is sufficient for representing the language-independent component
of word meaning. Then, if some non-English word is a hypernym of bachelor1 - man who
has never married, then its set of semantic markers must be a subset of the markers
in the entry for bachelor1. On the other hand, if we find a word in some language
that is the hyponym of bachelor1, e.g. a word w that means a man who has never
married and lives with his parents, we must conclude that our original representation for
bachelor1 was inadequate, since the components of its meaning beyond male and human,
whatever they may be, are shared with the entry w and should therefore be encoded by
semantic markers, not distinguishers. Since the potential absence of such a word w from all
human languages can only be accidental, we have to conclude that the distinction between
meaning encoded by markers and by distinguishers is also arbitrary. Bolinger (1965,
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p.560) makes a similar argument, demonstrating that for virtually any component of any
distinguisher in Figure 2.1 it is possible to construct an example that justifies ‘promoting‘
that particular component to marker status, and concluding that “it is possible to do away
with the dualism by converting the distinguisher into a string of markers”. We shall return
to his examples in Section 3.5 when we argue for a theory of meaning representation that
encodes word meaning using language-independent primitives – and nothing else!

Finally, Katz and Fodor claim that word meaning representations may contain limita-
tions on the semantic content of elements with which the given word can combine. In their
example, an excerpt from The shorter Oxford English dictionary, the entry honest contains
the definition ‘... of women: chaste, virtuous’; such requirements they would represent by
adding constraints such as (Human) and (Female) on certain paths of the representation
(paths in the sense of Figure 2.1). Section 3.2 will discuss how such constraints may be
enforced by a 4lang-based system that lacks a notion of paths or senses.

2.2 Graph-based models of semantics

This section reviews popular systems for representing meaning using graphs – networks of
nodes and edges connecting them. We shall summarize the basic principles of Quillian’s
1960s Memory Model in Section 2.2.1, Schank’s Conceptual Dependencies in Section 2.2.2,
the KL-ONE family of Knowledge Representation systems, widely used between the late
1970s and early 1990s, in Section 2.2.3, Sowa’s Conceptual Structures in Section 2.2.4,
and finally in Section 2.2.5 the most recent formalism of Abstract Meaning Representa-
tions which has been gaining popularity in the past 4 years. All these systems share some
common principles of representation with each other and with 4lang, e.g. that each map
lexical items to nodes in some graph and use directed edges to represent asymmetric rela-
tionships between them. Where they differ significantly is their elements of representation
or their notions of a syntax-semantics interface.

2.2.1 Quillian’s Semantic Memory Model

Memory model Quillian’s theory of word concepts (1968) is of particular interest to
us. Not only does he propose to represent word meaning by means of directed graphs of
concepts (much like the 4lang theory that serves as the basis of this thesis and will be
introduced in Chapter 3), it also defines graph configurations that are in many ways similar
to those in 4lang. Quillian also suggests that definitions of concepts should be learned
automatically, which is exactly what our module dict_to_4lang does (see Chapter 5).
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Quillian proposes to encode meaning as a graph of nodes representing concepts, and
associative links between nodes, which may encode a variety of semantic relationships be-
tween these concepts. Figure 2.2 reproduces Quillian’s original presentation of associative
link types. Types 1 and 2, which stand for hypernymy and attribution respectively –
encode relationships that 4lang will treat as a single relation (along with predication, see
Section 3.1). Also, his links of type 5 and 6 are not unlike the binary configuration in
4lang graphs.

Quillian proposes two types of nodes: type nodes are unique for each concept and serve
to define them as networks of other concepts. Token nodes occur multiple times for each
concept when they themselves are used in definitions. In Section 6.3, when we review early
attempts at inferencing on 4lang representations, we shall see that this distinction is not
unlike that of static and active nodes made by (Nemeskey et al., 2013). Quillian organizes
nodes into planes, one for each type node and its definition graph, and emphasizes the
need to perform an exhaustive search of an arbitrary number of such planes for a complete
definition of any concept:

“a word’s full concept is defined in the model memory to be all the nodes
that can be reached by an exhaustive tracing process, originating at its initial,
patriarchal type node, together with the total sum of relationships among these
nodes specified by within-plane, token-to-token links (. . . ) This information
will start off with the more “compelling” facts about machines, such as that
they are usually man-made, involve moving parts, and so on, and will proceed
“down” to less and less inclusive facts, such as that typewriters are machines,
and then eventually will get to much more remote information about machines,
such as the fact that a typewriter has a stop that prevents its carriage from
flying off everytime it is returned.” (Quillian, 1968, p.413, emphasis in original)

Quillian concludes that the bulk of information associated with a concept such as
machine must be an unstructured list of all concepts that refer to types of machines and
as such have edges directed towards tokens of machine. A distinction is made, then,
between the definition of some concept, i.e. the tokens accessible (in the digraph sense)
from its type node, and the network of all nodes connected to any token of the concept,
all potentially carrying information about the concept – in Section 3.2 we shall argue that
it is the latter that must be accessible to any language understanding mechanism.

Unlike Katz and Fodor, Quillian suggests not to represent the complex meaning of a
word by means of a hierarchical structure of word senses. Instead he suggests that the
unified network of all concepts that link to either the type node or to some token node
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Figure 2.2: Associative links (Quillian, 1968, p.412)

of the concept being defined should by itself serve as a store of all knowledge associated
with some word. He criticizes hierarchical structures of word senses commonly found in
explanatory dictionaries by pointing out that “the common elements within and between
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various meanings of a word are many, and any outline designed to get some of these to-
gether under common headings must at the same time necessarily separate other common
elements, equally valid from some other point of view” (Quillian, 1968, p.419). Neverthe-
less, the memory model still makes use of word senses and the proposed mechanism for
building semantic representations from any given sentence still requires to select for each
word exactly one of several encoded senses. In Section 3.2 we shall propose a radically
monosemic approach to representing word meaning which abolishes the concept of multi-
ple word senses (with the exception of true homonyms such as the trunk of a car and the
trunk of an elephant).

Quillian also suggests that most concept definitions could be acquired algorithmically
given a small set of predefined primitives and definitions written in natural language:

“if one could manage to get a small set of basic word meanings adequately
encoded and stored in computer memory, and a workable set of combination
rules formalized as a computer program, he could then bootstrap his store
of encoded word meanings by having the computer itself “understand” sen-
tences that he had written to constitute the definitions of other single words”
(Quillian, 1968, p.416)

It is precisely this bootstrapping process that the dict_to_4lang module of the 4lang
library, described in detail in Chapter 5, performs using definitions from explanatory
dictionaries of English and Hungarian as well as a set of some 2,200 manually predefined
concepts.

Language understanding The above model of semantic memory serves as the basis of
a full-fledged language understanding system introduced in (Quillian, 1969). The process
the Teachable Language Comprehender (TLC) applies to language understanding involves
retrieving for each entity in the input text a list of concepts and entities in its memory
that the text may be mentioning. For these newly created copies of concepts, the TLC
also initializes pointers for each valency of the given concept: e.g. given a mention of
client, defined as seen in Figure 2.3, pointers to employer and employee are created as
such that should eventually be filled in the process of comprehending the full text. TLC
then conducts for each pointer a search for compatible properties present in its current
representation of the input, thus generating a list of candidates for the pointer. E.g.
given the phrase lawyer’s client, lawyer will eventually be found as compatible with the
property employer of client, since both are linked to the property professional. This
iterative search process also incorporates anaphora resolution: pointers may be filled with
referents already present in the model of the current input. The next step involves trying
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to justify connections from syntax: TLC’s memory also contains a set of form tests, each
of which encode some particular configuration that is typical of a semantic relation (e.g.
in this case “X’s Y” or “Y of X”) An example of a sample TLC session is reproduced from
(Quillian, 1969) in Figure 2.4.

Note that Quillian’s model is that of a teachable language comprehender; his account
also involves feedback given by human supervisors of the process, teaching the system
e.g. new form tests for each link of each concept as they occur. Such a system could
be trained through human labor to make highly reliable judgments as to whether some
entities in a text refer to a client and her employer. Human supervision would be necessary
for practically all concepts with arguments. The framework we propose in this thesis is
intended to be more robust by using more generic concept representations. The 4lang
representation of client may be as simple as work 1←− FOR 2−→ , but this is with the
intention of leaving open as many interpretations as possible (see Section 3.2 for more
discussion).

Figure 2.3: Quillian’s definition of client (Quillian, 1969, p.462)

Quillian’s theory of the semantic memory has had widespread effect on both the the-
ory and application of (computational) semantics. (Collins & Loftus, 1975) proposed
a method for natural language understanding using spreading activation over Quillian’s
semantic memory model. Anderson and Bower (1973) introduced the HAM question an-
swering system based on a model of associative memory similar to Quillian’s. Subsequent
associative models include the spreading activation-based ACT system (Anderson, 1976)
and the memory model MEMOD (Rumelhart et al., 1972). More recent models of (lexical)
semantics still rely on an associative structure of the lexicon, a notable example being
Abstract Meaning Representations, to be introduced in Section 2.2.5. Finally, the 4lang
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Figure 2.4: Sample session of the Teachable Language Comprehender (Quillian, 1969,
p.470)

theory of semantic representation, the basis of all systems introduced in this thesis, also
employs a network of associated concepts as its primary tool for representing linguistic
semantics and for encoding world knowledge.
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2.2.2 Schank’s Conceptual Dependencies

Another formalism developed in the 1960s for representing meaning as networks of con-
cepts is Schank’s theory of Conceptual Dependencies (1969; 1972), henceforth CD. CD dis-
tinguishes between 6 concept categories, which indicate how dependencies between pairs
of them should be interpreted. Actors and objects form the PP category, they may gov-
ern their attributes of type PA (e.g. book ← red) and they may be governed by actions
(ACT) (e.g. steals ← book). Bidirectional dependencies hold between actors and actions
as well as actors and attributes, these propositions are known as conceptualizations, e.g.
man ⇀↽ steals. Conceptualizations can themselves take part in dependency relations, e.g.
the sentence John’s love is good will be represented by the network in Figure 2.5. CD
representations also represent tense and mood of propositions by distinguishing between
8 types of the two-way dependency relation used in conceptualizations, e.g. a conditional
statement will invoke the edge C

⇀↽.

Figure 2.5: Conceptual dependency representation of John’s love is good
(Schank & Tesler, 1969, p.8)

CD networks, like the 4lang graphs introduced in the next chapter, are language-
and grammar-independent representations. The generation of CD representations from
analyzed linguistic input is achieved via realization rules, e.g. one of English that maps
the sequence ADJ + N to the CD template PA → PP. The system presented in Chapter 4 of
this thesis will implement rules that are essentially similar, since they will generate 4lang
subgraphs from dependency relations in the output of a syntactic parser. CD also makes
use of simple constructions, explicitly mapping a phrase such as a cup of water to the
representation cup ⇀↽ contains ← water.

Concepts denoting actions in CD are defined using a set of 10-12 primitives such as
PTRANS: The transfer of location of an object or MBUILD: The construction of a thought or
of new information by an agent. Each of these primitives enforces restrictions on concepts
governed by an action - in this respect CD is similar to the KL-ONE representation sum-
marized in Section 2.2.3, which uses Roles and RoleSets to place restrictions on relations of
a concept. For example, the slots associated with any PTRANS action are ACTOR, OBJECT,
FROM, and TO.
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2.2.3 The KL-ONE family

The KL-ONE system (Brachman & Schmolze, 1985) and its successors (Moser, 1983;
Brachman et al., 1983) are systems for Knowledge Representation (KR) rather than models
of linguistic semantics. They are of great historical significance in the field of Artificial
Intelligence and their formalisms are in many ways similar to both 4lang and the other
graph-based models mentioned in this section.

Representation Like many other approaches, KL-ONE adopts the tradition of rep-
resenting information as a network of nodes and links between them. Nodes in KL-ONE
networks represent Concepts, which are defined by three components: a list of super-
concepts, whose properties they inherit, a list of Roles, describing the relationships be-
tween the concept and other concepts, and structural descriptions, which describe the
relationship between Roles. RoleSets specify attributes that hold for all fillers occupying
some Role, e.g. that in case of the concept message, the sender must be a person; such
conditions are known as Value Restrictions. Structural Descriptions (SDs) of KL-ONE
concepts serve to characterize the relationship between Roles of a Concept, e.g. that an
important message is such that the sender is the supervisor of the recipient. A sample
KL-ONE concept is depicted in Figure 2.6, along with its equivalent in JARGON, an
English-like, human-readable specification language for KL-ONE.

Figure 2.6: A primitive concept in KL-ONE and its specification in JARGON (Brachman
& Schmolze, 1985, p.183)

KL-ONE explicitly forbids any violations of Value Restrictions, a clear symptom that
it is a formalism for the representation of (formalized) knowledge rather than a tool for
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modeling language meaning directly. To account for exceptions, it is the inheritance of
properties between concepts that may be defined in a way that allows for potential viola-
tions; e.g. elephants are defined as four-legged-mammals, “unless you have information
to the contrary” (Brachman & Schmolze, 1985, p.190). The relationship between a con-
cept and its super-concepts is known in KL-ONE as subsumption. RoleSets may enter in
to a similar relationship called restriction, which results in the RoleSet of some concept
inheriting the properties of a RoleSet of some super-concept – similar to how classes inherit
functions from their superclasses in programming languages.

Semantic parsing The outline of a system mapping natural language input to KL-
ONE representation is also presented in (Brachman & Schmolze, 1985). We briefly review
its capabilities, since the main contribution of our thesis is also a system for mapping
raw text to its meaning representation. Similar to the text_to_4lang system, which we
describe in Chapter 4, the natural language understanding system described by Brach-
man and Schmolze relies on a syntactic parser (Bobrow, 1979a), the output of which is
then used to build semantic representations. For the latter step, the PSI-KLONE tool
is used (Bobrow, 1979b), the output of which can then serve as the input to a compo-
nent responsible for handling pragmatics, bookkeeping of knowledge acquired in various
contexts, etc.

The main idea behind the PSI-KLONE system is that the syntactic representation
serving as its input is already encoded in a KL-ONE network, with Concepts such as
NP, RoleSets such as PP-modifier, etc. The system processes a sentence by fragments
received from the parser, providing feedback to it if the semantic interpretation fails and
the parsing hypothesis cannot be maintained. The interpretation process itself relies on
maps from words to lemmas and from lemmas to Concepts, e.g. teaches is mapped to
the TEACH-VERB concept via teach, professor is mapped to TEACHER-NOUN, etc. Concepts
retrieved this way are combined with the syntaxonomy, the KL-ONE network describing
the relationships between syntactic units, e.g. that VERB is a sub-concept of CLAUSE which
is a sub-concept of PHRASE. An example representation is shown in Figure 2.7.

Another account of PSI-KLONE (Sondheimer et al., 1984) sheds light on the next steps
of semantic interpretation. Frames are KL-ONE concepts that describe a ‘semantically
distinguishable type of phrase’; e.g. the frame associated with the sending of messages
is represented by the SEND-CLAUSE concept, whose Roles encode the selection restrictions
that apply to such an event and map syntactic functions to semantic relations. For ex-
ample, a SEND-CLAUSE must contain a TRANSMISSION-VERB and MESSAGE-NOUN, among
others, and semantic restrictions on each are imposed in the form of Value Restrictions.
The process of mapping a syntactic parse to a KL-ONE network is therefore directly re-
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Figure 2.7: KL-ONE representation of That professor teaches undergraduates about Lisp
on Thursday produced by PSI-KLONE (Brachman & Schmolze, 1985, p.214)

sponsible for producing semantically felicitous representations, unlike the text_to_4lang
pipeline described in this thesis, which will produce 4lang graphs describing any states-
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of-affairs based on its input. Slots of KL-ONE frames are tied to concepts via rules of
the form Paraphrase-as X. The frame depicted in Figure 2.8 provides two example rules,
stating that the indirect and direct object of a SEND-CLAUSE are to be paraphrased as
ADDRESSEE and MESSAGE, respectively. Semantic generalizations over groups of frames can
be captured via common super-concepts, known as abstract case frames, e.g. all Concepts
describing completion of an activity, such as come, reach, finish or arrive, can be grouped
under an abstract frame from which they inherit the potential to accept time-modifiers.
Further descendants of the KL-ONE family include KRYPTON (Brachman et al., 1983),
KL-TWO (Vilain, 1985), MANTRA (Bittencourt, 1988), and CLASSIC (Borgida et al., 1989).

Figure 2.8: Example of a KL-ONE frame (Sondheimer et al., 1984, p.104)

2.2.4 Sowa’s Conceptual structures

Conceptual Structures (Sowa, 1984, 1992) have gained popularity in the beginning of the
1990s. Relying on a multitude of well-established tools of both AI and linguistics such as
λ-calculus, unification, thematic roles or dependency graphs, Conceptual Structures (CS)
intend to serve as both a model of linguistic semantics and a form of universal knowledge
representation. CS representations consist of concepts and conceptual relations. The former
may themselves contain arbitrary CS representations and are then referred to as contexts.
An example CS representation is shown in Figure 2.9.

Figure 2.9: CS graph for A cat chased a mouse (Sowa, 1992, p.80)

Part of the CS apparatus is the operator φ, which maps CS representations to formulas
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of first-order logic. The structure in Figure 2.9 is mapped to the formula

past((∃x)(∃y)(∃z)(cat(x) ∧ chase(y) ∧mouse(z) ∧ agnt(y, x) ∧ ptnt(y, z)))

Standard attribute-value representations (AVMs) used by many KR systems can be
straightforwardly mapped to CS representations by mapping attribute values to concepts
and attribute types to concept relations that hold between the given concept and the
concept corresponding to the entity described by the AVM. Such mappings allow for the
automatic creation of CS-style models of various knowledge bases. (Sowa, 1992) describes
the transformation of entries created as part of the Cyc project (Lenat & Guha, 1990),
plans for building 4lang representations in a similar manner are put forward in Section 8.6
of this thesis. Tools for performing inference over CS graphs have been introduced in e.g.
(Fargues et al., 1986) and (Garner & Tsui, 1988).

2.2.5 Abstract Meaning Representations

Abstract Meaning Representation, or AMR (Banarescu et al., 2013), is a more recent
formalism for representing the meaning of linguistic structures as directed graphs. The
last few years have seen a rise in AMR-related work, including a corpus of AMR-annotated
text (Banarescu et al., 2013), several approaches to generating AMRs from running text
(Vanderwende et al., 2015; Peng et al., 2015; Pust et al., 2015), and various applications
to computational semantics (Pan et al., 2015; Liu et al., 2015).

Figure 2.10: AMR representation of The boy wants to go (Banarescu et al., 2013, p.179)

Nodes of AMR graphs represent concepts of two basic types: they are either English
words, or framesets from PropBank (Palmer et al., 2005), used to abstract away from
English syntax. PropBank framesets are essentially English verbs (or verb-particle con-
structions) with a list of possible arguments along with their semantic roles; an example
frameset can be seen in Figure 2.11. Unlike the 4lang representation used in this thesis,
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Figure 2.11: A PropBank frameset (Palmer et al., 2005, p.76)

AMR also makes a distinction similar to Quillian’s type and token nodes by separating
nodes that represent some entity, event, property, etc. from nodes that are arguments
of some frameset, linking the latter with an instance relation to the former. The AMR
representation of the sentence The boy wants to go would hence be that in Figure 2.10
as opposed to the 4lang representation in Figure 2.12. AMRs also handles a wide range
of phenomena that 4lang currently doesn’t: the formalism provides relations to encode
negation, modals, copulars, and questions. It also includes special relations to encode
named entities – in the broader sense, i.e. including not only proper names but also e.g.
dates, quantities, etc. The formalism accommodates a wide range of phenomena typical
of English, AMR creators admit that “AMR is heavily biased towards English. It is not
an Interlingua.” (Banarescu et al., 2013, p.179).

Figure 2.12: 4lang representation of The boy wants to go

AMRs have rapidly gained popularity over the last 3-4 years. Recent parser systems for
mapping text to AMR representations include a system based on Hyperedge Replacement
Grammars (Peng et al., 2015), a discriminative graph-based parser (Flanigan et al., 2014),
a CCG parser (Artzi et al., 2015), a Machine Translation system (Pust et al., 2015), and
also a tool which uses dependency parsing as an intermediate step for generating AMRs
(Chen, 2015), similar to the method used by the text_to_4lang module for generating
4lang representations from raw text (see Chapter 4). At the 2016 SemEval competition,
Task 8 (Meaning Representation Parsing) required the 11 participating teams to train
systems on AMR-annotated English text and then generate AMR representations for
previously unseen English text (May, 2016). All top-scoring systems were derivatives of
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the CAMR system of (Wang et al., 2015), who process raw text with a standard dependency
parser and implement a transition-based parser for transforming dependency trees into
AMR graphs.

2.2.6 WordNet

Although not a formalism for semantics in general, we finally mention the WordNet ontol-
ogy, since it remains one of the most widely used sources of lexical semantic information in
natural language processing. WordNet (Miller, 1995) is a database mapping word forms
to word senses (or synsets) and encoding lexical relations between them such as synonymy,
antonymy, hyponymy/hypernymy, etc. WordNet is available for 20+ languages, among
which the largest is the English Wordnet, consisting of over 150,000 word forms and nearly
120,000 synsets. In Chapter 6 of this thesis we shall describe multiple systems that use
WordNet as one of their resources for extracting lexical relations between words.

2.3 Montague-style theories

A considerable amount of the literature on the semantics of natural language has in the
past few decades focused on Montagovian representations of meaning (Montague, 1970a,
1970b, 1973; Kamp, 1981; Groenendijk & Stokhof, 1991). The shared agenda of these
approaches is to provide a mapping from linguistic structures to logical formulae; the
bulk of actual work is concerned with handling particular portions of syntax. Nearly all
such accounts take Montague’s original treatment of word meaning for a given. It has
been shown that at least 84 percent of the information content of an average utterance is
encoded by word meaning (Kornai, 2012), yet most proposed interpretations of sentences
such as Every man loves a woman such that she loves him rarely have anything to say
about the concepts man, woman, or love. There are some generic principles of how word
meaning should be represented in logical formulae: nouns like man are typically thought
of as functions that decide for all objects of the world whether they are men or not, verbs
like love are thought of as describing an event in a way that for any event in the world one
can decide whether an act of loving has taken place. Such principles have little practical
value, however, when linking particular utterances to states-of-affairs. To our knowledge,
no lexicon with a substantive list of meaning postulates has ever been built. In Chapter 5
we shall construct 4lang-style meaning representations for all headwords of monolingual
dictionaries of English.

If common nouns like giraffe and adjectives like blue are both seen as selecting a subset
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of all objects in the world, then an NP such as blue giraffe might map to the intersection
of these subsets. The same mechanism fails for enormous fleas: the representation of
enormous must be updated to accommodate the fact that you cannot tell if some size
is enormous unless you know whose size it is (e.g. half an inch is enormous for a flea
but tiny for a giraffe). Clearly there does not exist a function that selects a universal
set of enormous fleas – what constitutes large may depend e.g. on the speaker’s previous
experience. Yet if we are to account for the fact that people can use this phrase successfully
in conversations, we must map enormous to some function that might take as its parameter
not only an entry encoding shared beliefs of speakers about defining properties of fleas, but
also some information regarding their beliefs of the size of fleas. It is tempting to handle
such a phenomenon by simply defining the interfaces with extra-linguistic knowledge, after
which the meaning of small blue giraffe can be a formula with parameters for speakers’
knowledge of what size range counts as small for a giraffe, what shades of color counts as
blue, perhaps even what set of characteristics would make something/somebody a giraffe.
Travis (1997) describes this approach in A Companion to the Philosophy of Language:

What some words say, or contribute to what is said in using them, varies
across speakings of them. Where this is so, the meaning of the words does two
things. First, it determines on just what facts about a speaking the semantic
contribution of the words so spoken depends. Second, it determines just how
their semantics on a speaking depends on these facts. Specifically, it determines
a specifiable function from values of those factors to the semantics the words
would have, if spoken where those values obtain. (Travis, 1997, p.92)

Proponents of Montagovian theories of semantics may claim that the subject of their
study (meaning in a narrow sense) is the component of the effect an utterance has on the
information state of speakers that is unchanged across “speakings”. Nevertheless, such a
representation of e.g. small blue giraffe must contain information about the meaning of
each of the individual concepts small, blue, and giraffe. It is one thing to disown
the issue of inter-speaker variation on which colors are blue, what sizes of giraffes are
small, etc., but surely what makes the phrase more informative than e.g. small blue
animal is that the variation among all giraffes is considerably smaller than the variation
among all animals. That MG accounts of semantics do not decompose the meaning of
content words is problematic because we have seen that to construct the meaning of
even the simplest kinds of phrases, one needs to account for how their meanings interact.
Any mechanism with a chance to interpret small giraffe or young giraffe will have to
make reference to a particular set of components of the meaning of giraffe, otherwise we
cannot make predictions about the size or age of the giraffe. The necessity of decomposing
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word meaning has already been argued for by (Katz & Fodor, 1963), but the actual use
of meaning postulates in MG remains restricted to the resolution of technical problems
caused by handling intensionality; for a survey, see (Zimmermann, 1999). In Chapter 3
we shall present a theory of meaning representation that encodes word meaning as a
network of concepts, making them accessible to mechanisms responsible for constructing
the meaning of larger structures.

2.4 CVS representations

The most widely used models of word meaning today are continuous vector spaces (CVS).
State-of-the-art systems in most standard NLP tasks rely on word embeddings, mappings
from words of a language to real-valued vectors, trained on datasets containing 106-1010

words. In this section we review key aspects of CVS semantics, which set the current
standard for representing word meaning (cf. Section 2.4.1). Remarkably, they do so using
elements of representations that – unlike 4lang representations – do not lend themselves
to compositionality in any obvious way (cf. Section 2.4.2).

2.4.1 Vectors as word representations

Methods used to obtain mappings from words to vectors are based on the distributional
hypothesis (Harris, 1954), which states that words are similar if they appear in similar
contexts. When training word embeddings on large bodies of unannotated text, the most
commonly used algorithms (Mikolov, Chen, et al., 2013; Pennington et al., 2014) will take
into account all contexts the word has occurred in (typically some fixed-size sequence of
surrounding words) and attempt to find vectors for each word that minimizes the dif-
ference between the predicted and observed probability of the word appearing in those
contexts. Embeddings trained this way can be evaluated by using them as the initial
layers of neural network models trained for a variety of NLP tasks such as named entity
recognition, chunking, POS-tagging, etc. (Collobert & Weston, 2008; Turian et al., 2010).
Word vectors are also often measured by their direct applicability to particular tasks such
as answering word analogy questions (Mikolov, Yih, & Zweig, 2013) or finding missing
words in text (cloze test) (Zweig et al., 2012). Analogical questions such as “man is to
woman as king is to X” can be answered successfully by taking the vectors associated
with each word (~m, ~w, ~k for man, woman, and king, respectively) and finding the word
whose vector has the greatest cosine similarity to ~k + ~w − ~m. The fact that this strat-
egy is relatively successful indicates that the relational hypothesis holds to some extent:

27



word representations trained based on distribution are at least implicitly related to word
meaning, making them candidates for use in computational semantics systems. Indeed,
word embeddings have been used successfully in state of the art systems for e.g. Semantic
Role Labeling (Foland Jr & Martin, 2015), Knowledge Base Construction (Nickel et al.,
2015), and Semantic Textual Similarity (Han et al., 2015). Vector representations are also
practical for establishing a connection between linguistic and non-linguistic data, a strik-
ing indication is the work presented in (Karpathy et al., 2014), mapping text fragments
to pictures for information retrieval (image search).

2.4.2 Vectors beyond the word level

In this section we mention only a few examples that are relevant to our thesis. For a
generic overview of compositionality in CVS semantics, the reader is referred to Section 2
of (Grefenstette & Sadrzadeh, 2015). An example of training vectors that represent lin-
guistic units larger than a single word is the Compositional Vector Grammar (CVG) parser
introduced in (Socher, Bauer, et al., 2013), which outperforms by a significant margin the
state of the art in syntactic parsing by combining the standard PCFG approach with re-
cursive neural networks (RNNs) trained on each layer of a parse tree, assigning vectors
not only to words but all nonterminals of the grammar. The text_to_4lang system in-
troduced in Chapter 4 relies on CVGs for syntactic parsing, therefore we now provide a
very brief overview of them as presented in (Socher, Bauer, et al., 2013).

PCFG parsers such as that implemented by the Stanford Parser will return for some
input sentence a ranked list of candidate parses. If a grammar is able to generate the cor-
rect parse tree for nearly all sentences, i.e. the correct parse can be expected to be among
the candidates returned for some sentence, then increasing parsing accuracy amounts to
improving the component responsible for ranking candidates based on their likelihood.
CVGs combine the power of PCFGs and RNNs by devising a method to rerank parse
trees in the output of a standard PCFG parser using neural networks trained on a tree-
bank. The core idea is that in calculating the score of a given syntactic derivation (parse
tree) for a sentence, the likelihood of each derivation step should be assigned based on not
only the observed frequency of the given structure, but rather its likeliness to cover the
particular sequence of words, and that this calculation should factor in word forms via
a distributional model, approximating the properties of rare or unseen words using more
frequent ones that appear in similar contexts. Syntactically untied networks (SU-RNNs)
learn separate parameters for each rewrite rule. The parameters for a rule of the form
A → BC are encoded by the syntactic triplet ((A, a), (B, b), (C, c)), where b and c are
vectors of Rn assigned to the non-terminals B and C, respectively, and A is computed as

28



f(W (B,C)([b, c])), where [b, c] is a vector in R2n obtained by concatenating b and c, and
WB,C is a matrix in Rn×2n which is learnt during the training process. f is the element-
wise nonlinearity function tanh. The process is summarized in Figure 2.13. This process
allows the parser to rank competing parse trees based on a likelihood that is sensitive to
the distribution of individual words as observed in data that is orders of magnitude larger
than those available for training the PCFG parser.

Compositionality of word vectors has also been explored in the context of Sentiment
Analysis (Socher, Perelygin, et al., 2013; Zhu et al., 2015) and Semantic Textual Similarity
(Sultan et al., 2015). The latter work assigns vectors to sentences by calculating the
componentwise average of all word vectors. Socher, Perelygin, et al. (2013) use Recursive
Neural Tensor Networks (RNTNs) to obtain vectors for each node in the parse tree of a
sentence.

Figure 2.13: Example of a syntactically untied RNN (Socher, Bauer, et al., 2013, p.459)
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Chapter 3

The 4lang system

This chapter describes the 4lang system for representing meaning using directed graphs
of concepts. Since the underlying theory is not the main contribution of this thesis,
but rather the work of half a dozen researchers over the course of 6 years, we shall not
attempt a full presentation of the 4lang principles. Instead we shall introduce the formal-
ism in Section 3.1, then continue to discuss some specific aspects relevant to this thesis.
4lang’s approach to multiple word senses is summarized in Section 3.2, Section 3.3 is
concerned with reasoning based on 4lang graphs. Treatment of extra-linguistic knowl-
edge is discussed in Section 3.4. Finally, Section 3.5 considers the primitives of the 4lang
representation and contrasts them with some earlier approaches mentioned in Chapter 2.

For a complete presentation of the theory of lexical semantics underlying 4lang the
reader is referred to (Kornai, 2010) and (Kornai, 2012). (Kornai et al., 2015) compares
4lang to contemporary theories of word meaning. 4lang is also the name of a manually
built dictionary1 mapping 2,200 English words to concept graphs (as well as their trans-
lations in Hungarian, Polish, and Latin, hence its name). The dictionary is described in
(Kornai & Makrai, 2013). For work on extending 4lang to include the top 40 languages
(by Wikipedia size), see (Ács et al., 2013).

3.1 The formalism

4lang represents the meaning of words, phrases and utterances as directed graphs whose
nodes correspond to language-independent concepts and whose edges may have one of three
labels, based on which they’ll be referred to as 0-edges, 1-edges, and 2-edges. (The 4lang
theory represents concepts as Eilenberg-machines (Eilenberg, 1974) with three partitions,
each of which may contain zero or more pointers to other machines and therefore also

1https://github.com/kornai/4lang/blob/master/4lang
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represent a directed graph with three types of edges. The additional capabilities offered by
Eilenberg-machines have not so far been applied by the author, some of them have not even
been implemented yet, therefore it makes more sense to consider the representations under
discussion as plain directed graphs.) First we shall discuss the nature of 4lang concepts
- represented by the nodes of the graph, then we’ll introduce the types of relationships
encoded by each of the three edge types.

3.1.1 Nodes

Nodes of 4lang graphs correspond to concepts. 4lang concepts are not words, nor do they
have any grammatical attributes such as part-of-speech (category), number, tense, mood,
voice, etc. For example, 4lang representations make no difference between the meaning of
freeze (N), freeze (V), freezing, or frozen. Therefore, the mapping between words of some
language and the language-independent set of 4lang concepts is a many-to-one relation.
In particular, many concepts will be defined by a single link to another concept that is its
hypernym or synonym, e.g. above 0−→ up or grasp 0−→ catch. Encyclopedic information
is omitted, e.g. Canada, Denmark, and Egypt are all defined as country (their definitions
also containing a pointer to an external resource, typically to Wikipedia). In general,
definitions are limited to what can be considered the shared knowledge of competent
speakers – e.g. the definition of water contains the information that it is a colorless,
tasteless, odorless liquid, but not that it is made up of hydrogen and oxygen. We shall
now go through the types of links used in 4lang graphs.

3.1.2 The 0-edge

The most common relation between concepts in 4lang graphs is the 0-edge, which rep-
resents attribution (dog 0−→ friendly ); the IS_A relation (hypernymy) (dog 0−→ animal);
and unary predication (dog 0−→ bark). Since concepts do not have grammatical categories,
this uniform treatment means that the same graph can be used to encode the meaning
of phrases like water freezes and frozen water, both of which would be represented as
water 0−→ freeze.

3.1.3 1- and 2-edges

Edge types 1 and 2 connect binary predicates to their arguments, e.g. cat 1←− catch 2−→ mouse).
The formalism used in the 4lang dictionary explicitly marks binary (transitive) elements
– by using UPPERCASE printnames. The pipeline that we’ll introduce in Chapter 4 will
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Figure 3.1: 4lang graph with two types of binaries.

HAS shirt 1←− HAS 2−→ collar

IN letter 1←− IN 2−→ envelope

AT bridge 1←− AT 2−→ river

CAUSE humor 1←− CAUSE 2−→ laugh

INSTRUMENT sew 1←− INSTRUMENT 2−→ needle

PART_OF leaf 1←− PART_OF 2−→ plant

ON smile 1←− ON 2−→ face

ER slow 1←− ER 2−→ speed

FOLLOW Friday 1←− FOLLOW 2−→ Thursday

MAKE bee 1←− MAKE 2−→ honey

Table 3.1: Most common binaries in the 4lang dictionary

not make use of this distinction, any concept can have outgoing 1- and 2-edges. Binaries
marked with uppercase are nevertheless clearly set apart from other concepts by the fact
that they are necessarily binary, i.e. they must always have exactly two outgoing edges.
We retain the uppercase marking for those binary elements that do not correspond to any
word in a given phrase or sentence, e.g. the meaning of the sentence Penny ate Leonard’s
food will be represented by the graph in Figure 3.12. The top ten most common binaries
used in 4lang are listed in Table 3.1 and examples are shown for each.

Given two concepts c1 and c2 such that c2 is a predicate that holds for c1, 4lang
will allow for one of two possible connections between them: c1

0−→ c2 if c2 is a one-
place predicate and c2

1−→ c1 if c2 is a two-place predicate. It would be counter-intuitive
and unpractical to treat these configurations as mutually exclusive in the 4lang-based

2Evidence for different patterns of linking predicates and their arguments could be obtained from
ergative languages (Dixon, 1994), these shall not be discussed here.
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Figure 3.2: Revised 4lang graph with two types of binaries for the sentence Penny ate
Leonard’s food

systems presented in this thesis. Two-place predicates often appear with a single argument
(e.g. John is eating), and representing such a statement as John 0−→ eat while the sentence
John is eating a muffin warrants John 1←− eat 2−→ muffin would mean that we consider the
relationship between John and eat dependent on whether we have established the object
of his eating. Therefore we choose to adopt a modified version of the 4lang representation
where the 0-connection holds between a subject and predicate regardless of whether the
predicate has another argument. The example graph in Figure 3.1 can then be revised to
obtain that in Figure 3.23.

The meaning of each 4lang concept is represented as a 4lang graph over other concepts
– a typical definition in the 4lang dictionary can be seen in Figure 3.3; this graph captures
the facts that birds are vertebrates, that they lay eggs, and that they have feathers and
wings. The generic applicability of the 4lang relations introduced in Section 3.1 have
the consequence that to create, understand, and manipulate 4lang representations one
need not make the traditional distinction between entities, properties, and events. The
relationships dog 0−→ bark and dog 0−→ inferior (Kornai, in preparation) can be treated in
a uniform fashion, when making inferences based on the definitions of each concept, e.g.
that dog 1←− MAKE 2−→ sound or that calling another person a dog is insulting.

3.2 Ambiguity and compositionality

4lang does not allow for multiple senses when representing word meaning, all occurrences
of the same word form – with the exception of true homonyms like trunk ‘the very long

3 Since the text_to_4lang pipeline presented in Chapter 4 assigns 4lang graphs to raw text based
on the output of dependency parsers that treat uniformly the relationship between a subject and verb
irrespective of whether the verb is transitive or not, the 4lang graphs we build will include a 1-edge
between all verbs and their subjects. We do not consider this a shortcoming: for the purposes of semantic
analysis we do not see the practicality of a distinction between transitive and intransitive verbs – we only
recognize the difference between the likelihood (based on data) of some verb taking a certain number of
arguments.
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Figure 3.3: 4lang definition of bird.

nose of an elephant’ and trunk ‘the part at the back of a car where you can put bags,
tools etc’4 – must be mapped to the same concept, whose definition in turn must be
generic enough to allow for all possible uses of the word. As Jakobson famously noted,
such a monosemic approach might define the word bachelor as ‘unfulfilled in typical male
role’ (Fillmore, 1977). Such definitions place a great burden on the process responsible for
combining the meaning of words to create representations of phrases and utterances (see
Chapter 4), but it has the potential to model the flexibility and creativity of language use:

“we note here a significant advantage of the monosemic approach, namely that
it makes interesting predictions about novel usage, while the predictions of
the polysemic approach border on the trivial. To stay with the example, it is
possible to envision novel usage of bachelor to denote a contestant in a game
who wins by default (because no opponent could be found in the same weight
class or the opponent was a no-show). The polysemic theory would predict
that not just seals but maybe also penguins without a mate may be termed
bachelor – true but not very revealing.”(Kornai, 2010, p.182)

One typical consequence of this approach is that 4lang definitions will not distinguish
between bachelor and some concept w that means ‘unfulfilled male’ – both could be
defined in 4lang as e.g. male, LACK. This is not a shortcoming of the representation,
rather it is in accordance with the principles underlying it; the concepts unfulfilled and
male cannot be combined (e.g. to create a representation describing an unfulfilled male)
without making reference to some nodes of the graph representing the meaning of male; if
something is a ‘typical male role’, this should be indicated in the definition graph of male
(if only by inbound pointers), and without any such information, unfulfilled male cannot
be interpreted at all.

4All example definitions, unless otherwise indicated, are taken from the Longman Dictionary of Con-
temporary English (Bullon, 2003)
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This does not mean that male cannot be defined without listing all stereotypes asso-
ciated with the concept. If the piece of information that ‘being with a mate at breeding
time’ is a typical male role – which is necessary to account for the interpretation of bach-
elor as ‘young fur seal when without a mate at breeding time’ – is to be accessed by some
inference mechanism, then it must be present in the form of some subgraph containing
the nodes seal, mate, male, and possibly others. Then, a 4lang-based natural language
understanding system that is presented with the word bachelor in the context of mating
seals for the first time may explore the neighborhood of these nodes until it finds this piece
of information as the only one that ‘makes sense’ of this novel use of bachelor. Note that
this is a model of novel language use in general. Humans produce and understand without
much difficulty novel phrases that most theories would label ‘semantically anomalous’. In
particular, all language use that is commonly labeled metaphoric involves accessing a lex-
ical element for the purpose of activating some of its meaning components, while ignoring
others completely. It is this use of language that 4lang wishes to model, as it is most
typical of everyday communication (Richards, 1937; Wilks, 1978; Hobbs, 1990). When
we present the dict_to_4lang system for building 4lang definitions from dictionary en-
tries, we shall discuss the possibility of gathering information from multiple definitions of
a single headword (see Section 5.4.3).

Another 4lang principle that facilitates metaphoric interpretation is that any link in a
4lang definition can be overridden. In fact, the only type of negation used in 4lang defi-
nitions, LACK, carries the potential to override elements that might otherwise be activated
when definitions are expanded: e.g. the definition of penguin, which undoubtedly con-
tains 0−→ bird, may also contain 1←− LACK 2−→ fly to block inference based on bird 0−→ fly.
That any element can freely be overridden ensures that novel language use does not nec-
essarily cause contradiction: “[T]o handle ‘the ship plowed through the sea’, one lifts the
restriction on ‘plow’ that the medium be earth and keeps the property that the motion is
in a substantially straight line through some medium” (Hobbs, 1990, p.55). Since a 4lang
definition of plow must contain some version of 2−→ earth, there must be a mechanism
allowing to override it and not make inferences such as sea 0−→ earth5.

5Note that such an inference must access some form of world knowledge in addition to the definition
of each concept: the definition of ship will contain 1←− ON 2−→ water (or similar), but to infer that this
makes it incompatible with the earth in the definition of plow one must also be aware that water and
earth cancel each other out in the context of where a vehicle runs
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Figure 3.4: 4lang definition of mammal.

3.3 Reasoning

The 4lang principles summarized so far place a considerable burden on the inferencing
mechanism. Given the possibility of defining all concepts using only a small set of primi-
tives, and a formalism that strictly limits the variety of connections between concepts, we
claim to have laid the groundwork for a semantic engine with the chance of understanding
creative language use. Generic reasoning has not yet been implemented in 4lang, we only
present early attempts in Section 5.3 and some specific applications in Chapter 6. Here
we shall simply outline what we believe could be the main mechanisms of such a system.

The simplest kind of lexical inference in 4lang graphs is performed by following paths
of 0-edges from some concept to determine the relationships in which it takes part. The
concept mammal is defined in 4lang as an animal that has fur and milk (see Figure 3.4),
from which one can conclude that the relations 1←− HAS 2−→ milk and 1←− HAS 2−→ fur also
hold for all concepts whose definition includes 0−→ mammal (we shall assume that this simple
inference can be made when we construct 4lang definitions from dictionary definitions in
Chapter 5). Similar inferences can be made after expanding definitions, i.e. replacing
concept nodes with their definition graphs (see Section 5.3 for details). If the definition of
giraffe contains 0−→ mammal, to which we add edges 1←− HAS 2−→ fur and 1←− HAS 2−→ milk,
this expanded graph will allow us to infer the relations giraffe 1←− HAS 2−→ fur and
giraffe 1←− HAS 2−→ milk. As mentioned in the previous section, this process requires that
relations present explicitly in a definition override those obtained by inference: penguins
are birds and yet they cannot fly, humans are mammals without fur, etc.

A more complicated procedure is necessary to detect connections between nodes of
an expanded definition and nodes connected to the original concept. Recall Quillian’s
example in Section 2.2.1: given the phrase lawyer’s client his iterative search process will
eventually find lawyer to be compatible with the employer property of client, since both
are professionals. A similar process can be implemented for 4lang graphs; consider the
definition graphs for lawyer and client in Figures 3.5 and 3.6, built automatically from
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Figure 3.5: Definition graph for lawyer

Figure 3.6: Definition graph for client

definitions in the Longman dictionary, as described in Chapter 5, then pruned manually.
(These graphs, being the output of the dict_to_4lang system and not manual annotation,
have numerous issues: the word people in the Longman dictionary definition of lawyer
was not mapped to person, nor have the words advice and advise been mapped to the
same concept. After correcting these errors manually, nodes with identical names in the
graph for lawyer’s client (Figure 3.7) can form the starting point of the inference process.)
Let us now go over the various steps of inference necessary to reduce this graph to the
most informative representation of lawyer’s client. Note that we do not wish to impose
any logical order on these steps; they should rather be the ‘winners’ of a process that
considers many transformations in parallel and ends up keeping only some of them. A
simple example of such a system will be described in Section 6.3.

We should be able to realize that the person who is adviced (and is represented by)
the lawyer can be the same as the client who gets advice from the lawyer. To this
end we must be able to make the inference that X 1←− get 2−→ advice and advice 2−→ X are
synonymous. We believe a 4lang-based system should be able to make such an inference
in at least one of two independent ways. First, we expect our inference mechanism to
compute, based on the definitions of get and advice, that X 1←− get 2−→ advice entails
advice 2−→ X (and vice versa). Secondly, we’d like to be able to accommodate construc-
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Figure 3.7: Corrected graph for lawyer’s client

tions in the 4lang system (see also Section 8.4) that may explicitly pair the above two
configurations for some concepts but not for others (e.g. X 1←− get 2−→ drink should not
trigger drink 2−→ X).

We should also consider unifying the person node in person 1←− from 2−→ advice with
lawyer in advice 1−→ lawyer, which would once again require either some construction
that states that when someone advises, then the advice is from her, or a generic rule
that can guess the same connection. Given these inferences, the two advice can also be
merged as likely referring to the same action, resulting in the final graph in Figure 3.8.
The nodes organization, company, and service have been omitted from the figure to
improve readability.

3.4 Extra-linguistic knowledge

Chapter 3 of (Kornai, in preparation) argues that knowledge representation for the pur-
poses of natural language understanding requires a distinction between analytic and syn-
thetic knowledge, and that the 4lang theory is adequate to represent all analytic knowl-
edge. When we discuss inference in terms of 4lang representations, we only make reference
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Figure 3.8: Inferred graph for lawyer’s client

to knowledge that is clearly within the boundaries of the naive theories described by Kor-
nai. We emphasize that we do not even need to establish any particular piece of knowledge
as essential to our inferencing capabilities, just as in mathematics, where we do not need
to establish the truth of the axioms. Returning to one of the simplest examples above,
where bird 0−→ fly is overridden to accommodate both penguin 1←− LACK 2−→ fly and
penguin 0−→ bird, we need not decide whether the particular piece of information that
penguins cannot fly is part of the meaning of penguin. Clearly it is possible for one to
learn of the existence of penguins and that they are a type of bird without realizing that
they cannot fly, and this person could easily make the incorrect inference that they can.
Some components of word meaning, on the other hand, appear to be essential to the un-
derstanding of a particular concept, e.g. if a learner of English believes that nephew refers
to the child of one’s sibling, male or female (perhaps because in her native language a sin-
gle word stands for both nephews and nieces, and because she has heard no contradicting
examples), we say that she does not know the meaning of the word; nephew 0−→ male is
internal to the concept nephew in a way that penguin 1←− LACK 2−→ fly is not to penguin.
This distinction is commonly made in semantics under the heading analytic vs. synthetic
knowledge, but imperfections in acquiring analytic knowledge are common and a normal
part of the language acquisition process. Carrying a conversation successfully only requires
that the participants’ representations of word meaning does not contradict each other in
a way relevant to the conversation at hand6. Static lexical resources such as LDOCE or
the 4lang concept dictionary must make decisions about which pieces of information to
include, and may do so based on some notion of how ‘technical‘ or ‘commonplace‘ they are.
A person’s ignorance of the fact that somebody’s nephew is necessarily male is probably
itself the result of one or several conversations about nephews that somehow remained

6This is also reflected in The Urban Dictionary’s definition of semantics: The study of discussing the
meaning/interpretation of words or groups of words within a certain context; usually in order to win some
form of argument (http://www.urbandictionary.com)
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consistent despite his incomplete knowledge about how the word is typically used.

3.5 Primitives of representation

In the following two chapters this thesis will present methods for 1) building 4lang rep-
resentations from raw text and 2) building 4lang definition graphs for virtually all words
based on monolingual dictionaries. Given these two applications, any text can be mapped
to 4lang graphs and nodes of any graph can be expanded to include their 4lang defini-
tions. Performing this expansion iteratively, all representations can be traced back to a
small set of concepts. In case the Longman Dictionary is used to build definition graphs,
the concepts listed in the 4lang dictionary will suffice to cover all of them, since it con-
tains all words of the Longman Defining Vocabulary (LDV), the set of all words used in
definitions of the Longman Dictionary (Boguraev & Briscoe, 1989). The set of concepts
necessary to define all others can be further reduced: we show in (Kornai et al., 2015) that
as few as 129 4lang concepts are enough to define all others in the 4lang dictionary, and
thus, via monolingual dictionaries, practically all words in the English language.

In response to Katz and Fodor’s markers and distinguishers (see Section 2.1), Bolinger
(1965) argues that any component of word meaning that Katz and Fodor may consider
to belong to the domain of distinguishers, and as such out of grasp for a semantic theory,
can be further decomposed into markers. He demonstrates his point by providing example
uses of the word bachelor that allow a competent speaker to disambiguate between the
senses listed by Katz and Fodor, but only based on properties of senses that are below
the last marker in K&F’s decomposition (cf. Figure 2.1). Since each of these examples is
a self-contained argument for the existence of some semantic category, we shall use some
of them to demonstrate 4lang’s ability to decompose meaning. In Figure 3.9 we present
Bolinger’s first five examples along with his original explanation of how each necessitates
the introduction of some semantic marker.

Our account of these examples will be incomplete given the current limitations of
our implemented systems, e.g. its current lack of treatment for modality, negation, and
temporal relations. These already concern the first example: what is implemented of
4lang so far does not have a sophisticated system for representing temporal relations.
The concepts after and before are used in 4lang definitions to encode event structure,
e.g. the definition of discover contains know 0−→ after and effort 0−→ before. Whether
the inference indicated by Bolinger can be made depends on how the definition of marry
(Figure 3.10) is negated – given proper treatment, a man who has never married will
be established as one for whom (before 0←−) marriage 2←− IN 0−→ NOT holds, and become
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1. He became a bachelor. This rules out the ‘man who has never married’
– it is impossible to become one who has never done something. We can
extract the -ever part of never from the distinguisher and set up a marker
(Nonbecoming).

2. The seven-year-old bachelor sat on the rock. The definition ‘male who has
never married’ was deficient. It should have been something like ‘adult
male who has never married,’ and from that expanded distinguisher we
now extract the marker (Adult).

3. Lancelot was the unhappiest of all the bachelors after his wife died. This
seems to justify raising (Unmarried) to marker status and wipes out the
distinguisher on one of the branches: bachelor-noun-(Human)–(Male)-
(Adult)-(Non-becoming)-(Unmarried).

4. That peasant is a happy bachelor. Being a peasant is not compatible
with being a knight. There must be a marker of status lying around
somewhere. A knight has to be of gentle birth. Let us extract (Noble)
from the distinguisher (leaving the degree of nobility for the moment
undisturbed as still part of the knight’s distinguisher).

5. George is one bachelor who is his own boss. This eliminates the knight,
and turns ‘serving under’ into another status marker that might be called
(Dependent).

Figure 3.9: Examples and arguments for new markers (Bolinger, 1965, p.558-560)

should entail that for some predicate 0−→ before is false, rendering it incompatible with
the unmarried man interpretation of bachelor.

Example 2 requires us to derive the incompatibility of adult with 7-year-old. Since
the definitions of adult in both Longman and en.wiktionary contain the term fully grown,
this inference requires us to make reference to knowledge about the average age at which
humans stop growing. The third example can be handled in 4lang similarly to the first: the
unmarried (adult) male reading of bachelor must entail that at no time in the past could

1←− IN 2−→ marriage have been true. Example 4 requires a contradiction to be detected
between knight and peasant – this can be straightforward given the right definition, but
given our method of building definitions from dictionary definitions, we cannot expect
our definition graphs to be as comprehensive as to include noble and noble 0−→ LACK in
the respective graphs for knight and peasant. Instead we should be able to infer these
relations from the definitions we do encounter: the Longman definition of knight: ‘a man
with a high rank in the past who was trained to fight while riding a horse’ should result in
the subgraph knight 1←− HAS 2−→ rank 0−→ high7, the definition of peasant: a poor farmer

7 Incidentally, to construct this graph we would also need to overcome a parsing error: the Stanford
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Figure 3.10: 4lang definition of marry.

who owns or rents a small amount of land, either in past times or in poor countries will
yield peasant 0−→ poor. These relations are not strictly incompatible, the original example
also depends upon the assumption that being a peasant entails being of low rank – we
have much better chances given a definition that makes this assumption itself, such as
the one in the English Wiktionary: A member of the lowly social class which toils on the
land (...). In the latter case, all that remains is making the connection between rank and
class ( 0−→ social), but the former should also allow us, given a probabilistic system, to
establish that a peasant is not likely to be a knight.

Finally, in Example 5, it is the incompatibility of ‘being one’s own boss’ and the ‘serving
under’ component of the young knight serving under the standard of another knight that
must be established. The Longman definition of boss: the person who employs you or who
is in charge of you at work will allow us to mapGeorge is his own boss to George 1⇐

2
employ,

contradicting George 0−→ serve 1←− under 2−→ X if the identity of X and George cannot be
established, in this case explicitly excluded by the phrase another knight. We refrain
from discussing the remaining 10 examples in (Bolinger, 1965). Details of the processes
presented here are yet to be worked out, but we have shown that each inference is possible
given our current set of semantic primitives.

Parser analyses this noun phrase as describing a man whose rank was trained and the rank is in the past.
Parser errors such as this one will be discussed in Sections 4.4.1 and 8.4
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3.6 Theoretical significance

This chapter provided a brief summary of the main principles behind the 4lang system
for representing the meaning of linguistic structures. Before we proceed to present a set of
tools for building and manipulating 4lang representations, as well as their applications to
some tasks in computational semantics, let us point out some of the most important char-
acteristics of 4lang representations that make it our formalism of choice in the remainder
of this thesis.

No categories 4lang does not differentiate between concepts denoting actions, entities,
attributes, etc., there are no categories of concepts equivalent to part-of-speech cate-
gories of words. This ensures, among other things, that words with a shared root are
typically mapped to the same concept, and that ultimately utterances with the same
information content can be mapped to inferentially identical 4lang representations.

No polysemy 4lang will only accommodate multiple senses of a word as a last resort.
Distant but related uses of the same word must be interpreted via the same generic
concept. This virtually eliminates the difficulty of word sense disambiguation.

Requires powerful inference The above principles require a mechanism for deriving
all uses of a word from minimalistic definitions. Such a mechanism may stand a real
chance at handling creative language use typical of everyday human communication
(and responsible for polysemy in the first place).

No failure of interpretation No combinations of concepts and connections between
them are forbidden by the formalism itself. Inference may judge certain states-
of-affairs impossible, but the formalism will not fail the interpretation process.
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Chapter 4

From text to concept graph

In this chapter we present our work on combining word representations like those described
in Chapter 3 to create graphs that encode the meaning of phrases. We relegate the task of
syntactic parsing to the state of the art Stanford Parser (DeMarneffe et al., 2006; Socher,
Bauer, et al., 2013). The pipeline presented in this chapter processes sets of dependency
triplets emitted by the Stanford Parser to create 4lang-style graphs of concepts (our future
plans to implement syntactic parsing in 4lang are outlined in Section 8.4). This chapter is
structured as follows: dependency parsing is briefly introduced in Section 4.1, the central
dep_to_4lang module which maps dependencies to 4lang graphs is presented in Sec-
tions 4.2 and 4.3. Major issues are discussed in Section 4.4, some solutions are presented
in Section 4.5, manual evaluation of the text_to_4lang system is provided in Section 4.6.
Finally, Section 4.7 presents the adaptation of text_to_4lang to Hungarian. The mod-
ule presented in this chapter is accessible via the text_to_4lang1 module of the 4lang
repository. Besides the ability to map chunks of running text to semantic representations,
text_to_4lang will see another application that is crucial to the system described in this
thesis: we process definitions of monolingual dictionaries to acquire word representations
for lexical items that are not covered by 4lang. The resulting module dict_to_4lang
will be presented in Chapter 5. The modules dep_to_4lang and dict_to_4lang are also
presented in (Recski, 2016), the adaptation to Hungarian is published in (Recski, Borbély,
& Bolevácz, 2016).

1https://github.com/kornai/4lang/blob/master/src/text_to_4lang.py
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4.1 Dependency parsing

We use a robust, state of the art tool, the Stanford Parser2 to obtain dependency relations
that hold between pairs of words in an English sentence. Unlike dependency parsers
that have been trained on manually annotated dependency treebanks, the Stanford Parser
discovers relations by matching templates against its parse of a sentence’s constituent
structure (DeMarneffe et al., 2006). This approach is more robust, since phrase structure
parsers, and in particular the PCFG parser in the Stanford toolkit (Klein & Manning,
2003), are trained on much larger datasets than what is available to standard dependency
parsers.

The Stanford Dependency Parser is also capable of returning collapsed dependencies,
which explicitly encode relations between two words that are encoded in the sentence
by a function word such as a preposition or conjunction. E.g. in case of the sentence
I saw the man who loves you, standard dependency parses would contain the relation
nsubj(loves, who) but not nsubj(loves, man), even though man is clearly the sub-
ject of loves. Collapsed dependency parses contain these implicitly present dependencies
and are therefore more useful for extracting the semantic relationships between words in
the sentence. Furthermore, the Stanford Parser can postprocess conjunct dependencies:
in the sentence Bills on ports and immigration were submitted by Senator Brownback,
Republican of Kansas, the NP Bills on ports and immigration will at first be parsed into
the relations prep_on(Bills, ports) and cc_and(ports, immigration), then matched
against a rule that adds the relation prep_on(Bills, immigration). For our purposes
we enable both types of postprocessing and use the resulting set of relations (or triplets)
as input to the dep_to_4lang module, which uses them to build 4lang graphs and will
be introduced in Section 4.2.

The list of dependency relations extracted from a sentence (for a detailed description
of each dependency relation see (De Marneffe & Manning, 2008a)) is clearly not intended
as a representation of meaning; it will nevertheless suffice for constructing good qual-
ity semantic representations because of the nature of 4lang relations: for sentences and
phrases such as Mary loves John or queen of France, 4lang representations are as simple
as Mary 1←− love 2−→ John and France 1←− HAS 2−→ queen which can be straightforwardly
constructed from the dependency relations nsubj(love, Mary), dobj(love, John), and
prep_of(queen, France). Any further details that one may demand of a semantic rep-
resentation, e.g. that John is an experiencer or that France does not physically possess
the queen, will be inferred from the 4lang definitions of the concepts love and queen, in

2http://nlp.stanford.edu/software/lex-parser.shtml
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the latter case also accessing the definitions of rule or country.

4.2 From dependencies to graphs

To construct 4lang graphs using dependency relations in the parser’s output, we created
manually a mapping from relations to 4lang subgraphs, assigning to each dependency
one of nine possible configurations (see Table 4.1). Additionally, all remaining relations
of the form prep_* and prepc_* are mapped to binary subgraphs containing a node
corresponding to the given preposition. To map words to 4lang concepts, we first lem-
matize them using the hunmorph morphological analyzer and the morphdb.en database
(Tron et al., 2005). Graph edges for each dependency are added between the nodes corre-
sponding to the lemmas returned by hunmorph. The full mapping from dependencies to
4lang-subgraphs is presented in Table 4.1. Figure 4.1 provides an example of how 4lang
subgraphs correspond to dependency triplets.

⇓

Figure 4.1: Constructing the graph for Harry shivered in the cold air

4.3 Utterances

Dependency relations obtained from multiple sentences can be used to update graphs over
a single set of nodes, therefore the text_to_4lang pipeline presented in this chapter can
be applied to documents of arbitrary size. Some of our preliminary experiments showed
coreference resolution to be a significant challenge posed by processing several sentences
into a single concept graph; we have therefore extended the text_to_4lang module to
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Dependency Edge
amod

w1
0−→ w2

advmod
npadvmod
acomp
dep
num
prt
nsubj

w1
1
⇀↽
0
w2

csubj
xsubj
agent
dobj

w1
2−→ w2

pobj
nsubjpass
csubjpass
pcomp
xcomp
poss

w2
1←− HAS 2−→ w1prep_of

tmod w1
1←− AT 2−→ w2

prep_with w1
1←− INSTRUMENT 2−→ w2

prep_without w1
1←− LACK 2−→ w2

prep_P w1
1←− P 2−→ w2

Table 4.1: Mapping from dependency relations to 4lang subgraphs
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run the Stanford Coreference Resolution system (Lee et al., 2011) and use its output to
unify nodes in the concept graphs. An example is shown in Figure 4.2.

⇓

⇓

Figure 4.2: text_to_4lang processing of Harry snatched up his wand and scrambled to
his feet with coreference resolution
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4.4 Issues

4.4.1 Parsing errors

Using the Stanford Parser for dependency parsing yields high-quality output, it is however
limited by the quality of the phrase structure grammar parser. Parsing errors constitute
a major source of errors in our pipeline, occasionally resulting in dubious semantic rep-
resentations that could be discarded by a system that integrates semantic analysis into
the parsing process. Our long-term plans include implementing such a process within
the 4lang framework using constructions (see Section 8.4), currently we rely on indepen-
dent efforts to improve the accuracy of phrase structure grammar parsers using semantic
information.

Results of a pioneering effort in this direction are already included in the latest versions
of the Stanford Parser (including the one used in the 4lang system) and was introduced in
Section 2.4.2: (Socher, Bauer, et al., 2013) improves the accuracy of the Stanford Parser
by using Compositional Vector Grammars, RNN-based models that learn for each terminal
rule Rn → R2n linear transformations that can be applied to pairs of word vectors of length
n to obtain an n×n matrix representing the nonterminal that is the result of applying the
given rule. The purpose of this model is to account for the semantic relationships between
words in the text that is to be parsed and words that have occurred in the training data.
E.g. the sentence He ate spaghetti with a spoon can be structurally distinguished from He
ate spaghetti with meatballs even if in the training phase the model has only had access
to [eat [spaghetti] [with a fork]], by grasping the similarity between the words spoon and
fork.

This phenomenon of incorrect PP-attachment is the single most frequent source of
anomalities in our output. For example, syntactic ambiguity in the Longman definition of
basement: a room or area in a building that is under the level of the ground, which has
the constituent structure in Figure 4.3 is incorrectly assigned the structure in Figure 4.4,
resulting in the incorrect semantic representation in Figure 4.5 (instead of the expected
graph in Figure 4.6). Most such ambiguities are easily resolved by humans based on lexical
facts (in this case e.g. that buildings with some underground rooms are more common
than buildings that are entirely under the ground, if the latter can be called buildings at
all) but it seems that such inferencing is beyond the capabilities even for parsers using
word embeddings. As already discussed in Section 3.3, such deductions can be made based
on 4lang representations.
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NP

S’

that is under the level of the ground

NP

PP

NP

a buildingin

NP

a room or area

Figure 4.3: Constituent structure of a room or area in a building that is under the level of
the ground

NP

PP

NP

S’

that is under the level of the ground

NP

a buildingin

NP

a room or area

Figure 4.4: Incorrect parse tree for a room or area in a building that is under the level of
the ground

Figure 4.5: Incorrect definition graph for basement.

4.4.2 Relationships among clauses

The text_to_4lang system does not currently detect relationships between multiple
clauses of a sentence expressed by conjunctions such as because, unless, although, etc.,
since they do not appear as syntactic dependency relations in the output of dependency
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Figure 4.6: Expected definition graph for basement.

parsers (unlike e.g. clausal modifiers of noun phrases, which are processed by the Stanford
Parser to obtain e.g. nsubj(appears, liquid) from the definition of perspiration: liq-
uid that appears on your skin because you are hot or nervous). Such conjunctions should
be treated on a case-by-case basis by constructions enforcing simple rules. Such a con-
struction might state that for some sentence X, because Y, the 4lang graphs corresponding
to X and Y should be joined by 1←− CAUSE 2−→ . The definition of perspiration could then
map to the graph in Figure 4.7.

Figure 4.7: Definition graph built from perspiration: liquid that appears on your skin
because you are hot or nervous
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4.5 Postprocessing dependencies

Some of the typical issues of the graphs constructed by the process described in Section 4.2
can be resolved by postprocessing the dependency triplets in the parser’s output before
passing them to dep_to_4lang. Currently the dependency_processor module handles
two configurations: coordination (Section 4.5.1) and copular sentences (Section 4.5.2)

4.5.1 Coordination

One frequent class of parser errors related to PP-attachment (cf. Section 4.4.1) involve
constituents modifying a coordinated phrase which are analyzed as modifying only one of
the coordinated elements. E.g. in the Longman entry casualty - someone who is hurt or
killed in an accident or war, the parser fails to detect that the PP in an accident or war
modifies the constituent hurt or killed, not just killed. Determining which of two possible
parse trees is the correct one is of course difficult - once again, casualty may as well mean
someone who is killed in an accident or war or someone who is hurt (in any way) and that
such a misunderstanding is unlikely in real life is a result of inference mechanisms well
beyond what we are able to model.

Our simple attempt to improve the quality of graphs built is to process all pairs of
words between which a coordinating dependency holds (e.g. conj_and, conj_or, etc.)
and copy all edges from each node to the other. This could hardly be called a solution, as
it may introduce dependencies incorrectly, but in practice it has proved an improvement.
In our current example this step enables us to obtain missing dependencies and thus build
the correct 4lang graph (see Figure 4.8).

4.5.2 Copulars and prepositions

Two further postprocessing steps involve copular constructions containing prepositional
phrases. In simple sentences such as The wombat is under the table, the parser returns
the pair of dependencies nsubj(is, wombat) and prep_under(is, table), which we
use to generate prep_under(wombat, table). Similarly, when PPs are used to modify
a noun, such as in the Longman definition of influenza: an infectious disease that is
like a very bad cold, for which the dependency parser returns, among others, the triplets
rcmod(disease, is) and prep_like(is, cold), we let a simple rule add the triplet
prep_like(disease, cold) (see Figure 4.9). In both cases we finish by removing the
copular verb in order to simplify our final representation.
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⇓

Figure 4.8: Definition graph built from: casualty - someone who is hurt or killed in an
accident or war, with extra dependencies added by the postprocessor

⇓

Figure 4.9: Postprocessing the definition an infectious disease that is like a very bad cold

4.6 Evaluation

We evaluated our pipeline on small random samples of text by inspecting both the out-
put and the intermediate representations to understand the nature of each error. Our
first round of evaluation in Section 4.6.1 involves the complete pipeline and is therefore
also influenced by erroneous analyses of the Stanford Parser. To remove this factor, in
Section 4.6.2 we also test dep_to_4lang on gold standard dependency annotations.
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4.6.1 Evaluation on raw text

We performed manual evaluation of the text_to_4lang module on a sample from the
UMBC Webbase corpus (Han et al., 2013), a set of 3 billion English words based on a 2007
webcrawl performed as part of the Stanford Webbase3 project. We used the GNU utility
shuf to extract a random sample of 50 sentences, which we processed with text_to_4lang
and examined manually both the final output and the dependencies output by the Stanford
Parser in order to gain a full understanding of each anomaly in the graphs created. The
sentences in this corpus are quite long (22.1 words/sentence on average), therefore most
graphs are affected by multiple issues; we shall now take stock of those that affected more
than one sentence in our sample.

Parser errors remain the single most frequent source of error in our final 4lang graphs:
16 sentences in our sample of 50 were assigned dependencies erroneously. 4 of these cases
are related to PP-attachment (see Section 4.4.1). Parser errors are also virtually the only
issue that cause incorrect edges to be added to the final graph – nearly all remaining errors
will result in missing connections only. The second largest source of errors in this dataset
are related to connectives between clauses that our pipeline does not currently process
(see Section 4.3). Our sample contains 12 such examples, including 4 relative clauses,
4 pairs of clauses connected by that, and a number of other connectives such as unless,
regardless, etc. The output of our pipeline for these sentences often consists of two graphs
that are near-perfect representations of the two clauses, but are not connected to each
other in any way – an example is shown in Figure 4.10, we shall briefly return to this issue
in Section 8.1.

Three more error classes are worth mentioning based on the proportion of graphs
affected by them in our sample. 5 representations suffered from recall errors made by the
Stanford Coreference Resolution system: in these cases connections of a single concept in
the final graph are split among two or more nodes, since our pipeline failed to identify two
words as referring to the same entity (Figure 4.11 shows an example). The second type of
error also affects 5 sentences, those that are assigned the vmod dependency. This relation
holds between a noun and a reduced non-final verbal modifier, which “is a participial or
infinitive form of a verb heading a phrase (which may have some arguments, roughly like
a VP). These are used to modify the meaning of an NP or another verb.”(DeMarneffe et
al., 2006, p.10). This dependency is not processed by dep_to_4lang, since it may encode
the relation between a verb and either its subject or object; e.g. the example sentences
in the Stanford Dependency Manual, Truffles picked during the spring are tasty and Bill
tried to shoot, demonstrating his incompetence will result in the triplets vmod(truffles,

3http://dbpubs.stanford.edu:8091/~testbed/doc2/WebBase/
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picked) and vmod(shoot, demonstrating), but should be represented in 4lang by the
edges pick 2−→ truffle and shoot 0−→ demonstrate, respectively. When we extend our
tools to handle Hungarian input (see Section 4.7), we add to dep_to_4lang the capability
of differentiating between words based on morphological analysis. English POS-tags are
not currently processed, but this feature would make it straightforward to handle the vmod
dependency using two rules, one for gerunds and one for participle forms.

Figure 4.10: 4lang graph built from the sentence The Manitoba Action Committee is
concerned that the privatization of MTS will lead to rate increases.. The dependency
ccomp(concerned, lead) was not processed.

Most representations in our sample suffer from multiple errors. While a quantitative
analysis of the quality of these representations is currently not possible, our manual in-
spection tells us that 16 of the 50 graphs in our sample are either perfect representations
of the input sentence (in 4 cases) or are affected by a single minor error only and remain
high-quality representations.

4.6.2 Evaluation on gold dependencies

To test our pipeline without interference from parser errors, we also performed manual
evaluation of a set of ten sentences4 that were annotated for the 2008 COLING Work-
shop on Cross-Framework and Cross-Domain Parser Evaluation (De Marneffe & Manning,
2008b). Since all sentences in this sample have been taken from the Wall Street Journal
(WSJ), they were expected to be more complex than the typical sentence in a webcorpus
like the one used in our first evaluation. Indeed, the average sentence length in our sample

4http://nlp.stanford.edu/software/stanford-dependencies/required-wsj02.Stanford
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Figure 4.11: 4lang graph built from the sentence My wife and I have used Western Union
very successfully for almost two years to send money to her family in Ukraine. Nodes with
dashed edges should have been unified based on coreference resolution.

was 27.3 words (compared to 22.1 in the Webcorpus sample). Unsurprisingly, 5 of these
10 sentences were mapped to largely erroneous representations, with 4 graphs containing
large unconnected components, each representing parts of complex sentences. Neverthe-
less, the gold dependency analyses allowed for large good-quality representations, such as
the partial representation in Figure 4.12. When errors made by the dependency parser
introduce further noise into the full text_to_4lang pipeline, resulting 4lang graphs suf-
fer further in quality. The sentence whose gold parse yielded the subgraph in Figure 4.12
is mapped to a graph with large erroneous components, the largest correct subgraph is
shown in Figure 4.13.

4.7 Hungarian

We have created an experimental version of our pipeline for Hungarian, using the NLP li-
brary magyarlanc for dependency parsing and a mapping to 4lang graphs that is sensitive
to the output of morphological analysis, to account for the rich morphology of Hungarian
encoding many relations that a dependency parse cannot capture. We describe the out-
put of magyarlanc and the straightforward components of our mapping in Section 4.7.1.
In Section 4.7.2 we discuss the use of morphological analysis in our pipeline and in Sec-
tion 4.7.3 we present some arbitrary postprocessing steps similar to those described in
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Sections 4.5.1 and 4.5.2. Finally, in Section 4.7.4 we discuss the performance and main
issues of the Hungarian subsystem.

4.7.1 Dependencies

The magyarlanc library5 (Zsibrita et al., 2013) contains a suite of standard NLP tools for
Hungarian, which allows us, just like in the case of the Stanford Parser, to process raw
text without building our own tools for tokenization, POS-tagging, etc. The dependency
parser component of magyarlanc is a modified version of the Bohnet parser (Bohnet,
2010) trained on the Szeged Dependency Treebank (Vincze et al., 2010). The output of
magyarlanc contains a much smaller variety of dependencies than that of the Stanford
Parser. Parses of the ca. 4700 entries of the NSzT dataset (to be introduced in Section 5.1)
contain nearly 60,000 individual dependencies, 97% of which are covered by the 10 most
frequent dependency types (cf. Table 4.2). We shall first discuss dependencies that can be
handled straightforwardly in the dep_to_4lang framework introduced in Section 4.2.

att 26.0%
punct 16.1%
coord 15.0%
obl 9.6%
root 7.8%
conj 6.6%
mode 5.0%
det 4.7%
obj 3.7%
subj 2.6%

Table 4.2: Most common dependencies in magyarlanc output

The dependencies att, mode, and pred, all of which express some form of unary
predication, can be mapped to the 0-edge. subj and obj are treated in the same fashion
as the Stanford dependencies nsubj and dobj. The dependencies from, tfrom, locy,
tlocy, to, and tto encode the relationship of a predicate and an adverb or postpositional
phrase answering the question ‘from where?’, ‘from when?’, ’where?’, ‘when?’, ‘where to?’,
and ‘until when?’, respectively, and are mapped to the binary concepts from, since, AT,
TO, and until (see Table 4.3).

5http://www.inf.u-szeged.hu/rgai/magyarlanc
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Dependency Edge
att

w1
0−→ w2mode

pred

subj w1
1−→ w2

obj w1
2−→ w2

from w1
1←− FROM 2−→ w2

tfrom w1
1←− since 2−→ w2

locy
w1

1←− AT 2−→ w2tlocy

to w1
1←− TO 2−→ w2

tto w1
1←− until 2−→ w2

Table 4.3: Mapping from magyarlanc dependency relations to 4lang subgraphs

4.7.2 Morphology

Hungarian is a language with rich morphology, and in particular the relationship between
a verb and its NP argument is often encoded by marking the noun phrase for one of 17
distinct cases. In English, these relations would typically be expressed by prepositions,
which the Stanford Parser can map to dependencies, e.g. the sentence John climbed under
the table will yield the dependency prep_under(table, climb). The Hungarian parser
does not transfer the morphological information to the dependencies, all arguments other
than subjects and direct objects will be in the OBL relation with the verb. Therefore
we updated the dep_to_4lang architecture to allow our mappings from dependencies to
4lang subgraphs to be sensitive to the morphological analysis of the two words between
which the dependency holds. The resulting system maps the phrase a késemért jöttem
the knife-POSS-PERS1-CAU come-PAST-PERS1 ‘I came for my knife’ to FOR(come,
knife) based on the morphological analysis of késemért, performed by magyarlanc based
on the morphdb.hu database (Tron et al., 2005).

This method yields many useful subgraphs, but it also often leaves uncovered the true
semantic relationship between verb and argument, since nominal cases can have various
interpretations that are connected to their ‘primary’ function only remotely, or not at
all. The semantics of Hungarian suffixes -nak/-nek (dative case) or -ban/-ben (inessive
case) exhibit great variation – not unlike that of the English prepositions for and in, and
the ‘default’ semantic relations FOR and IN are merely one of several factors that must be
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considered when interpreting a particular phrase. Nevertheless, our mapping from nominal
cases to binary relations can serve as a strong baseline, just like interpreting English for
and in as FOR and IN via the Stanford dependencies prep_for and prep_in. The mapping
from magyarlanc dependencies to 4lang graphs is shown in Table 4.3, nominal cases of
OBL arguments are mapped to 4lang binaries according to Table 4.4.

Case Suffix Subgraph
sublative -ra/-re

w1
1←− ON 2−→ w2superessive -on/-en/-ön

inessive -ban/-ben
w1

1←− IN 2−→ w2illative -ba/-be
temporal -kor

w1
1←− AT 2−→ w2adessive -nál/nél

elative -ból/-ből
w1

1←− FROM 2−→ w2ablative -tól/-től
delative -ról/-ről
allative -hoz/-hez/-höz

w1
1←− TO 2−→ w2terminative -ig

causative -ért w1
1←− FOR 2−→ w2

instrumental -val/-vel w1
1←− INSTRUMENT 2−→ w2

Table 4.4: Mapping nominal cases of OBL dependants to 4lang subgraphs

4.7.3 Postprocessing

Copulars

In the Szeged Dependency Treebank, and consequently, in the output of magyarlanc,
copular sentences will contain the dependency relation pred. Hungarian only requires
a copular verb in these constructions when a tense other than the present or a mood
other than the indicative needs to be marked (cf. Table 4.5). While the sentence in
(1) is analyzed as subj(Ervin, álmos), all remaining sentences will be assigned the
dependencies subj(volt, Ervin) and pred(volt, álmos). The same copular struc-
tures allow the predicate to be a noun phrase (e.g. Ervin tüzoltó ‘Ervin is a firefighter’).
In each of these cases we’d like to eventually obtain the 4lang edge Ervin 0−→ sleepy
(Ervin 0−→ firefighter), which could be achieved in several ways: we might want to
detect whether the nominal predicate is a noun or an adjective and add the att and
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subj dependencies accordingly. Both of these solutions would result in a considerable
increase the complexity of the dep_to_4lang system and neither would simplify its input:
the simplest examples (such as (1) in Table 4.5) would still undergo different treatment.
With these considerations in mind we took the simpler approach of mapping all pairs
of the form subj(c, x) and pred(c, y) (such that c is a copular verb) to the relation
subj(y, x) (see Figure 4.14), which can then be processed by the same rule that handles
the simplest copulars (as well as verbal predicates and their subjects.) The transformation
must be restricted to cases where c is a copular verb: a sentence such as Ervin álmos,
ami érthető ‘Ervin is sleepy, which is understandable‘ will be assigned the dependencies
subj(álmos, Ervin) and pred(álmos, érthető), which must not be transformed but
processed by dep_to_4lang to obtain Ervin 0−→ álmos 0−→ érthető.

(1) Ervin álmos
Ervin sleepy
‘Ervin is sleepy’

(2) Ervin nem álmos
Ervin not sleepy
‘Ervin is not sleepy’

(3) Ervin álmos volt
Ervin sleepy was
‘Ervin was sleepy’

(4) Ervin nem volt álmos
Ervin not was sleepy
‘Ervin was not sleepy’

Table 4.5: Hungarian copular sentences

Coordination

Unlike the Stanford Parser, magyarlanc does not propagate dependencies across coordi-
nated elements. Therefore we introduced a simple postprocessing step where we find words
of the sentence governing a coord dependency, then collect all words accessible from any
of them via coord or conj dependencies (the latter connects coordinating conjunctions
such as és ‘and’ to the coordinated elements). Finally, we unify the dependency relations
of all coordinated elements – Figure 4.15 shows a simple example6

6This step introduces erroneous edges in a small fraction of cases: when a sentence contains two or
more clauses that are not connected by any conjunction – i.e. no connection is indicated between them –
a coord relation is added by magyarlanc to connect the two dependency trees at their root nodes.
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4.7.4 Evaluation and issues

As in the case of the English system, we have randomly chosen 20 sentences to manually
evaluate text_to_4lang on raw Hungarian data, and also tested dep_to_4lang on 10
sentences with gold dependency annotation. The source of our first sample is the Hungar-
ian Webcorpus (Halácsy et al., 2004). As before, we shall start by providing some rough
numbers regarding the average quality of the 20 4lang graphs, then proceed to discuss
some of the most typical issues, citing examples from the used sample. 10 of the 20 graphs
were correct 4lang representations, or had only minor errors. An example of a correct
transformation can be seen in Figure 4.17. Of the remaining graphs, 4 were mostly correct
but had major errors, e.g. 1-2 content words in the sentence had no corresponding node,
or several erroneous edges were present in the graph. The remaining 6 graphs had many
major issues and can be considered mostly useless.

When investigating the processes that created the more problematic graphs, nearly
all errors seem to have been caused by sentences with multiple clauses. When a clause
is introduced by a conjunction such as hogy ‘that’ or ha ‘if’, the dependency trees of
each graph are connected via these conjunctions only, i.e. the parser does not assign
dependencies that hold between words from different clauses. We are able to build good
quality subgraphs from each clause, but further steps are required to establish the semantic
relationship between them based on the type of conjunction involved – a process that
requires case-by-case treatment and would even then be non-trivial. An example from our
sample is the sentence in Figure 4.16; here a conditional clause is introduced by a phrase
that roughly translates to ‘We’d be glad if...’. Even if we disregard the fact that a full
analysis of how this phrase affects the semantics of the sentence would require some model
of the speaker’s desires – we could still interpret the sentence literally by imposing some
rule for conditional sentences, e.g. that given a structure of the form A if B, the CAUSE
relation is to hold between the root nodes of B and A. Such rules could be introduced
for several types of conjunctions in the future. A further, smaller issue is caused by the
general lack of personal pronouns in sentences: Hungarian is a pro-drop language: if a verb
is inflected for person, pronouns need not be present to indicate the subject of the verb,
e.g. Eszem. ‘eat-1SG’ is the standard way of saying ‘I’m eating’ as opposed to ?Én eszem
‘I eat-1G’ which is only used in special contexts where emphasis is necessary. Currently
this means that 4lang graphs built from these sentences will have no information about
who is doing the eating, but in the future these cases can be handled by a mechanism
that adds a pronoun subject to the graph based on the morphological analysis of the verb.
Finally, the lowest quality graphs are caused by very long sentences containing several
clauses and causing the parser to make multiple errors.
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For our second type of evaluation we used the manually annotated Szeged Dependency
Treebank (Vincze et al., 2010), which allowed us to run dep_to_4lang on a random
sample of 10 error-free dependency structures. Unlike for English, parser errors have
not played a significant role in the anomalies that we encountered when testing the full
pipeline, therefore our second set of results for Hungarian are very similar to the first.
3 out of 10 sentences were assigned perfect representations and another 3 only showed
minor errors. The leading issue, affecting all remaining sentences, is again the relationship
among multiple clauses of the same sentence, which will require case-by-case treatment in
the future.
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Figure 4.12: Largest correct component of the graph obtained using the perfect parse tree
for the WSJ sentence Today, the pixie-like clarinetist has mostly dropped the missionary
work (though a touch of the old Tashi still survives) and now goes on the road with piano,
bass, a slide show, and a repertoire that ranges from light classical to light jazz to light
pop, with a few notable exceptions.
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Figure 4.13: Largest correct subgraph of the text_to_4lang output for the WSJ sentence
Today, the pixie-like clarinetist has mostly dropped the missionary work (though a touch
of the old Tashi still survives) and now goes on the road with piano, bass, a slide show,
and a repertoire that ranges from light classical to light jazz to light pop, with a few notable
exceptions.

⇓

Figure 4.14: Postprocessing dependencies of a copular sentence
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Csengő, vidám, kellemes kacagás hangzott a magasból
Ringing joyful pleasant giggle sound-PST the height-ELA
‘Ringing, merry, pleasant laughter sounded from above’

⇓

⇓

⇓

Figure 4.15: Processing a coordinated sentence

Örülnénk, ha a konzultációs központok
rejoice-COND-1PL if the consultation-ATT center-PL

közötti kilométerek nem jelentenének
between-ATT kilometer-PL not mean-COND-3PL

az emberek közötti távolságot.
the person-PL between-ATT distance-ACC

‘We’d be glad if the kilometers between consultation centers did not
mean distance between people’

Figure 4.16: Subordinating conjunction
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1995 telén vidrafelmérést végeztünk
1995 winter-POSS-SUP otter-survey-ACC conduct-PST-1PL

az országos akció keretében.
the country-ATT action frame-POSS-INE

‘In the winter of 1995 we conducted an otter-survey as part of our national campaign’

⇓

Figure 4.17: Example of perfect dep_to_4lang transformation
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Chapter 5

Building definition graphs

One application of the text_to_lang module is of particular importance to us. By pro-
cessing entries in monolingual dictionaries written for humans we can attempt to build
definition graphs like those in 4lang for practically any word. This section presents the
dict_to_4lang module, which extends the text_to_4lang pipeline with parsers for sev-
eral major dictionaries (an overview of these is given in Section 5.1) as well as some
preprocessing steps specific to the genre of dictionary definitions – these are presented in
Section 5.2. Section 5.3 discusses expansion of 4lang representations, the process of copy-
ing links in definition graphs (both hand-written and built by dict_to_4lang) to 4lang
representations created by text_to_4lang. Finally, Section 5.4 points out several remain-
ing issues with definition graphs produced by the dict_to_4lang pipeline. Applications
of dict_to_4lang, shall be described in Chapter 6. The entire pipeline is available as
part of the 4lang library, implemented by the dict_to_4lang module1.

5.1 Data sources

We’ve built parsers for three large dictionaries of English and two of Hungarian. Custom
parsers have been built for all five sources and are distributed as part of the 4lang module.

5.1.1 Longman Dictionary of Contemporary English

The Longman Dictionary of Contemporary English (Bullon, 2003) contains ca. 42,000
English headwords. Its definitions are constrained to a small vocabulary, the Longman
Defining Vocabulary (LDV, (Boguraev & Briscoe, 1989)). The longman_parser tool pro-
cesses the xml-formatted data and extracts for each headword a list of its senses, including

1https://github.com/kornai/4lang/blob/master/src/dict_to_4lang.py
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for each the plain-text definition, the part-of-speech tag, and the full form of the word
being defined, if present: e.g. definitions of acronyms will contain the phrase that is ab-
breviated by the headword. No component of 4lang currently makes use of this last field,
AAA will not be replaced by American Automobile Association, but this may change in
the future.

5.1.2 Collins Cobuild Dictionary

The Collins-COBUILD dictionary (Sinclair, 1987) contains over 84,500 headwords. Its
definitions use a vocabulary that is considerably larger than LDOCE, including a large
technical vocabulary (e.g. adularia: a white or colourless glassy variety of orthoclase
in the form of prismatic crystals), rare words (affricare: to rub against), and multiple
orthographic forms (adsuki bean: variant spelling of adzuki bean). Since many definitions
are simply pointers to other headwords, the average entry in Collins is much shorter than
in LDOCE. Given the technical nature of many entries, the vocabulary used by definitions
exhibits a much larger variety: Longman definitions, for the greatest part limited to the
LDV, contain less than 9000 English lemmas, not including named entities, numbers, etc.,
Collins definitions use over 38,000 (these and subsequent figures on vocabulary size are
approximated using the hunmorph analyzer and the morphological databases morphdb.en
and morphdb.hu).

5.1.3 English Wiktionary

Our third source of English definitions, the English Wiktionary at http://en.wiktionary
.org is the most comprehensive database, containing over 128,000 headwords and available
via public data dumps that are updated weekly. Since wiktionaries are available for many
languages using similar – although not standardized – data formats, it has long been a
resource for various NLP tasks, among them an effort to extend the 4lang dictionary
to 40 languages (Ács et al., 2013). While for most languages datasets such as Longman
and Collins may not be publicly available (e.g. at the time of writing this thesis, both
Hungarian dictionaries were only available to the author based on personal requests),
wiktionaries currently contain over 100,000 entries for nearly 40 languages, and over 10,000
for a total of 76.
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5.1.4 Dictionaries of Hungarian

We’ve also run the dict_to_4lang pipeline on two explanatory dictionaries of Hungarian:
volumes 3 and 4 of the Magyar Nyelv Nagyszótára (NSzt), containing nearly 5000 head-
words starting with the letter b (Ittzés, 2011)2, and over 120,000 entries of the complete
Magyar Értelmező Kéziszótár (EKsz) (Pusztai, 2003), which has previously been used for
NLP research (Miháltz, 2010). Basic figures for all five datasets are presented in Table 5.1.

Dict headwords av. def. length approx. vocab. size
LDOCE 30,126 11.6 9,000
Collins 82,026 13.9 31,000
en.wikt 128,003 8.4 38,000
EKsz 67,515 5.0 33,700
NSzt (b) 4 683 10.7 9 900

Table 5.1: Basic figures for each dataset

5.2 Parsing definitions

5.2.1 Preprocessing

Before passing dictionary entries to the parser, we match them against some simple pat-
terns that are then deleted or changed to simplify the phrase or sentence without loss
of information. A structure typical of dictionary definitions are noun phrases with very
generic meanings, e.g. something, one, a person, etc. For example, LDOCE defines buffer
as someone or something that protects one thing or person from being harmed by another.
The frequency of such structures makes it worthwhile to perform a simple preprocessing
step: phrases such as someone, someone who, someone, etc. are removed from definitions
in order to simplify them, thus reducing the chance of error in later steps. The above
definition of buffer, for example, can be reduced to protects from being harmed, which
can then be parsed to construct the definition graph protect 1←− FROM 2−→ harm. A similar
step replaced all occurences of the strings a type of and a kind of with a, once again
simplifying both the input of the syntactic parser and the final representation without loss
of information in definitions such as lizard: a type of reptile that has four legs and a long
tail.

2The author gratefully acknowledges editor-in-chief Nóra Ittzés for making an electronic copy available.
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5.2.2 Constraining the parser

Since virtually all dictionary definitions of nouns are single noun phrases, we constrain the
parser to only allow such analyses for the definitions of all noun headwords. The command-
line interface of the Stanford Parser does not support adding constraints on parse trees,
but the Java API does; we implemented a small wrapper in jython that allowed us to
access the classes and functions necessary to enforce this constraint (see Section 7.4.3 for
more details). This fixes many incorrect parses, e.g. when a defining noun phrase with the
structure in Figure 5.1 could also be parsed as a complete sentence, as in Figure 5.2.

(S
(NP

(NP (DT the) (NN size))
(PP (IN of)

(NP (DT a) (NN radio) (NN wave)))
(VP (VBN used)

(S
(VP (TO to)

(VP (VB broadcast)
( ... )))))))

Figure 5.1: Expected parse tree for the definition of wavelength: the size of a radio wave
used to broadcast a radio signal

(S
(NP

(NP (DT the) (NN size))
(PP (IN of)

(NP (DT a) (NN radio) (NN wave))))
(VP (VBD used)

(S
(VP (TO to)

(VP (VB broadcast)
( ... ))))))

Figure 5.2: Incorrect parse tree from the Stanford Parser for the definition of wavelength:
the size of a radio wave used to broadcast a radio signal
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5.2.3 Building definition graphs

The output of the – possibly constrained – parsing process is passed to the dep_to_4lang
module introduced in Chapter 4. The ROOT dependency in each parse, which was ignored
in the general case, is now used to identify the head of the definition, which is typically a
hypernym of the word being defined (but see Section 5.4.2 for exceptions). This allows us
to connect, via a 0-edge, the node of the concept being defined to the graph built form its
definition.

Dict # graphs av. nodes
LDOCE 24,799 6.1
Collins 45,311 4.9
en.wikt 120,670 5.4
EKsz 67,397 3.5
NSzt 4,676 6.4

Table 5.2: Graphs built from each dataset

Detecting the hypernym of a headword in its dictionary definition is a simple task that
would not in itself require syntactic parsing. A simple algorithm for detecting hypernyms
of Hungarian nouns is presented by (Miháltz, 2010), and was used on definitions of EKsz
(see Section 5.1) when constructing the Hungarian WordNet. The author has proposed a
more generic and somewhat less accurate algorithm. On a small sample of NSzt entries,
the two algorithms achieved an accuracy of 91 and 98 percent, respectively. Details of this
work are presented in a 2013 manuscript which is still under review by the journal Magyar
Nyelv at the time of submitting this thesis.

5.3 Expanding definition graphs

The 4lang dictionary contains by design all words of the Longman Defining Vocabulary
(LDV, (Boguraev & Briscoe, 1989)). This way, if we use dict_to_4lang to define each
headword in LDOCE as a graph over nodes corresponding to words in its dictionary
definition, these graphs will only contain concepts that are defined in the hand-written
4lang dictionary. To take advantage of this, we implement an expansion step in 4lang,
which adds the definition of each concept to a 4lang graph by simply adjoining each
definition graph to G at the node corresponding to the concept being defined. This can
be stated formally as follows:
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Definition 1. Given the set of all concepts C, a 4lang graph G with concept nodes
V (G) = c1, c2, . . ., ci ∈ C, a set of definition graphs D, and a lexicon function L : C → D

such that ∀c ∈ C : c ∈ V (L(c)), we define the expansion of G as

G∗ = G ∪
⋃

ci∈L

L(G)

Hand-written definitions in the 4lang dictionary may also contain pointers to argu-
ments of the definiendum, e.g. stand is defined as upright 0←− =AGT 1←− ON 2−→ feet,
indicating that it is the agent of stand that is 0−→ upright, etc. Detecting the thematic
role of a verb’s arguments can be difficult, yet we handle the majority of cases correctly
using a simple step after expansion: all edges containing =AGT (=PAT) nodes are moved
to the machine(s) with a 1-edge (2-edge) pointing to it from the concept being defined.
This allows us to create the graph in Figure 5.3 based on the above definition of stand.
Expansion will affect all nodes of graphs built from LDOCE; when processing generic En-
glish text using text_to_4lang we may choose to limit expansion to manually built 4lang
definitions, or we can turn to dictionaries built using dict_to_4lang, allowing ourselves
to add definitions to nearly all nodes. 4lang modules can be configured to select the
approach most suitable for any given application.

5.4 Issues and evaluation

In this section we will describe sources of errors in our pipeline besides those caused by
incorrect parser output (see Section 4.4.1). We shall also present the results of manual
error analysis conducted on a small sample of graphs in an effort to determine both the
average accuracy of our output graphs as well as to identify the key error sources.

5.4.1 Error analysis

To perform manual evaluation of the dict_to_4lang pipeline we randomly selected 50
headwords from the Longman Dictionary3. In one round of evaluation we grouped the 50
definition graphs by quality, disregarding the process that created them. We found that
31 graphs were high-quality representations: 19 perfectly represented all facts present

3The 50 words in our sample, selected randomly using GNU shuf were the following: aircraft, ar-
bour, armful, characteristic, clothesline, contact, contrived, costermonger, cycling, cypress, dandy, efface,
excited, fedora, forester, frustrate, gazette, grenade, houseboy, incandescent, invalid, khaki, kohl, lecture,
lizard, might, multiplication, nightie, okey-doke, outdid, overwork, popularity, preceding, Presbyterian,
punch-drunk, reputed, residency, retaliation, rock-solid, sandpaper, scant, sewing, slurp, transference, T-
shirt, underwrite, vivace, well-fed, whatsit, Zen
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Figure 5.3: Expanded graph for A man stands in the door. Nodes of the unexpanded
graph are shown in gray

in the dictionary entry (see e.g. Figure 5.4) and another 15 were mostly accurate, with
only minor details missing or an incorrect relation present in addition to the correct
ones. Of the remaining 19 graphs, 9 still encoded several true relationships, the last 10
were essentially useless. Our sample is too small to conclude that 62% of the graphs we
build are of acceptable quality, but these results are nevertheless promising. Our second
round of manual inspection was directed at the entire process of building the 50 graphs
and aimed to identify the source of errors. Out of the 34 graphs that had errors at all,
8 were clearly a result parser errors (discussed in Section 4.4.1), another 8 contained
non-compositional structures that in the future may be handled by constructions (see
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Section 8.6.2), and 3 were connected to non-standard definitions (see Section 5.4.2). All
remaining errors were caused by one-of-a-kind bugs in the pipeline, e.g. preprocessing
issues, the occasional overgeneration of relations by the postprocessing of coordinated
structures (see Section 4.5.1), etc.

Figure 5.4: Graph constructed from the definition of Zen: a kind of Buddhism from Japan
that emphasizes meditation

5.4.2 Non-standard definitions

Our method for building 4lang definitions can be successful in the great majority of cases
because most dictionary definitions – or at least their first sentences, which is all we make
use of – are rarely complex sentences; in most cases they are single phrases describing the
concept denoted by the headword – a typical example would be the definition of koala:
an Australian animal like a small grey bear with no tail that climbs trees and eats leaves.
It is these kinds of simple definitions that are prevalent in the dictionaries we process
and that are handled quite accurately by both the Stanford Parser and our mapping from
dependencies to 4lang relations.

In some cases, definitions use full sentences to explain the meaning of a word in a more
straightforward and comprehensible way, e.g.:

• playback - the playback of a tape that you have recorded is when you play it on a
machine in order to watch or listen to it
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• indigenous - indigenous people or things have always been in the place where they
are, rather than being brought there from somewhere else

• ramshackle - a ramshackle building or vehicle is in bad condition and in need of
repair

These sentences will result in a higher number of dependency relations, and consequently a
denser definition graph; often with erroneous edges. In the special case when the Stanford
Parser’s output does not contain the ROOT relation, i.e. the parser failed to identify any
of the words as the root of the sentence, we skip the entry entirely – this affects 0.76% of
LDOCE entries, 0.90% of entries in en.wiktionary. That such definitions are problematic
is also reflected in the fact that earlier editions of the Longman dictionary did not allow
them, using the headword in the definition text was forbidden.

5.4.3 Word senses

As discussed in Section 3.2, the 4lang theory assigns only one definition to each word
form, i.e. it does not permit multiple word senses. All usage of a word must be derived
from a single concept graph. Explanatory dictionaries like the ones listed in Section 5.1
provide several definitions for each word, of which we always process the first one. This
decision is somewhat arbitrary, but produces good results in practice; the first definition
typically describes the most common sense of the word, as in the case of tooth:

1. one of the hard white objects in your mouth that you use to bite and eat food

2. one of the sharp or pointed parts that sticks out from the edge of a comb or saw

We cannot expect to construct from this entry a generic definition such as sharp, one_of_many.
Instead, to capture at a later stage that objects other than those in your mouth could be
instances of tooth, we must turn to the principle that any link in a 4lang definition can
be overridden (see Section 3.2). Not only are we unable to predict the particular subset of
links in the definition of tooth that will be shared across various uses of the word tooth,
we shouldn’t make any such predictions: it is no more than an accident that teeth turned
out to be metaphors for small, sharp objects lined up next to one another and not for e.g.
small, white, cube-shaped objects.

While in most cases the various senses defined for a word are metaphoric uses of the
first, there remain words whose first definition is not generic enough to accommodate all
others even if we assume powerful inferencing capabilities. Consider e.g. the definitions
of shower from LDOCE below:
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1. a piece of equipment that you stand under to wash your whole body

2. an act of washing your body while standing under a shower

3. a short period of rain or snow

4. a lot of small, light things falling or going through the air together

5. a party at which presents are given to a woman who is going to get married or have
a baby

6. a group of stupid or lazy people

7. to wash your whole body while standing under a shower

8. to give someone a lot of things

9. to scatter a lot of things onto a person or place, or to be scattered in this way

A 4lang definition generic enough so that one could derive at least the majority of
these cases would be most similar to definition #4: showers are occurrences of many
things falling, typically through the air. Understanding the word shower in the context
of e.g. baby showers (#5) would remain a difficult task, including among others that of
understanding that fall may refer to an object changing place not only physically but
also in terms of ownership. In the above LDOCE entry, since we use the first definition
to build the 4lang graph, we lose any chance of recovering any of the meanings #3-6 and
#8-9. The lexicographic principle that keeps sense #2 and sense #7 separate simply does
not apply in 4lang, which does not distinguish meanings that differ in part of speech alone:
the verb and the nomen actionis are simply one and the same. We further note that many
of the distinctions made here would be made by overt suffixes in other languages, e.g. the
Hungarian equivalents of #1 and #2 are zuhany and zuhanyozik, respectively.

5.4.4 Hungarian

We also conducted manual error analysis on our Hungarian output, in this case choosing
50 random words from the EKsz dictionary4. The graphs built by dict_to_4lang were of

4The 50 words, selected once again using shuf, are the following: állomásparancsnok, állványoz,
áttölt, apoteózis, bányatelep, beköt, berukkol, bibliapapír, biplán, bugás, dús, egyidejűleg, emu, exkuzál,
font, főmufti, gimnasztika, groteszk, gumósodik, hajkötő, héja, hiánycikk, indikál, írdogál, jobbágyság, ki-
cifráz, közjáték, kukoricamorzsoló, lejön, leszállít, megnyilvánulás, megsző, munkásőr, nagyanyó, nemte-
len, összehajtogat, pántlikás, piff-puff, sietség, szemelvény, szét, tetemrehívás, tipográfus, túlkiabálás, vako-
lat, vízzáró, vöröspecsenye, zajszint, zihál, zsongít.
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very good quality (see Figure 5.5 for an example), with only 10 out of 50 containing major
errors. This is partly due to the fact that NSzt contains many very simple definitions,
e.g. 6 of the 50 headwords in our random sample contained only a list of synonyms as its
definition.

Figure 5.5: 4lang graph built from the definition of hancúrozik: Pajkosan, lármásan
játszik, ugrándozik ’shrewdly noisily play-PERS3 skip-PERS3’

4 of the 10 significant errors are caused by the same pattern: the analysis of posses-
sive constructions by magyarlanc involve assigning the att dependency to hold between
the possessor and the possessed, e.g. the definition of piff-puff (see Figure 5.6) will
receive the dependencies att(hang, kifejezés) and att(lövöldözés, hang), result-
ing in the incorrect 4lang graph in Figure 5.7 instead of the expected one in Figure 5.8.
kifejezés 0−→ hang 0−→lövöldözés instead of kifejezés 2←− HAS 1−→ hang 2←− HAS 1−→ lövöldözés.
These constructions cannot be handled even by taking morphological analysis into account,
since possessors are not usually marked (although in some structures they receive the da-
tive suffix -nak/-nek, e.g. in embedded possessives like our current example (hangjának
‘sound-POSS-DAT’ is marked by the dative suffix as the possessor of kifejezésére). Unless
possessive constructions can be identified by magyarlanc, we shall require an independent
parsing mechanism in the future. The structure of Hungarian noun phrases can be effi-
ciently parsed using the system described in (Recski, 2014), the grammar used there may
in the future be incorporated into a 4lang-internal parser (see Section 8.4).

5.4.5 Comparing dictionaries

Since dict_to_4lang currently processes three monolingual dictionaries of English, we
obtain three independent definition graphs for most English words. In all applications
presented in following chapters we rely on definitions from the Longman dictionary, since
its definitions are limited to a vocabulary that is a subset of the 4lang dictionary, therefore
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Lövöldözés vagy ütlegelés hangjának kifejezésére
Shooting or thrashing sound-POSS-DAT expression-POSS-SUB
‘Used to express the sound of shooting or thrashing’

⇓

Figure 5.6: Dependency parse of the EKsz definition of the (onomatopoeic) term
piff-puff

Figure 5.7: Incorrect graph for piff-puff

Figure 5.8: Expected graph for piff-puff

the expansion step described in Section 5.3 will not introduce additional errors caused
by the dict_to_4lang pipeline. We also expect Longman definitions to be of a more
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stable quality than user-generated definitions of en.wiktionary. The figures presented in
Table 5.1 also suggest that definitions in the Collins dictionary are on average slightly more
complex than those in Longman. These tendencies are illustrated by the three graphs built
from three definitions of oak in Figures 5.9, 5.10, and 5.11. While all current applications
use 4lang graphs built from Longman, in some cases it may be useful to unify multiple
graphs to obtain a definition which covers a larger number of facts about the concept at
the cost of a potentially larger number of errors. Such a unification of the three graphs
for oak would yield the graph in Figure 5.12.

Figure 5.9: 4lang graph built from the en.wiktionary definition of oak: A tree of the
genus Quercus.

Figure 5.10: 4lang graph built from the Longman definition of oak: a large tree that is
common in northern countries, or the hard wood of this tree

Although 4lang concepts are language-independent, text_to_4lang and dict_to_4lang
cannot currently map non-English words to the concepts designated by their English
names. The experimental versions of each pipeline for processing Hungarian data cre-
ate 4lang graphs whose nodes are associated with Hungarian lemmas. It is therefore
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Figure 5.11: 4lang graph built from the Collins definition of oak: any deciduous or
evergreen tree or shrub of the fagaceous genus

Figure 5.12: Unified 4lang graph built using three definitions of oak

premature to compare graphs built for the same concept using definitions from multiple
languages, but comparing Hungarian definition graphs with their English counterparts
(cf. Figure 5.135) suggests that unifying nodes across languages may supply additional
evidence for facts about a concept.

5 parts of the definition undetected by dict_to_4lang are omitted for clarity
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Figure 5.13: 4lang graph built from the EKSz definition of tölgy ‘oak’: Erős, magas
törzsű (...) fa ’Strong, tall trunk-INAL (...) tree’
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Chapter 6

Applications

This chapter presents applications of the 4lang system. Section 6.1 presents our earliest
experiments on measuring semantic similarity between words and sentences using 4lang
graphs, resulting in a system submitted to the Semantic Textual Similarity task of the
2015 SemEval conference1. Section 6.2 documents the more recent wordsim system for
measuring similarity of word pairs, which we evaluate on the popular benchmark SimLex-
999, achieving significant improvement over the current state of the art. Finally, Section 6.3
presents two early attempts at natural language understanding systems that use spreading
activation over 4lang graphs.

The 2015 SemEval system described in Sections 6.1 is a result of joint work with Judit
Ács. The open-source system, documented in more detail by (Recski & Ács, 2015), is
available at https://github.com/juditacs/semeval. The wordsim system was created
in collaboration with Eszter Iklódi, key components of the ML system were contributed by
Katalin Pajkossy. The most detailed description is (Recski, Iklódi, et al., 2016), the code
is available under an MIT license at https://github.com/recski/wordsim. The systems
presented in Section 6.3 were built in cooperation with Dávid Nemeskey and Attila Zséder
(2012). This code is no longer functional, although several of its components are still
maintained as part of the pymachine module used by the 4lang system (see Section 7.7
for details).

6.1 Semantic similarity of sentences

To demonstrate the use for concept graphs built using dict_to_4lang, we participated in
two tasks of the 2015 Semeval conference: Task 1 - Paraphrase and Semantic Similarity
in Twitter (Xu et al., 2015) involved detecting paraphrases among tweets (Task 1a) and

1 http://alt.qcri.org/semeval2015/
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measuring the semantic similarity between them (Task 1b). Task 2 - Semantic Textual
Similarity (Agirre et al., 2015) involved measuring the similarity between sentence pairs
from a variety of sources. Both tasks require participants to submit systems that will
return for pairs of sentences a measure indicating the degree of similarity between their
meanings. The connection between these and other tasks in computational semantics
such as paraphrase detection and recognizing textual entailment will be briefly discussed
in Section 8.2. Since experiments specific to the Twitter dataset were performed by Judit
Ács, this thesis will not describe our submissions to Task 1 (the reader is referred to
(Recski & Ács, 2015)), in the remainder of this section we shall focus on details of the
three configurations submitted to the STS task as well as the experiments with 4lang-
based similarity performed by the author.

The methods used in state of the art systems to measure sentence similarity rely heav-
ily on word similarity, typically derived from word embeddings (see Section 2.4). We
demonstrate that a simple measure of similarity between 4lang graphs is a competitive
measure of word similarity. Our team, MathLingBudapest, submitted to Semeval 2015 sys-
tems that combine 4lang similarity with features derived from various word embeddings,
lexical resources like WordNet, and surface forms of words.

6.1.1 The STS task

The SemEval conferences, which organize shared tasks in various applications of compu-
tational semantics, have featured tracks on Semantic Textual Similarity (STS) every year
since 2012. While the datasets used have changed annually, the task has remained un-
changed in all evaluations: participating systems are expected to measure the degree of
semantic similarity between pairs of sentences. Datasets used in recent years were taken
from a variety of sources (news headlines, image captions, answers to questions posted in
online forums, answers given by students in classroom tests, etc.). Gold annotation was
obtained by crowdsourcing (using Amazon Mechanical Turk), annotators were required to
grade sentence pairs on a scale from 0 to 5; Figure 6.1 shows the instructions they were
given. Inter-annotator agreement was calculated to ensure the high quality of annotations.

6.1.2 Datasets

In 2015, STS systems were evaluated on a mixed dataset compiled from 5 sources: the
headlines data contained titles of news articles gathered from several sources. The
images dataset contained descriptions of images sampled from a set of 1000 images with
10 descriptions each. Half of sentence pairs were descriptions of the same image, the
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Figure 6.1: Instructions for annotators of the STS datasets (Agirre et al., 2012, p.3)

other half described different ones. The answers-student dataset contains answers given
by pupils to an automated tutoring system during a session on basic electronics. Pairs
of one-sentence answers were selected based on string similarity. The answers-forums
dataset contains pairs of responses from the StackExchange Q&A website; some pairs are
responses to the same question, others were written in reply to different ones. Finally,
the belief data contains pairs of user comments on online discussion forums. Pairs were
sampled based on string similarity, then annotated and filtered based on inter-annotator
agreement. For details on the origins of each dataset, see (Agirre et al., 2015).

6.1.3 Architecture of the MathLingBudapest systems

Our framework for measuring semantic similarity of sentence pairs is based on the sys-
tem of (Han et al., 2013), who were among the top scorers in all STS tasks since 2013
(Kashyap et al., 2014; Han et al., 2015). Their architecture, Align and Penalize, involves
computing an alignment score between two sentences based on some measure of word sim-
ilarity. We have chosen to reimplement this system because it allowed us to experiment
with various measures of word similarity, including those based on 4lang graphs built by
dict_to_4lang, which we shall present in Section 6.1.4. We reimplemented virtually all
rules and components described by (Han et al., 2013) for experimentation but will now
describe only those that ended up in at least one of the 3 configurations submitted to
SemEval.

The core idea behind the Align and Penalize architecture is, given two sentences S1

and S2 and some measure of word similarity, to align each word of one sentence with some
word of the other sentence so that the total similarity of aligned word pairs is maximized.
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The mapping need not be one-to-one and is calculated independently for words of S1,
aligning them with words from S2; and words of S2, aligning them with words from S1.
The score of an alignment is the sum of the similarities of each word pair, normalized
by sentence length, the final score assigned to a pair of sentences is the average of the
alignment scores for each sentence.

In our top-scoring 2015 system we used supervised learning to establish the weights
with which each source of word similarity contributes to the similarity score assigned to a
pair of words. For out-of-vocabulary (OOV) words, i.e. those that are not covered by the
component used for measuring word similarity, we rely on string similarity: we measure
the Dice- and Jaccard-similarities (Dice, 1945; Jaccard, 1912) over the sets of character n-
grams in each word for n = 1, 2, 3, 4. Additionally, we use simple rules to detect acronyms
and compounds: if a word of one sentence that is a sequence of 2-5 characters (e.g. ABC )
has a matching sequence of words in the other sentence (e.g. American Broadcasting
Company), all words of the phrase are aligned with this word and receive an alignment
score of 1. If a sentence contains a sequence of two words (e.g. long term or can not)
that appear in the other sentence without a space and with or without a hyphen (e.g.
long-term or cannot), these are also aligned with a score of 1.

The word similarity component can also be influenced by a boost feature based on
WordNet (Miller, 1995). Scores are assigned if one word is a hypernym of the other, if one
appears frequently in glosses of the other, or if they are derivationally related. For the
exact cases covered and a description of how the boost is calculated, the reader is referred
to (Han et al., 2013). The role these features play in measuring word similarity will be
evaluated in Section 6.2 when we compare various configurations of the wordsim system.

The similarity score may be reduced by a variety of penalties, which we only enabled
in our submission for Task 1 (Semantic Similarity in Twitter), they haven’t improved our
results on any other dataset (nor have they proved useful as features for the more recent
wordsim system, to be described in Section 6.2). For a description of penalties used in
the original Align-and-Penalize framework, the reader is referred to (Han et al., 2013),
while (Recski & Ács, 2015) documents new penalties introduced for use with the Twitter
dataset.

6.1.4 4lang-based similarity

The 4lang-similarity of two words is the similarity between the 4lang graphs defining
them. We developed a measure of graph similarity by testing simple versions directly
in our STS systems described in Section 6.1.3. Although this section describes a purely
rule-based measure of word similarity, its components were later exposed to the ML-based
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Figure 6.2: Overlap in the definitions of casualty (built from LDOCE) and army (defined
in 4lang)

wordsim system (see Section 6.2), a set of experiments providing more insight on their
individual roles in measuring semantic similarity.

To define the similarity of two 4lang graphs, we start by the intuition that similar
concepts will overlap in the elementary configurations they take part in: they might share
a 0-neighbor, e.g. train 0−→ vehicle 0←− car, or they might be on the same path of 1-
and 2-edges, e.g. park 1←− IN 2−→ town and street 1←− IN 2−→ town. For ease of nota-
tion we define the predicates of a node as the set of elementary configurations it takes
part in. For example, based on the definition graph in Figure 3.3, we say that the predi-
cates of the concept bird (P (bird)) are {vertebrate; (HAS, feather); (HAS, wing);
(MAKE, egg)}. Our initial version of graph similarity is the Jaccard similarity of the sets
of predicates of each concept, i.e.

S(w1, w2) = J(P (w1), P (w2)) = |P (w1) ∩ P (w2)|
|P (w1) ∪ P (w2)|

Early experiments lead us to extend the definition of predicates by allowing them to be
inherited via paths of 0-edges, e.g. (HAS, wing) is considered a predicate of all concepts
for which 0−→ bird holds. We have also experimented with similarity measures that take
into account the sets of all nodes accessible from each concept in their respective definition
graph (N(w)). This proved useful in establishing that two concepts which would otherwise
be treated as entirely dissimilar are in fact somewhat related. For example, given the
definitions of the concepts casualty and army in Figure 6.2, the node war will allow us
to assign nonzero similarity to the pair (army, casualty). We achieved the best results
on test data by using the maximum of these two scores as our word similarity measure.

Testing several versions of graph similarity on past years’ STS data, we found that
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if two words w1 and w2 are connected by a path of 0-edges, it is best to assign to them
a similarity of 1. This proved very efficient for determining semantic similarity of the
most common types of sentence pairs in the SemEval datasets. Two descriptions of the
same event (common in the headlines dataset) or the same picture (in images) will often
only differ in their choice of words or choice of concreteness. In a dataset from 2014, for
example, two descriptions, likely of the same picture, are A bird holding on to a metal
gate and A multi-colored bird clings to a wire fence. Similarly, a pair of news headlines are
Piers Morgan questioned by police and Piers Morgan Interviewed by Police. wire is by no
means a synonym for metal, nor does being questioned mean exactly the same as being
interviewed, but treating them as perfect synonyms proved to be an efficient strategy for
the purpose of assigning similarity scores that correlate highly with human annotators’
judgments.

6.1.5 Submissions

For Task 1 we submitted two systems: twitter-embed uses a single source of word simi-
larity, a word embedding built from a corpus of word 6-grams from the Rovereto Twitter
N-Gram Corpus2 using the gensim3 package’s implementation of the method presented in
(Mikolov, Chen, et al., 2013). Our second submission, twitter-mash combines similarities
based on character ngrams, two word embeddings (built from 5-grams and 6-grams of the
Rovereto corpus, respectively) and the 4lang-based word similarity described in Section
6.1.4. For Task 2 (Semantic Textual Similarity) we were allowed three submissions. The
embedding system uses a word embedding built from the first 1 billion words of the En-
glish Wikipedia using the word2vec4 tool (Mikolov, Chen, et al., 2013). The machine
system uses the word similarity measure described in Section 6.1.4 (both systems use the
character ngram baseline as a fallback for OOVs). Finally, for the hybrid submission we
combined these two systems and the character-similarity.

Evaluation

Our results on each task are presented in Tables 6.1 and 6.2. In case of Task 1a (Paraphrase
Identification) our two systems performed equally in terms of F-score and ranked 30th
among 38 systems. On Task 1b the hybrid system performed considerably better than
the purely vector-based run, placing 11th out of 28 runs. On Task 2 our hybrid system

2http://clic.cimec.unitn.it/amac/twitter_ngram/
3http://radimrehurek.com/gensim
4https://code.google.com/p/word2vec/
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embedding hybrid

Task 1a: Paraphrase Identification

Precision 0.454 0.364
Recall 0.594 0.880
F-score 0.515 0.515

Task 1b: Semantic Similarity

Pearson 0.229 0.511

Table 6.1: Performance of submitted systems on Task 1.

embedding machine hybrid

answers-forums 0.704 0.698 0.723
answers-students 0.700 0.746 0.751
belief 0.733 0.736 0.747
headlines 0.769 0.805 0.804
images 0.804 0.841 0.844

mean Pearson 0.748 0.777 0.784

Table 6.2: Performance of submitted systems on Task 2a: Semantic Similarity.

ranked 11th among 78 systems, the systems using the word embedding and the 4lang-
based similarity alone (with string similarity as a fallback for OOVs in each case) ranked
22nd and 15th, respectively.

6.1.6 Difficulties

We have obtained from 4lang graphs a measure of word similarity that we successfully
combined with vector-based metrics to create a competitive STS system, but we cannot
expect our metric to outperform distributional similarity on its own. Here we discuss some
of the more typical issues that we encountered.

Lack of inferencing

Without performing some inference on the concept graphs built from dictionary definitions,
the near-synonyms wizard - a man who is supposed to have magic powers and magician
- a man in stories who can use magic will be assigned a score of only 0.182 by our system;
a higher score is not warranted by the knowledge that both concepts refer to men and that
both have some connection to magic. In this example the task is as difficult as realizing
that the subgraphs X 1←− HAS 2−→ power 0−→ magic and X 1←− CAN 2−→ use 2−→ magic refer to
roughly the same state-of-affairs. This kind of inference is beyond the system as currently
implemented, but well within the capabilities of 4lang, see (Kornai, in preparation) for a
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discussion.

OOVs

Another significant source of errors were out-of-vocabulary words (OOVs). Given the
sources of input data, named entities (e.g. in headlines) and non-standard orthography
(e.g. forums) are often unknown for both word embeddings and 4lang. Character similar-
ity can mitigate these effects significantly, but in the future we must reduce OOV-rates of
all components, e.g. by training embeddings on larger datasets, building 4lang definitions
from additional resources (e.g. the Urban Dictionary) and by improving the quality of
lemmatization.

6.2 Word similarity

The experiments described in Section 6.1 provided many insights about the potential of
4lang representations to model semantic relatedness of concepts. This section will de-
scribe our more recent efforts at measuring the semantic similarity of word pairs, resulting
in the hybrid wordsim system. The task of word similarity was attractive for several rea-
sons: firstly, any method based on the 4lang theory and using the representations created
either manually or using the dict_to_4lang system described in Chapter 5 can provide
feedback on the quality of these representations as well as the current shortcomings of the
representation itself. Secondly, the word similarity task has been a standard method for
evaluating distributional models of semantics (see Setion 2.4), with some models trained
explicitly for this task (see Section 6.2.3). This section will present a system using super-
vised learning over features from multiple models (including both word embeddings and
4lang representations). We relied on the standard SimLex-999 dataset5 for training and
evaluation, we’ll introduce the dataset and summarize previous results in Section 6.2.1.
The experimental setup is described in Section 6.2.2, external models used to generate
features for our ML system will be listed in Section 6.2.3. Section 6.2.4 introduces the
features defined over pairs of 4lang definition graphs. Our results are presented in Sec-
tion 6.2.5 along with a brief analysis of common errors. The wordsim library is available
under an MIT license from http://www.github.com/recski/wordsim, the contents of
this section are presented in greater detail by (Recski, Iklódi, et al., 2016).

5http://www.cl.cam.ac.uk/~fh295/simlex.html
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6.2.1 Previous work

(Hill et al., 2015) recently proposed the SimLex-999 dataset as a benchmark for systems
measuring word similarity. They argue that earlier gold standards measure association,
not similarity, of word pairs; e.g. the words cup and coffee receive a high score by an-
notators in the widely used wordsim353 data (Finkelstein et al., 2002). Hill et al. note
that “[a]ssociation and similarity are neither mutually exclusive nor independent” (2015,
p.668). Instead of providing any definition of the above distinction, annotators of the
SimLex dataset were simply shown a small set of examples and counter-examples. Since
its publication in 2015 dozens of models have used the SimLex dataset for evaluation, some
of these are listed on the SimLex webpage6.

Various systems for measuring word similarity are compared using the SimLex dataset
by measuring the Spearman correlation between scores assigned to word pairs by each
system and the average of scores given by human annotators. Word embeddings are
evaluated by several authors by treating the cosine distance of the pair of word vectors
as the word similarity score assigned by that embedding to a pair of words. (Hill et al.,
2015) report a correlation of 0.41 by an embedding trained on Wikipedia using word2vec
(Mikolov, Chen, et al., 2013), (Schwartz et al., 2015) achieve a score of 0.56 using a
combination of a standard word2vec-based embedding and the SP model, which encodes
the cooccurrence of words in symmetric patterns such as X and Y or X as well as Y.
(Banjade et al., 2015) document a set of experiments on the contribution of various models
to the task of measuring word similarity. Half a dozen distributional models are combined
with simple WordNet-based features indicating whether word pairs are synonymous or
antonymous, and with the word similarity algorithm of (Han et al., 2013), which we briefly
introduced in Section 6.1.3, and which itself uses WordNet-based features for boosting.
By generating features using each of these resources and evaluating ML models trained
using 11 different subsets of 10 feature classes, (Banjade et al., 2015) conclude that top
performance is achieved when including all of them. This system achieved a Spearman
correlation of 0.64, a considerable improvement over the performance of any individual
model.

The highest scores on SimLex that we are aware of (other than our own system)
is achieved using the Paragram embedding (Wieting et al., 2015), a set of vectors ob-
tained by training pre-existing embeddings on word pairs from the Paraphrase Database
(Ganitkevitch et al., 2013). The top correlation of 0.69 is measured when using a 300-
dimension embedding created from the same GloVe-vectors that have been introduced in
this section (trained on 840 billion tokens). Hyperparameters of this database have been

6http://www.cl.cam.ac.uk/~fh295/simlex.html
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tuned for maximum performance on SimLex, another version tuned for the WS-353 dataset
achieves a correlation of 0.67.

6.2.2 Setup

Our system is trained using several real-valued and binary features generated using var-
ious embeddings, WordNet, and 4lang definition graphs. Each class of features will be
presented in detail below. We perform support vector regression with an RBF kernel
(A. Smola & Vapnik, 1997; A. J. Smola & Schölkopf, 2004) over all features using the
numpy library. Models are evaluated using tenfold cross-validation: in each iteration, we
train a model on 900 pairs of the SimLex data and evaluate it on the remaining 99 pairs.
We calculate the the Spearman correlation scores for each batch of 99 words, the average
of these 10 scores is used as the standard figure of merit for any given model. As we
introduce the feature classes used in our experiments in the next sections, we shall report
these figures for all major configurations, and we conclude by summarizing all results in
Section 6.2.5.

6.2.3 External models

Word embeddings

The largest class of features is based on word vector similarity. Each word embedding used
in an experiment is represented by a single feature, the cosine similarity of the two vectors
corresponding to a pair of words. Three sets of word vectors in our experiments were
built using the neural models that have been evaluated on SimLex by (Hill et al., 2015):
the SENNA7 (Collobert & Weston, 2008), and Huang8 (Huang et al., 2012) embeddings,
which contain 50-dimension vectors and were downloaded from the authors’ webpages,
and word2vec (Mikolov, Chen, et al., 2013) vectors of 300 dimensions, trained on the
Google News dataset9.

We extend this set of models with a GloVe embedding 10 (Pennington et al., 2014)
trained on 840 billion tokens of Common Crawl data11, and also the two word embeddings
mentioned in Section 6.2.1 : the 500-dimension SP model12 (Schwartz et al., 2015) (see

7http://ronan.collobert.com/senna/
8http://www.socher.org
9https://code.google.com/archive/p/word2vec/

10http://nlp.stanford.edu/projects/glove/
11https://commoncrawl.org/
12http://www.cs.huji.ac.il/~roys02/papers/sp_embeddings/sp_embeddings.html
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Section 6.2.1) and the 300-dimension Paragram vectors13 (Wieting et al., 2015), both
of which have recently been evaluated on the SimLex dataset yielding state of the art
results. The model trained on these 6 features achieves a Spearman correlation of 0.72,
the performance of individual embeddings is listed in Table 6.3.

System Spearman’s ρ
Huang 0.14
SENNA 0.27
GloVe 0.40
Word2Vec 0.44
SP 0.50
Paragram 0.68
6 embeddings 0.72

Table 6.3: Performance of word embeddings on SimLex

Wordnet

Another class of features are based on the lexical ontology WordNet (Miller, 1995), which
we have briefly introduced in Section 2.2.6. WordNet-based metrics proved useful in the
Semeval system of (Han et al., 2013), who use these metrics for calculating a boost of word
similarity scores. The top system of (Banjade et al., 2015) also relies on a subset of these
features. We chose to use four of these metrics as binary features in our system; these
indicate whether one word is a direct or two-link hypernym of the other, whether the two
are derivationally related, and whether one appears frequently in the glosses of the other,
of its direct hypernym, or of its direct hyponyms. Each of the four features improved our
system independently, icluding all of them brought the system’s performance to 0.73. A
model trained on WordNet features alone achieves a correlation of 0.33.

6.2.4 4lang-based features

Based on insights gained from developing a 4lang-based similarity measure for our 2015
STS system (see Section 6.1 for details), we defined multiple features over pairs of 4lang
graphs which we predicted would correlate with word similarity. In defining these features
we rely on the definition of predicates introduced in Section 6.1.4. Two real-valued fea-
tures correspond to the main components of our earlier, rule-based measure: the Jaccard-
similarities of sets of predicates and nodes in definition graphs. Additionally, we introduced

13http://ttic.uchicago.edu/~wieting/
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feature definition
links_jaccard J(P (w1), P (w2))
nodes_jaccard J(N(w1), N(w2))
links_contain 1 if w1 ∈ P (w2) or w2 ∈ P (w1), 0 otherwise
nodes_contain 1 if w1 ∈ N(w2) or w2 ∈ N(w1), 0 otherwise
0_connected 1 iff w1 and w2 are on a path of 0-edges, 0 otherwise

Table 6.4: 4lang similarity features

three binary features. The links_contain feature is true iff either concept is contained in
a predicate of the other, nodes_contain holds iff either concept is included in the other’s
definition graph, and 0_connected is true iff the two nodes are connected by a path of
0-edges in either definition graph. All 4lang-based features are listed in Table 6.4.

Initial experiments suggested that using these features as the only source of word
similarity information result in many “false positives": e.g. pairs of antonyms in SimLex
were regularly assigned high similarity scores because the above features are not sensitive to
the 4lang nodes LACK, representing negation (dumb 0−→ intelligent 0−→ LACK), and BEFORE,
which indicates that something was only true in the past (forget 0−→ know 0−→ BEFORE),

We therefore proceeded to implement the is_antonym feature, a binary set to true
iff one word is within the scope of, i.e. 0-connected to, an instance of either LACK or
BEFORE in the other word’s definition graph. Next, we transform each pair of graphs:
all nodes within the scope of LACK or BEFORE are prefixed by lack_ and are thus no
longer considered identical with their non-negated counterparts when computing each of
the features in Table 6.4. An example is shown in Figure 6.3.

before

forget

know

0

remember

0

0

lack

0

before

forget

lack_know

0

lack_remember

0

0

lack

0

Figure 6.3: 4lang definition of forget and its modified version
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A system trained on 4lang-based features only achieves a Pearson correlation in the
range of 0.32 − 0.34 on the SimLex data, scores that were only slightly increased to 0.38
by the above treatment of LACK and BEFORE. While this score is competitive with some
word embeddings, it is significantly below the 0.58 − 0.68 range of the state of the art
systems cited in Sections 6.2.1 and 6.2.3. By measuring the individual contribution of
each type of 4lang feature to the performance of purely vector-based configurations, we
discovered that only two types improve their performance significantly: 0-connected and
is_antonym. Adding these two features to the vector-based system brings correlation to
0.75, the model using both 4lang and WordNet achieves our top score of 0.76.

6.2.5 Results

Performance of major wordsim configurations is presented in Table 6.5. The top system
using only word embeddings achieves a Spearman correlation of 0.72. WordNet and 4lang
features both improve this system, and combining all three feature classes yields our top
correlation of 0.76, higher than any previous results that we are aware of. (Hill et al., 2015)
report that the average correlation between a human rater and the average of all other
raters is 0.78, suggesting that on this benchmark our system has achieved near-human
performance.

System Spearman’s ρ
embeddings 0.72
embeddings+wordnet 0.73
embeddings+4lang 0.75
embeddings+wordnet+4lang 0.76

Table 6.5: Performance of major configurations on SimLex

In order to gain a better understanding of the shortcomings of our system, we sorted
word pairs by the difference between gold similarity values from SimLex and the output
of our top-scoring model. Errors made by wordsim are dominated by two distinct groups
of word pairs. The largest group consists of word pairs that are nearly or completely
synonymous but received low similarity scores from our model, Table 6.6 shows the top
examples. The second group contains word pairs that were scored as highly similar by our
model but not by human annotators (see Table 6.7 for the top examples). This second
error class exemplifies a well-known issue with models of word similarity: (Hill et al., 2015)
already observed that similarity of vectors in word embeddings tend to model association
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(or relatedness) rather than the similarity of concepts represented by each word.

word1 word2 output gold diff
bubble suds 2.97 8.57 5.59
dense dumb 1.71 7.27 5.56
cop sheriff 3.50 9.05 5.55
alcohol gin 3.43 8.65 5.22
rationalize think 3.50 8.25 4.75

Table 6.6: Top 5 “false negative” errors

word1 word2 output gold diff
girl maid 7.72 2.93 -4.79
happiness luck 6.59 2.38 -4.21
crazy sick 7.49 3.57 -3.92
arm leg 6.74 2.88 -3.86
breakfast supper 8.01 4.40 -3.61

Table 6.7: Top 5 “false positive” errors

To better understand the role 4lang representations play in the performance of our
system, we examined definition graphs of top erroneous word pairs. As expected, the
0-connected feature was False for word pairs such as those in Table 6.6. In most cases
the missing 0-edges (or 0-paths) could be added to the graphs using simple inference
methods of the kind described in Section 3.3. For example, suds are defined in LDOCE
as the mass of bubbles formed on the top of water with soap in it, yielding the 4lang
subgraph bubble 1←− HAS 2−→ mass 0←− suds. A simple rule stating that a mass of X inherits
all predicates of X, would allow us to infer the edge suds 0−→ bubble

As discussed in Section 3.2 inference over 4lang graphs should also derive all uses of
polysemous words. The 4lang representation of dense is built from its first definition in
LDOCE: made of or containing a lot of things or people that are very close together. A
method that will relate this definition with that of dumb is currently out of reach. Better
short-term results could be obtained by using all definitions in a dictionary to build 4lang
representations, for dense this would include its third definition: not able to understand
things easily. Other shortcomings of 4lang representations are of a more technical nature.
Currently the lemmatizer mapping words of definitions to concepts fails to map alcoholic
to alcohol in the definition of gin: a strong alcoholic drink made mainly from grain. Yet
other errors could be addressed by rewarding the overlap between two representations, e.g.
that the graphs for cop and sheriff both contain 0−→ officer.
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6.3 Natural language understanding

We now summarize our earliest application of the 4lang representation, a dialogue system
using spreading activation over 4lang-machines, presented in detail in (Nemeskey et al.,
2013). Two systems mimicking the actions of a ticket clerk at a Hungarian railway station
(one selling tickets and another responding to timetable inquiries) use Eilenberg-machines
– the formal objects behind 4lang graphs that are viewed as directed graphs of concepts
throughout this thesis – to represent user input at all levels of analysis. Words and chunks
detected in user input are represented by machines, as are entire utterances after process-
ing. User input is first processed by standard tools: a morphological analyzer (Tron et al.,
2005) and an NP chunker (Recski & Varga, 2010). Constructions over machines take over
in the next step, pairing surface structures with arbitrary actions, in this case filling slots
of Attribute Value Matrices (AVMs) with domain-specific fields such as destination14.
For example, when encountering Gödre (‘to Göd’), a noun phrase in sublative case that
also contains the name of a Hungarian town, the destination field can be populated.

Simple rules such as this one are responsible for storing domain-specific knowledge
extracted from user input, but a domain-independent activation of machines corresponding
to 4lang concepts governs the actions taken by the system. For each concept found in the
input, machines are added to the set of active machines and expanded, using either their
4lang definitions (e.g. in the case of ticket) or an external dictionary storing domain-
specific information, e.g. that student and pensioner can be synonyms for half-price
in the context of train tickets. At every iteration of the activation process, concepts are
also activated if all concepts in their definitions are active at the end of the previous
iteration. Other interfaces of the system can activate machines and fill AVMs, e.g. the
location of the user can activate the concepts ticket and schedule, and populate the
ticket-AVM field source with the name of the station (which may later be overridden
based on user input).

The system was built to respond perfectly to ca. 40 real-life dialogues – transcribed by
the author over a 30-minute period at a Budapest railway station and informally referred
to as the MÁV-corpus (MÁV is the largest railroad company in Hungary). Our system
was never formally evaluated with human users, but was presented to the public, spawning
considerable interest (Szedlák, 2012; nyest.hu, 2012). All code is available under an MIT
license15, but the system is no longer actively maintained.

14 Construction objects in the pymachine module – a dependency of 4lang– are not introduced in this
thesis, but Section 8.4 will briefly mention some more applications. AVM filling is performed by subtypes
of the Operator class, also not documented here.

15http://www.github.com/kornai/pymachine/
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Chapter 7

System architecture

This chapter describes the main building blocks of the 4lang system. The most up-to-date
version of this documentation is available under https://github.com/kornai/4lang/
tree/master/doc. Besides introducing the main modules dep_to_4lang (Section 7.3)
and dict_to_4lang (Section 7.4), which were introduced in Chapters 4 and 5 repsectively,
this chapter also describes auxiliary components such as the Lemmatizer and Lexicon
classes (Sections 7.6 and 7.5) as well as some modules of the pymachine library used
by 4lang (Section 7.7). Section 7.2 lists the external dependencies of the 4lang module
along with brief instructions on how to obtain and install them. The purpose of the short
overview in Section 7.1 is to make this chapter accessible on its own, those who have read
Chapters 3 through 6 of this thesis may safely skip it. Finally, Section 7.9 gives detailed
instructions on how to customize each 4lang tool using configuration files.

7.1 Overview

The 4lang library provides tools to build and manipulate directed graphs of concepts that
represent the meaning of words, phrases and sentences. 4lang can be used to

• build concept graphs from plain text (text_to_4lang)

• build concept graphs from dictionary definitions (dict_to_4lang)

• measure semantic similarity of concept graphs

Both text_to_4lang and dict_to_4lang rely on the Stanford CoreNLP (English) and
the magyarlanc (Hungarian) toolchains for generating dependency relations from text,
which are in turn processed by the dep_to_4lang module.
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The top-level file 4lang contains a manually built concept dictionary, mapping ca.
3000 words to 4lang-style definition graphs. Graphs are specified using a simple human-
readable format, partially documented in (Kornai et al., 2015) (a more complete descrip-
tion is forthcoming). Definitions in the 4lang dictionary can be processed using the
definition_parser module of the pymachine library (see Section 7.7).

The text_to_4lang module takes as its input raw text, passes it to the Stanford
CoreNLP package for dependency parsing and coreference resolution, than calls the
dep_to_4lang module to convert the output into interconnected Machine instances. The
dict_to_4lang tool builds graphs from dictionary definitions by extending the pipeline
with parsers for several machine-readable monolingual dictionaries and some genre-specific
preprocessing steps.

7.2 Requirements

7.2.1 pymachine

The pymachine library is responsible for implementing machines, graphs of machines, and
some more miscellaneous tools for manipulating machines. The library is documented
in Section 7.7. The library can be downloaded from http://www.github.com/kornai/
pymachine and installed by running python setup.py install from the pymachine di-
rectory.

7.2.2 hunmorph and hundisambig

The lemmatizer class in 4lang, documented in Section 7.6 uses a combination of tools,
two of which are the hunmorph open-source library for morphological analysis and the
hundisambig tool for morphological disambiguation. The source code for both can be
downloaded from http://mokk.bme.hu/en/resources/hunmorph/, the pre-built mod-
els for English and Hungarian, morphdb.en and morphdb.hu, are also made available.
Alternatively, pre-compiled binaries for both hunmorph and hundisambig are available
at http://people.mokk.bme.hu/~recski/4lang/huntools_binaries.tgz, they can be
expected to work on most UNIX-based systems. The archive should be extracted in the
4lang working directory, which will create the huntools_binaries directory. If binaries
need to be recompiled, they should also be copied to this directory, or the value of the
parameter hunmorph_path must be changed in default.cfg to point to an alternative
directory.
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7.2.3 Stanford Parser and CoreNLP

4lang runs the Stanford Parser in two separate ways. When parsing dictionary definitions,
the stanford_wrapper module launches the Jython-based module stanford_parser.py,
which can communicate directly with the Stanford Parser API to enforce constraints on
the parse trees (see Section 5.2.2 for details). These modules require the presence of the
Stanford Dependency Parser, which can be obtained from http://nlp.stanford.edu/
software/lex-parser.shtml#Download and the Jython tool, available from http://
www.jython.org/downloads.html. After downloading and installing these tools, the
‘stanford’ and ‘corenlp’ sections of the default configuration file ‘conf/default.cfg’ must
be updated so that the relevant fields point to existing installations of each tool and the
englishRNN.ser.gz model (details on the config file will be given in Section 7.9).

The text_to_4lang tool, on the other hand, runs parsing as well as coreference resolu-
tion using the Stanford CoreNLP package. To save the overhead of loading multiple models
each time text_to_4lang is run, CoreNLP is run using the corenlp-server tool, which
takes care of downloading CoreNLP, then launching it and keeping it running in the back-
ground, allowing text_to_4lang to pass requests to it continuously. The corenlp-server
tool can be downloaded from https://github.com/kowey/corenlp-server, then in-
structions in its README should be followed to launch the server.

7.3 dep_to_4lang

The core module for building 4lang graphs from text is the dep_to_4lang module which
processes the output of dependency parsers. The text_to_4lang module only con-
tains glue code for feeding raw text to Stanford CoreNLP and passing the output to
dep_to_4lang. The dict_to_4lang module, which parses and preprocesses dictionary
definitions before passing them to CoreNLP, will be described in the next section.

The dep_to_4lang module processes for each sentence the output of a dependency
parser, i.e. a list of relations (or triplets) of the form R(w1, w2), and optionally a list of
coreferences, i.e. indications that a group of words in the sentence all refer to the same
entity (this is currently available for English, using the Stanford Coreference Resolution
system from the CoreNLP library). The configuration passed to the DepTo4lang class
upon initialization must point to a file containing a map from dependencies to 4lang
edges and/or binary relations. For English the default map is the dep_to_4lang.txt file
in the project’s root directory.

The core method of the dep_to_4lang module is
DepTo4lang.get_machines_from_deps_and_corefs, which expects as its parameter not
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just a list of dependencies but also the output of coreference resolution, which is called
by text_to_4lang but not by dict_to_4lang. This function will ultimately return a
map from surface word forms to Machine instances. To create machines, the function
requires the dependencies to also contain each word’s lemma - for Hungarian data these
are extracted from the output of magyarlanc by magyarlanc_wrapper, for English data
the Lemmatizer module is called (see Section 7.6). Dependency triplets are iterated over,
Machines are instantiated for each lemma, and the apply_dep function is called for each
triple of (relation, machine1, machine2).

The apply_dep function matches such triplets against Dependency instances that have
been created by parsing the dep_to_4lang.txt file containing the mapping from depen-
dency relations to 4lang configurations. In order to handle morphological features in
Hungarian data, these patterns may make reference to the MSD labels of words which have
also been extracted from the magyarlanc output. In case of a match, Operators associ-
ated with the dependency are run on the machines to enforce the specific configurations1.
from c o l l e c t i o n s import d e f a u l t d i c t
import j s on
import l o g g i n g
import os
import re
import sys
import t raceback

from pymachine . o p e r a t o r s import AppendOperator , AppendToNewBinaryOperator ,
AppendToBinaryFromLexiconOperator # nopep8

from dependency_processor import DependencyProcessor
from lemmatizer import Lemmatizer
from l e x i c o n import Lexicon
from u t i l s import ensure_dir , get_cfg , print_4lang_graphs

class DepTo4lang ( ) :

dep_regex = re . compile ( " ( [ a−z_− ]∗) \ ( ( . ∗ ? ) −([0−9]∗) ’∗ , ( . ∗ ? ) −([0−9]∗) ’∗\) " )

def __init__ ( s e l f , c f g ) :
s e l f . c f g = c f g
s e l f . lang = s e l f . c f g . get ( " deps " , " lang " )
s e l f . out_fn = s e l f . c f g . get ( " machine " , " de f in i t i ons_binary_out " )
ensure_dir ( os . path . dirname ( s e l f . out_fn ) )
s e l f . dependency_processor = DependencyProcessor ( s e l f . c f g )
dep_map_fn = c f g . get ( " deps " , "dep_map" )
s e l f . read_dep_map (dep_map_fn)

1We do not document the Operator class, which is used to define complex actions over Machines
that may be sensitive to some input data. In its current state the codebase makes no more use of them
as it does of Machines: they are elaborate structures performing one or two very simple tasks; in this
case, adding edges between machines. They do however play a significant role in the experimental system
presented in Section 6.3 and will likely play a crucial part in 4lang-based parsing (see Section 8.4).
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s e l f . undef ined = set ( )
s e l f . lemmatizer = Lemmatizer ( c f g )
s e l f . l ex i con_fn = s e l f . c f g . get ( " machine " , " d e f i n i t i o n s _ b i n a r y " )
s e l f . l e x i c o n = Lexicon . load_from_binary ( s e l f . l ex i con_fn )
s e l f . word2lemma = {}

def read_dep_map ( s e l f , dep_map_fn) :
s e l f . dependenc ies = d e f a u l t d i c t ( l i s t )
for l i n e in f i l e (dep_map_fn) :

l = l i n e . s t r i p ( )
i f not l or l . s t a r t s w i t h ( ’#’ ) :

continue
dep = Dependency . create_from_line ( l )
s e l f . dependenc ies [ dep . name ] . append ( dep )

def apply_dep ( s e l f , dep , machine1 , machine2 ) :
dep_type = dep [ ’ type ’ ]
msd1 = dep [ ’ gov ’ ] . get ( ’msd ’ )
msd2 = dep [ ’ dep ’ ] . get ( ’msd ’ )
i f dep_type not in s e l f . dependenc ies :

i f dep_type not in s e l f . undef ined :
s e l f . undef ined . add ( dep_type )
l o g g i n g . warning (

’ sk ipp ing dependency not in dep_to_4lang map : {0} ’ . format (
dep_type ) )

return False # not t h a t anyone cares
for dep in s e l f . dependenc ies [ dep_type ] :

dep . apply (msd1 , msd2 , machine1 , machine2 )

def dep_to_4lang ( s e l f ) :
d ict_fn = s e l f . c f g . get ( " d i c t " , " o u t p u t _ f i l e " )
l o g g i n g . i n f o ( ’ read ing dependenc ies from { 0 } . . . ’ . format ( d ict_fn ) )
longman = json . load (open( d ict_fn ) )
for c , ( word , entry ) in enumerate( longman . i t e r i t e m s ( ) ) :

i f c % 1000 == 0 :
l o g g i n g . i n f o ( " added { 0 } . . . " . format ( c ) )

try :
i f entry [ " t o _ f i l t e r " ] :

continue
i f not entry [ ’ s e n s e s ’ ] :

# TODO t h e s e are words t h a t only have p o i n t e r s to an MWE
# t h a t they are par t o f .
continue

d e f i n i t i o n = entry [ ’ s e n s e s ’ ] [ 0 ] [ ’ d e f i n i t i o n ’ ]
i f d e f i n i t i o n i s None :

continue
deps = d e f i n i t i o n [ ’ deps ’ ]
i f not deps :

# TODO see prev ious comment
continue

machine = s e l f . get_dep_def in i t ion ( word , deps )
i f machine i s None :

continue

# l o g g i n g . i n f o ( ’ adding : {0} ’ . format ( word ) )
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# l o g g i n g . i n f o ( ’ ext_lex_keys : {0} ’ . format (
# s e l f . l e x i c o n . ex t_ lex i con . keys () ) )

s e l f . l e x i c o n . add ( word , machine )
except Exception :

l o g g i n g . e r r o r (u " except ion caused by : ’{0} ’ " . format ( word ) )
# l o g g i n g . error (
# u ’ s k i p p i n g "{0}" because o f an excep t ion : ’ . format (
# word ) )
# l o g g i n g . i n f o (" entry : {0}" . format ( entry ) )
t raceback . pr int_exc ( )
sys . e x i t (−1)
continue

l o g g i n g . i n f o ( ’ added {0} , done ! ’ . format ( c + 1) )

def print_graphs ( s e l f ) :
print_4lang_graphs (

s e l f . l e x i c o n . ext_lexicon ,
s e l f . c f g . get ( ’ machine ’ , ’ graph_dir ’ ) )

def save_machines ( s e l f ) :
s e l f . l e x i c o n . save_to_binary ( s e l f . out_fn )

@staticmethod
def parse_dependency ( s t r i n g ) :

dep_match = DepTo4lang . dep_regex . match ( s t r i n g )
i f not dep_match :

raise Exception ( ’ cannot parse dependency : {0} ’ . format ( s t r i n g ) )
dep , word1 , id1 , word2 , id2 = dep_match . groups ( )
return dep , ( word1 , id1 ) , ( word2 , id2 )

def get_root_lemmas ( s e l f , deps ) :
return [

d [ ’ dep ’ ] . s e t d e f a u l t (
’ lemma ’ , s e l f . lemmatizer . lemmatize (d [ ’ dep ’ ] [ ’ word ’ ] , uppercase=True ) )

for d in deps i f d [ ’ type ’ ] == ’ root ’ ] # TODO

def get_dep_def in i t ion ( s e l f , word , deps ) :
deps = s e l f . dependency_processor . process_dependenc ies ( deps )
root_lemmas = s e l f . get_root_lemmas ( deps )
i f not root_lemmas :

l o g g i n g . warning (
u ’ no root dependency , sk ipp ing word "{0}" ’ . format ( word ) )

return None

word2machine = s e l f . get_machines_from_deps_and_corefs (
[ deps ] , [ ] , process_deps=False )

i f word in word2machine :
return word2machine [ word ]

root_machines = f i l t e r (None , map( word2machine . get , root_lemmas ) )
i f not root_machines :

l o g g i n g . i n f o ( " f a i l e d to f i n d root machine " )
l o g g i n g . i n f o ( ’ root lemmas : {0} ’ . format ( root_lemmas ) )
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l o g g i n g . i n f o ( ’ word2machine : {0} ’ . format ( word2machine ) )
sys . e x i t (−1)

word_machine = s e l f . l e x i c o n . get_machine ( word , new_machine=True )

for root_machine in root_machines :
word_machine . un i fy ( root_machine )
word_machine . append ( root_machine , 0)

return word_machine

def get_machines_from_deps_and_corefs (
s e l f , dep_l i s t s , c o r e f s , process_deps=True ) :

i f process_deps :
d e p _ l i s t s = map(

s e l f . dependency_processor . process_dependencies , d e p _ l i s t s )
core f_index = d e f a u l t d i c t ( dict )
for ( word , sen_no ) , mentions in c o r e f s :

for m_word , m_sen_no in mentions :
core f_index [ m_word ] [ m_sen_no−1] = word

# l o g g i n g . i n f o ( ’ c o r e f index : {0} ’ . format ( coref_index ) )

word2machine = {}
for deps in d e p _ l i s t s :

for dep in deps :
for t in ( dep [ ’ gov ’ ] , dep [ ’ dep ’ ] ) :

s e l f . word2lemma [ t [ ’ word ’ ] ] = t . s e t d e f a u l t (
’ lemma ’ , s e l f . lemmatizer . lemmatize ( t [ ’ word ’ ] , uppercase=True ) )

for i , deps in enumerate( d e p _ l i s t s ) :
try :

for dep in deps :
word1 = dep [ ’ gov ’ ] [ ’ word ’ ]
word2 = dep [ ’ dep ’ ] [ ’ word ’ ]
# l o g g i n g . i n f o ( ’ dep : {0} , w1 : {1} , w2 : {2} ’ . format (
# repr ( dep ) , repr ( word1 ) , repr ( word2 ) ) )
c_word1 = core f_index [ word1 ] . get ( i , word1 )
c_word2 = core f_index [ word2 ] . get ( i , word2 )

" " "
i f c_word1 != word1 :

l o g g i n g . warning (
" u n i f y i n g ’{0} ’ with canonica l ’ { 1 } ’ " . format (

word1 , c_word1 ) )
i f c_word2 != word2 :

l o g g i n g . warning (
" u n i f y i n g ’{0} ’ with canonica l ’ { 1 } ’ " . format (

word2 , c_word2 ) )
" " "
lemma1 = s e l f . word2lemma [ c_word1 ]
lemma2 = s e l f . word2lemma [ c_word2 ]

# TODO
# lemma1 = lemma1 . r e p l a c e ( ’/ ’ , ’_PER_ ’)
# lemma2 = lemma2 . r e p l a c e ( ’/ ’ , ’_PER_ ’)
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# l o g g i n g . i n f o (
# ’ lemma1 : {0} , lemma2 : {1} ’ . format (
# repr ( lemma1) , repr ( lemma2) ) )

for lemma in ( lemma1 , lemma2 ) :
i f lemma not in word2machine :

word2machine [ lemma ] = s e l f . l e x i c o n . get_machine (
lemma , new_machine=True )

s e l f . apply_dep (
dep , word2machine [ lemma1 ] , word2machine [ lemma2 ] )

except :
l o g g i n g . e r r o r (u " f a i l u r e on dep : {0}({1} , {2}) " . format (

dep , word1 , word2 ) )
t raceback . pr int_exc ( )
raise Exception ( " adding dependenc ies f a i l e d " )

return word2machine

class Dependency ( ) :
def __init__ ( s e l f , name , patt1 , patt2 , o p e r a t o r s = [ ] ) :

s e l f . name = name
s e l f . patt1 = re . compile ( patt1 ) i f patt1 else None
s e l f . patt2 = re . compile ( patt2 ) i f patt2 else None
s e l f . o p e r a t o r s = o p e r a t o r s

@staticmethod
def create_from_line ( l i n e ) :

r e l , r e v e r s e = None , Fa l se
# l o g g i n g . debug ( ’ pars ing l i n e : {} ’ . format ( l i n e ) )
f i e l d s = l i n e . s p l i t ( ’ \ t ’ )
i f len ( f i e l d s ) == 2 :

dep , edges = f i e l d s
e l i f len ( f i e l d s ) == 3 :

dep , edges , r e l = f i e l d s
i f r e l [ 0 ] == ’ ! ’ :

r e l = r e l [ 1 : ]
r e v e r s e = True

else :
raise Exception ( ’ l i n e s must have 2 or 3 f i e l d s : {} ’ . format (

f i e l d s ) )

i f ’ , ’ in dep :
dep , patt1 , patt2 = dep . s p l i t ( ’ , ’ )

else :
patt1 , patt2 = None , None

edge1 , edge2 = map(lambda s : int ( s ) i f s not in ( ’− ’ , ’ ? ’ ) else None ,
edges . s p l i t ( ’ , ’ ) )

i f ( dep . s t a r t s w i t h ( ’ prep_ ’ ) or
dep . s t a r t s w i t h ( ’ prepc_ ’ ) ) and r e l i s None :

# l o g g i n g . i n f o ( ’ adding new r e l from : {0} ’ . format ( dep ) )
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r e l = dep . s p l i t ( ’_ ’ , 1) [ 1 ] . upper ( )

# Universa l Dependencies
i f ( ( dep . s t a r t s w i t h ( ’ a c l : ’ ) and not dep . s t a r t s w i t h ( ’ a c l : r e l c l ’ ) ) or

dep . s t a r t s w i t h ( ’ advc l : ’ ) or
dep . s t a r t s w i t h ( ’nmod : ’ ) ) and r e l i s None :

l o g g i n g . i n f o ( ’ adding new r e l from : {0} ’ . format ( dep ) )
r e l = dep . s p l i t ( ’ : ’ , 1) [ 1 ] . upper ( )

return Dependency ( dep , patt1 , patt2 , Dependency . get_standard_operators (
edge1 , edge2 , r e l , r e v e r s e ) )

@staticmethod
def get_standard_operators ( edge1 , edge2 , r e l , r e v e r s e ) :

o p e r a t o r s = [ ]
i f edge1 i s not None : # i t can be zero , don ’ t check f o r t r u t h va lue !

o p e r a t o r s . append ( AppendOperator (0 , 1 , part=edge1 ) )
i f edge2 i s not None :

o p e r a t o r s . append ( AppendOperator (1 , 0 , part=edge2 ) )
i f r e l :

o p e r a t o r s . append (
AppendToNewBinaryOperator ( r e l , 0 , 1 , r e v e r s e=r e v e r s e ) )

return o p e r a t o r s

def match ( s e l f , msd1 , msd2) :
for patt , msd in ( ( s e l f . patt1 , msd1) , ( s e l f . patt2 , msd2) ) :

i f patt i s not None and msd i s not None and not patt . match (msd) :
return False

return True

def apply ( s e l f , msd1 , msd2 , machine1 , machine2 ) :
l o g g i n g . debug (

’ t r y i n g {0} on {1} and { 2 } . . . ’ . format ( s e l f . name , msd1 , msd2) )
i f s e l f . match (msd1 , msd2) :

l o g g i n g . debug ( ’MATCH! ’ )
for operator in s e l f . o p e r a t o r s :

operator . act ( ( machine1 , machine2 ) )

def main ( ) :
l o g g i n g . bas i cCon f i g (

l e v e l=l o g g i n g . INFO,
format="%(asct ime ) s : " +
"%(module ) s (%( l i n e n o ) s ) − %(levelname ) s − %(message ) s " )

c f g _ f i l e = sys . argv [ 1 ] i f len ( sys . argv ) > 1 else None
c f g = get_cfg ( c f g _ f i l e )
dep_to_4lang = DepTo4lang ( c f g )
dep_to_4lang . dep_to_4lang ( )
dep_to_4lang . save_machines ( )
dep_to_4lang . print_graphs ( )

i f __name__ == "__main__" :
main ( )
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7.4 dict_to_4lang

The dict_to_4lang module implements the pipeline that builds 4lang graphs from dic-
tionary entries by connecting a variety of dictionary parsers, a module for preprocessing
dictionary entries (EntryPreprocessor), and a custom wrapper for the Stanford Parser
(stanford_parser.py) written in Jython that allows adding custom constraints to the
parsing process. The output from dependency parsers is passed by dict_to_4lang to
dep_to_4lang, the resulting graph of 4lang concepts is used to construct the definition
graph for each headword in the dictionary, which are then saved using the Lexicon class
(see Section 7.5).
from __future__ import with_statement
from c o l l e c t i o n s import d e f a u l t d i c t
import j s on
import l o g g i n g
import os
import sys
import thread ing
import time
import t raceback

from dep_to_4lang import DepTo4lang
from entry_preproces sor import EntryPreprocessor
from l e x i c o n import Lexicon
from longman_parser import LongmanParser
from wikt ionary_parser import WiktParser
from stanford_wrapper import StanfordWrapper
from u t i l s import batches , ensure_dir , get_cfg
from c o l l i n s _ p a r s e r import C o l l i n s P a r s e r
from eksz_parser import EkszParser
from nszt_parser import NSzTParser
from magyarlanc_wrapper import Magyarlanc

a s s e r t Lexicon # s i l e n c e p y f l a k e s ( Lexicon must be imported f o r c P i c k l e )

ONE_BY_ONE = False # run threads a f t e r one another ( to avoid memory i s s u e s )

class DictTo4lang ( ) :
def __init__ ( s e l f , c f g ) :

s e l f . d i c t i o n a r y = {}
s e l f . c f g = c f g
s e l f . output_fn = s e l f . c f g . get ( ’ d i c t ’ , ’ o u t p u t _ f i l e ’ )
ensure_dir ( os . path . dirname ( s e l f . output_fn ) )
s e l f . tmp_dir = s e l f . c f g . get ( ’ data ’ , ’ tmp_dir ’ )
ensure_dir ( s e l f . tmp_dir )
s e l f . graph_dir = s e l f . c f g . get ( ’ machine ’ , ’ graph_dir ’ )
ensure_dir ( s e l f . graph_dir )
s e l f . get_parser_and_lang ( )
s e l f . machine_wrapper = None
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def get_parser_and_lang ( s e l f ) :
input_type = s e l f . c f g . get ( ’ d i c t ’ , ’ input_type ’ )
l o g g i n g . i n f o ( ’ input type : {0} ’ . format ( input_type ) )
i f input_type == ’ wikt ionary ’ :

s e l f . p a r s e r = WiktParser ( )
s e l f . lang = ’ eng ’

e l i f input_type == ’ longman ’ :
s e l f . p a r s e r = LongmanParser ( )
s e l f . lang = ’ eng ’

e l i f input_type == ’ c o l l i n s ’ :
s e l f . p a r s e r = C o l l i n s P a r s e r ( )
s e l f . lang = ’ eng ’

e l i f input_type == ’ eksz ’ :
s e l f . p a r s e r = EkszParser ( )
s e l f . lang = ’ hun ’

e l i f input_type == ’ nszt ’ :
s e l f . p a r s e r = NSzTParser ( )
s e l f . lang = ’ hun ’

else :
raise Exception ( ’ unknown input format : {0} ’ . format ( input_type ) )

def parse_dict ( s e l f ) :
i n p u t _ f i l e = s e l f . c f g . get ( ’ d i c t ’ , ’ i n p u t _ f i l e ’ )
s e l f . raw_dict = d e f a u l t d i c t ( dict )
for entry in s e l f . p a r s e r . p a r s e _ f i l e ( i n p u t _ f i l e ) :

i f ’ s e n s e s ’ not in entry or entry [ ’ s e n s e s ’ ] == [ ] :
continue # todo

s e l f . un i fy ( s e l f . raw_dict [ entry [ ’hw ’ ] ] , entry )

def un i fy ( s e l f , entry1 , entry2 ) :
i f entry1 == {} :

entry1 . update ( entry2 )
e l i f entry1 [ ’hw ’ ] != entry2 [ ’hw ’ ] :

raise Exception (
" cannot un i fy e n t r i e s with d i f f e r e n t headwords : " +
" {0} vs . {1} " . format ( entry1 [ ’hw ’ ] , entry2 [ ’hw ’ ] ) )

# p r i n t ’ entry1 : ’ + repr ( entry1 )
# p r i n t ’ entry2 : ’ + repr ( entry2 )
entry1 [ ’ s e n s e s ’ ] += entry2 [ ’ s e n s e s ’ ]

def p r o c e s s _ e n t r i e s ( s e l f , words ) :
entry_preproces sor = EntryPreprocessor ( s e l f . c f g )
e n t r i e s = map( entry_preproces sor . preprocess_entry ,

( s e l f . raw_dict [ word ] for word in words ) )

i f s e l f . lang == ’ eng ’ :
stanford_wrapper = StanfordWrapper ( s e l f . c f g )
e n t r i e s = stanford_wrapper . parse_sentences (

e n t r i e s , d e f i n i t i o n s=True )
e l i f s e l f . lang == ’ hun ’ :

magyarlanc_wrapper = Magyarlanc ( s e l f . c f g )
e n t r i e s = magyarlanc_wrapper . p a r s e _ e n t r i e s ( e n t r i e s )

else :
print ’ i n c o r r e c t lang ’
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for entry in e n t r i e s :
i f entry [ ’ t o _ f i l t e r ’ ] :

continue
word = entry [ ’hw ’ ]
for s ense in entry [ ’ s e n s e s ’ ] :

d e f i n i t i o n = sense [ ’ d e f i n i t i o n ’ ]
i f d e f i n i t i o n i s None :

continue

i f word in s e l f . d i c t i o n a r y :
l o g g i n g . warning (

" e n t r i e s with i d e n t i c a l headwords : \ n{0}\n{1} " . format (
entry , s e l f . d i c t i o n a r y [ word ] ) )

s e l f . un i fy ( s e l f . d i c t i o n a r y [ word ] , entry )
else :

s e l f . d i c t i o n a r y [ word ] = entry

def proces s_entr i e s_thread ( s e l f , i , words ) :
try :

s e l f . p r o c e s s _ e n t r i e s ( words )
except :

s e l f . thread_states [ i ] = Fal se
t raceback . pr int_exc ( )

else :
s e l f . thread_states [ i ] = True

def run ( s e l f , no_threads=1) :
l o g g i n g . i n f o ( ’ par s ing xml . . . ’ )
s e l f . parse_dict ( )

# p r i n t "\n " . j o i n ( [ " \ n " . j o i n ( [ "{0}\ t {1}" . format (
# w, d [ ’ d e f i n i t i o n ’ ] ) f o r d in s [ ’ senses ’ ] ] )
# f o r w, s in s e l f . raw_dict . i tems () ] )
# p r i n t s e l f . raw_dict
# sys . e x i t (−1)
entr ies_per_thread = ( len ( s e l f . raw_dict ) / no_threads ) + 1
s e l f . thread_states = {}

# may turn out to be l e s s then " no_threads " with smal l input
s tar ted_threads = 0
i f ONE_BY_ONE:

l o g g i n g . warning ( ’ running threads one by one ! ’ )
for i , batch in enumerate( batches ( s e l f . raw_dict . keys ( ) ,

entr ies_per_thread ) ) :

i f ONE_BY_ONE:
l o g g i n g . warning ( ’ running batch #{0} ’ . format ( i ) )
s e l f . p roces s_entr i e s_thread ( i , batch )

else :
t = thread ing . Thread (

t a r g e t=s e l f . process_entr ies_thread , args =( i , batch ) )
t . s t a r t ( )

s tar ted_threads += 1
l o g g i n g . i n f o ( " s t a r t e d {0} threads " . format ( s tar ted_threads ) )
while True :
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i f len ( s e l f . thread_states ) < started_threads :
time . s l e e p (1 )
continue

e l i f a l l ( s e l f . thread_states . va lue s ( ) ) :
l o g g i n g . i n f o (

" {0} threads f i n i s h e d s u c c e s s f u l l y " . format ( no_threads ) )
break

else :
raise Exception ( " some threads f a i l e d " )

def read_dict ( s e l f ) :
l o g g i n g . i n f o (

’ l oad ing dict_to_4lang in te rmed ia t e s t a t e from {0} ’ . format (
s e l f . output_fn ) )

with open( s e l f . output_fn , ’ r ’ ) as d i c t _ f i l e :
s e l f . d i c t i o n a r y = json . load ( d i c t _ f i l e )

l o g g i n g . i n f o ( ’ done ! ’ )

def pr int_d ic t ( s e l f , stream=None ) :
i f stream i s None :

with open( s e l f . output_fn , ’w ’ ) as out :
j son . dump( s e l f . d i c t i ona ry , out )

else :
j s on . dump( s e l f . d i c t i ona ry , stream )

def main ( ) :
l o g g i n g . bas i cCon f i g (

l e v e l=l o g g i n g . INFO,
format="%(asct ime ) s : " +
"%(module ) s (%( l i n e n o ) s ) − %(levelname ) s − %(message ) s " )

c f g _ f i l e = sys . argv [ 1 ] i f len ( sys . argv ) > 1 else None
no_threads = int ( sys . argv [ 2 ] ) i f len ( sys . argv ) > 2 else 1
c f g = get_cfg ( c f g _ f i l e )

dict_to_4lang = DictTo4lang ( c f g )
dict_to_4lang . run ( no_threads )
dict_to_4lang . pr in t_d ic t ( )

dep_to_4lang = DepTo4lang ( c f g )
dep_to_4lang . dep_to_4lang ( )
dep_to_4lang . save_machines ( )
dep_to_4lang . print_graphs ( )

i f __name__ == ’__main__ ’ :
main ( )

7.4.1 Parsing dictionaries

dict_to_4lang supports 5 input data formats:

• an XML version of the Longman Dictionary of Contemporary English
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• a typographer’s tape version of the Collins COBUILD Dictionary from the ACL/DCI
dataset (https://catalog.ldc.upenn.edu/LDC93T1)

• XML dumps of the EnglishWiktionary (https://dumps.wikimedia.org/enwiktionary/)

• an XML version of the Magyar Nyelv Nagyszótára (Hungarian)

• a preprocessed XML format of the Magyar Értelmező Kéziszótár. (Hungarian)

These datasets are processed by the modules longman_parser, collins_parser,
wiktionary_parser, nszt_parser, and eksz_parser, respectively, three of which (longman_parser,
wiktionary_parser, eksz_parser) are subclasses of the xml_parser module. Each
parser extracts a dictionary containing a list of definitions for each headword, each with
part-of-speech tag (where available), and possibly other data which is not currently used by
dict_to_4lang. Parsers also perform format-specific preprocessing if necessary (e.g. re-
placing abbreviated forms of frequent words with their full form in Hungarian definitions).
If run as standalone applications, all five parsers will print their output in human-readable
format, useful for testing.

xml_parser

Methods common to the three XML-based formats are defined in the abstract superclass
XMLParser:
import re

class XMLParser ( ) :

@staticmethod
def s ec t i on_patte rn ( tag ) :

" " " Create ( s e c t i o n ) regex o b j e c t . " " "
pat te rn_st r ing = " <{0} >(.∗?)</{0}>" . format ( tag )
return re . compile ( pattern_str ing , re . S ) # S : . can be newl ine

@staticmethod
def tag_pattern ( tag ) :

" " " Create ( tag ) regex o b j e c t . " " "
pat te rn_st r ing = " </?{0}>" . format ( tag )
return re . compile ( pattern_str ing , re . S )

@staticmethod
def i t e r _ s e c t i o n s ( tag , t ex t ) :

" " " Return l i s t o f t a g s in t e x t . " " "
return XMLParser . s ec t ion_patte rn ( tag ) . f i n d a l l ( t ex t )

@staticmethod
def get_sect ion ( tag , t ex t ) :

" " " Return the f i r s t group o f tag in t e x t . " " "
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match_obj = XMLParser . s ec t ion_patte rn ( tag ) . s earch ( t ext )
return None i f match_obj i s None else match_obj . group (1)

@staticmethod
def remove_sect ions ( tag , t ex t ) :

" " " Remove ( s e c t i o n ) t a g s from t e x t . " " "
return XMLParser . s ec t ion_patte rn ( tag ) . sub ( " " , t ex t )

@staticmethod
def remove_tags ( tag , t ex t ) :

" " " Remove ( tag ) t a g s from t e x t . " " "
return XMLParser . tag_pattern ( tag ) . sub ( " " , t ex t )

@staticmethod
def parse_xml ( data ) :

raise NotImplementedError

@classmethod
def p a r s e _ f i l e ( c l s , fn ) :

" " " Open , read and decode the input f i l e ,
then g i v e i t to the main parser c l a s s ’ ’ parse_xml ’ method . " " "
return c l s . parse_xml (open( fn ) . read ( ) . decode ( ’ ut f−8 ’ ) )

longman_parser

Methods specific to the Longman dictionary are defined by the LongmanParser class:
#!/ usr / bin /env python
# Module f o r reading Longman XML and producing JSON output

from c o l l e c t i o n s import d e f a u l t d i c t
import j s on
import re
import sys

from xml_parser import XMLParser

a s s e r t j son # s i l e n c e p y f l a k e s

class LongmanParser ( XMLParser ) :

@staticmethod
def add_suf f ixe s ( t ex t ) :

return re . sub ( " <SUFFIX> ( . ∗ ? ) </SUFFIX>" , " \\1 " , t ex t )

@staticmethod
def remove_extra_whitespace ( t ex t ) :

i f t ex t i s None :
return None

return " " . j o i n ( t ex t . s p l i t ( ) ) . s t r i p ( )

@staticmethod
def c l e a n _ d e f i n i t i o n ( d e f i n i t i o n ) :

i f d e f i n i t i o n i s None :
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return d e f i n i t i o n
for tag in ( "TEXT" , "NonDV" , "REFHWD" , "FULLFORM" , "PRON" ,

" PronCodes " , "ABBR" ) :
d e f i n i t i o n = LongmanParser . remove_tags ( tag , d e f i n i t i o n )

for tag in ( "REFSENSENUM" , "REFHOMNUM" , "GLOSS" ) :
d e f i n i t i o n = LongmanParser . remove_sect ions ( tag , d e f i n i t i o n )

d e f i n i t i o n = LongmanParser . remove_extra_whitespace ( d e f i n i t i o n )
d e f i n i t i o n = LongmanParser . add_suf f ixe s ( d e f i n i t i o n )
return d e f i n i t i o n

@staticmethod
def parse_sense ( t ex t ) :

d e f i n i t i o n = LongmanParser . c l e a n _ d e f i n i t i o n (
LongmanParser . ge t_sect ion ( "DEF" , t ex t ) )

fu l l_form = LongmanParser . ge t_sect ion ( "FULLFORM" , t ext )
return { " fu l l_form " : ful l_form , " d e f i n i t i o n " : d e f i n i t i o n }

@staticmethod
def get_headword ( entry_text ) :

" " " Return the f i r s t group o f "HWD" in entry_tex t " " "
return LongmanParser . remove_extra_whitespace (

LongmanParser . ge t_sect ion ( "HWD" , entry_text ) )

@staticmethod
def get_pos ( entry_text ) :

return LongmanParser . remove_extra_whitespace (
LongmanParser . ge t_sect ion ( "POS" , entry_text ) )

@staticmethod
def parse_entry ( entry_text ) :

" " " " " "
entry = {

"hw" : LongmanParser . get_headword ( entry_text ) ,
" s e n s e s " : map(

LongmanParser . parse_sense ,
LongmanParser . i t e r _ s e c t i o n s ( " Sense " , entry_text ) ) ,

}

pos = LongmanParser . get_pos ( entry_text )
for s ense in entry [ ’ s e n s e s ’ ] :

s ense [ ’ pos ’ ] = pos

hom_num = LongmanParser . ge t_sect ion ( ’HOMNUM’ , entry_text )
i f hom_num i s not None :

entry [ ’hom_num ’ ] = hom_num. s t r i p ( )

return entry

@staticmethod
def parse_xml ( xml_text ) :

" " " Give i tems o f generator o f " Entry " s t r i n g s in xml_text to
’ parse_entry ’ method one by one . " " "
for raw_entry in LongmanParser . i t e r _ s e c t i o n s ( " Entry " , xml_text ) :

y i e l d LongmanParser . parse_entry ( raw_entry )
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@staticmethod
def pr int_de f s ( longman_obj ) :

for entry in longman_obj :
for s ense in entry [ ’ s e n s e s ’ ] :

print u " {0}\ t {1} " . format (
entry [ ’hw ’ ] , s ense [ ’ d e f i n i t i o n ’ ] ) . encode ( " utf−8" )

@staticmethod
def pr int_sorted_defs ( longman_obj ) :

index = d e f a u l t d i c t ( l i s t )
for e in longman_obj :

index [ e [ ’hw ’ ] ] . append ( e )
for hw in sorted ( index . i t e r k e y s ( ) ) :

for entry in index [ hw ] :
for s ense in entry [ ’ s e n s e s ’ ] :

print u " {0}\ t {1} " . format (
hw, sense [ ’ d e f i n i t i o n ’ ] ) . encode ( " utf−8" )

i f __name__ == "__main__" :
LongmanParser . pr int_sorted_defs ( LongmanParser . p a r s e _ f i l e ( sys . argv [ 1 ] ) )

wiktionary_parser

Functions required to parse database dumps of the English Wiktionary (available at
https://dumps.wikimedia.org/enwiki/) are defined by the WiktionaryParser class:
# simple parser f o r Eng l i sh Wiktionary
from HTMLParser import HTMLParser
import re
import sys

from xml_parser import XMLParser

class WiktParser ( XMLParser ) :

html_parser = HTMLParser ( )

header_regex = re . compile ( " ^=+([^=]∗?)=+$ " , re .M)
lang_sect ion_regex = re . compile ( ’==Engl i sh==$ . ∗ ’ , r e .M | re . S )
de f s_sect ion_regex = re . compile ( "^=+[^=$]∗?=+$[^=]∗?^#.∗?^= " , re .M | re . S )
def_regex = re . compile ( " ^#( [^#:\∗ ] .∗ ) " , r e .M)
double_curly_regex = re . compile ( " {{ .∗?}} " )
rep lacements = [ ( re . compile ( pattern ) , subst ) for pattern , subst in [

( " \ [ \ [ ( . ∗ ? ) \ | ( . ∗ ? ) \ ] \ ] " , " \\2 " ) ] ]
patterns_to_remove = [ re . compile ( pattern ) for pattern in [

" \ [ \ [ " , " \ ] \ ] " , "<re f >.∗</ re f >" , " ’ ’ " , " ’ ’ " ] ]

pos_name_map = { # e n t r i e s with c a t e g o r i e s not l i s t e d s h a l l be omit ted
’ noun ’ : ’n ’ , ’ proper noun ’ : ’n ’ , ’ verb ’ : ’ v ’ , ’ a d j e c t i v e ’ : ’ adj ’ ,
’ adverb ’ : ’ adv ’ , ’ i n i t i a l i s m ’ : ’n ’ , ’ pronoun ’ : ’n ’ ,
’ a b b r e v i a t i o n ’ : ’n ’ , ’ numeral ’ : ’num ’ , ’ i n t e r j e c t i o n ’ : ’ i n t e r j ’ ,
’ d e f i n i t i o n s ’ : ’ n ’ , # t h i s means the POS i s unknown
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’ p r e p o s i t i o n ’ : ’ prp ’ , ’ con junct ion ’ : ’ conj ’ , ’ acronym ’ : ’n ’ ,
’ c a r d i n a l numeral ’ : ’num ’ , ’ c a r d i n a l number ’ : ’num ’ , ’ number ’ : ’num ’ ,
’ a r t i c l e ’ : ’ a r t ’ , ’ p a r t i c l e ’ : ’ part ’ , ’ determiner ’ : ’ det ’ , }

@staticmethod
def get_pages ( t ex t ) :

return WiktParser . i t e r _ s e c t i o n s ( ’ page ’ , t ex t )

@staticmethod
def get_pos ( s e c t i o n ) :

header = WiktParser . header_regex . match ( s e c t i o n ) . group (1) . lower ( )
i f header not in WiktParser . pos_name_map :

# sys . s t d e r r . wr i t e ( header +’\n ’)
return False

return WiktParser . pos_name_map [ header ]

@staticmethod
def p a r s e _ d e f i n i t i o n ( d e f i n i t i o n ) :

d = d e f i n i t i o n . s t r i p ( )
# semi−co lons u s u a l l y separa te two d e f i n i t i o n s on the same l i n e
d = d . s p l i t ( ’ ; ’ ) [ 0 ]
d = WiktParser . html_parser . unescape (d)
d = WiktParser . double_curly_regex . sub ( ’ ’ , d )
for pattern , subst in WiktParser . rep lacements :

d = pattern . sub ( subst , d )
for pattern in WiktParser . patterns_to_remove :

d = pattern . sub ( " " , d )

# i f a d e f i n i t i o n i s l onger than 300 characters , t h a t ’ s probab ly a bug
# and i t w i l l cause memory e rr o r s when pars ing
d = d [ : 3 0 0 ]

return d . s t r i p ( )

@staticmethod
def g e t _ d e f i n i t i o n s ( s e c t i o n ) :

r aw_de f in i t i ons = WiktParser . def_regex . f i n d a l l ( s e c t i o n )
p a r s e d _ d e f i n i t i o n s = map( WiktParser . p a r s e _ d e f i n i t i o n , raw_de f in i t i ons )
k e p t _ d e f i n i t i o n s = f i l t e r (None , p a r s e d _ d e f i n i t i o n s )
return k e p t _ d e f i n i t i o n s

@staticmethod
def parse_page ( page ) :

headword = WiktParser . ge t_sect ion ( ’ t i t l e ’ , page )
i f " : " in headword :

return None

lang_sect ion = WiktParser . lang_sect ion_regex . search ( page )
i f l ang_sect ion i s None :

return None

d e f s _ s e c t i o n = WiktParser . de f s_sect ion_regex . search (
lang_sect ion . group ( ) )

i f d e f s _ s e c t i o n i s None :
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return None
pos = WiktParser . get_pos ( d e f s _ s e c t i o n . group ( ) )
i f pos i s False :

return None

d e f i n i t i o n s = WiktParser . g e t _ d e f i n i t i o n s ( d e f s _ s e c t i o n . group ( ) )

i f not d e f i n i t i o n s :
return None

return {
"hw" : headword ,
" s e n s e s " : [ {

" fu l l_form " : headword ,
" pos " : pos ,
" d e f i n i t i o n " : d e f i n i t i o n }
for d e f i n i t i o n in d e f i n i t i o n s ] }

@staticmethod
def parse_xml ( xml ) :

for page in WiktParser . get_pages ( xml ) :
parsed_page = WiktParser . parse_page ( page )
i f parsed_page i s not None :

y i e l d parsed_page

def t e s t ( ) :
xml = sys . s t d i n . read ( )
for entry in WiktParser . parse_xml ( xml ) :

print entry

i f __name__ == "__main__" :
t e s t ( )

collins_parser

The CollinsParser class, contributed by Attila Bolevácz, parses the typographer’s tape
format of the 1979 edition of the Collins English Dictionary, fixed by Mark Liberman and
made available by LDC as pasrt of the LDC/ACI collection (LDC93T1)2

import l o g g i n g
import sys
import re

class C o l l i n s P a r s e r ( ) :
@staticmethod
def p r i n t _ d e f i n i t i o n s ( d e f i n i t i o n s ) :

for s e c t i o n in d e f i n i t i o n s :
for s ense in s e c t i o n [ ’ s e n s e s ’ ] :

print " {0}\ t {1}\ t {2} " . format (

2https://catalog.ldc.upenn.edu/LDC93T1
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s e c t i o n [ ’hw ’ ] , s ense [ ’ pos ’ ] , s ense [ ’ d e f i n i t i o n ’ ] )

@staticmethod
def p a r s e _ f i l e ( i n p u t _ f i l e ) :

for s e c t i o n in re . s p l i t ( ’ #[hH] ’ , C o l l i n s P a r s e r . get_text ( i n p u t _ f i l e ) ) :
try :

y i e l d C o l l i n s P a r s e r . parse_entry ( s e c t i o n )
except :

l o g g i n g . warning ( " parse f a i l e d on s e c t i o n : {0} " . format ( s e c t i o n ) )

@staticmethod
def pattern_obj ( pattern ) :

return re . compile ( pattern , re . S )

@staticmethod
def get_text ( i n p u t _ f i l e ) :

t ex t = open( i n p u t _ f i l e ) . read ( ) . decode ( ’ ut f−8 ’ )
i f t ex t [ : 2 ] == ’#h ’ or t ex t [ : 2 ] == ’#H ’ :

return t ex t [ 2 : ]
else :

return t ex t

@staticmethod
def parse_entry ( entry ) :

" " " De le te unnecessary marks
and return entry in appropr ia te format . " " "
i f not entry . s t r i p ( ) :

return None
from_ = [ ’@=’ , ’\?& ’ , ’@! ’ , ’ esp . ’ ]
to = [ ’− ’ , ’& ’ , ’ ! ’ , ’ e s p e c i a l l y ’ ]
for f , t in zip ( from_ , to ) :

entry = re . sub ( f , t , entry )
for pattern in [ ’ \n ’ , ’@n ’ ] :

entry = re . sub ( pattern , " " , entry )
a l te rnate_forms = C o l l i n s P a r s e r . get_alternate_forms ( entry )
for pattern in [ ’#\+ ’ , ’@\ . ’ , ’ \ ? ! ’ ,

’ or #3[^ ]+ ’ ] : # ’#3’ another s p e l l i n g
entry = re . sub ( pattern , " " , entry )

for pattern in [ ’ #5\(.∗?\) ’ , ’ #5\ [ . ∗?\ ] ’ ] :
entry = re . sub ( pattern , ’#5 ’ , entry )

hw, d e s c r i p t i o n = C o l l i n s P a r s e r . get_hw ( entry )
return {

’hw ’ : hw,
’ s e n s e s ’ : C o l l i n s P a r s e r . get_senses ( d e s c r i p t i o n ) ,
’ a l te rnate_forms ’ : a l te rnate_forms }

@staticmethod
def get_alternate_forms ( entry ) :

forms = re . f i n d a l l ( ’ #3(.∗?) #[56] ’ , entry )
return [

form . r e p l a c e ( ’#+’ , ’ ’ ) . r e p l a c e ( ’@. ’ , ’ ’ ) . r e p l a c e ( ’#4 ’ , ’ ’ ) . s t r i p ( )
for form in forms ]

@staticmethod
def get_pos ( entry ) :
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# f i r s t #6 excep t #6or
match = re . s earch ( ’ #6(?! or ) ( .+?) [ . ] ’ , entry , re . S )
i f match :

return match . group (1 )
else :

return ’ unknown ’

@staticmethod
def get_hw ( entry ) :

" " " Return headword . " " "
match = re . s earch ( ’ ( .+?) #[56 ] ( .+) ’ , entry , re . S )
hw = match . group (1 ) . r e p l a c e ( ’#4 ’ , ’ ’ ) . s t r i p ( )
d e s c r i p t i o n = match . group (2 )
return hw, d e s c r i p t i o n

@staticmethod
def get_senses ( entry ) :

" " " Return sense ( s ) . " " "
i f ’#1$D ’ in entry :

return C o l l i n s P a r s e r . de l_pronunc iat ion (
C o l l i n s P a r s e r . get_mult ip le_senses ( entry ) )

else :
return C o l l i n s P a r s e r . de l_pronunc iat ion (

C o l l i n s P a r s e r . get_mono_sense ( entry ) )

@staticmethod
def de l_pronunc iat ion ( l s t_o f_sense s ) :

for s ense in l s t_o f_sense s :
i f s ense [ ’ d e f i n i t i o n ’ ] [ 0 ] == ’ ( ’ :

r e . sub ( ’ \ ( . ∗ ? \ ) ’ , ’ ’ , s ense [ ’ d e f i n i t i o n ’ ] , count=1)
# p r i n t ’ wi thout pronunciat ion : ’ + repr ( l s t_of_senses )

return l s t_o f_sense s

@staticmethod
def get_mono_sense ( d e s c r i p t i o n ) :

def_and_pos = C o l l i n s P a r s e r . separate_def_and_pos ( d e s c r i p t i o n )
d e f i n i t i o n = def_and_pos [ 1 ]
i f not d e f i n i t i o n :

return [ ]
pos = def_and_pos [ 0 ]
return [ { ’ d e f i n i t i o n ’ : d e f i n i t i o n ,

’ pos ’ : pos } ]
pos_and_def_patt = re . compile (

’ ( . ∗ ) #6(n | adj | vb | t r | adv | i n t r | abbrev | p l | i n t e r j | prep | p r e f i x | determiner | pron | conj |
s u f f i x ) \ . ( . ∗ ) ’ ) # nopep8

@staticmethod
def separate_def_and_pos ( d e s c r i p t i o n ) :

" " " Return a t u p l e o f pos and d e f i n i t i o n o f a sense " " "
pos_and_def = C o l l i n s P a r s e r . pos_and_def_patt . s earch ( d e s c r i p t i o n )
i f pos_and_def :

pos , d e f i n i t i o n = pos_and_def . group (2 ) , pos_and_def . group (
1) + pos_and_def . group (3 )

else :
pos , d e f i n i t i o n = ’ unknown ’ , d e s c r i p t i o n
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d e f i n i t i o n = d e f i n i t i o n . s t r i p ( ’ . , ’ ) . s t r i p ( ) . r e p l a c e (
’#5 ’ , ’ ’ ) . r e p l a c e ( ’#4 ’ , ’ ’ ) . s t r i p ( ’ . ’ )

unnecessary = [ ’ ^#6[^ ] ∗ ’ , ’#1a ’ , ’#6 ’ ]
for patt in unnecessary :

d e f i n i t i o n = re . sub ( patt , ’ ’ , d e f i n i t i o n ) . s t r i p ( )
d e f i n i t i o n = re . sub ( ’@m. ∗ ’ , ’ ’ , d e f i n i t i o n ) . s t r i p ( ’ . ’ ) . s t r i p ( )
return pos , d e f i n i t i o n

@staticmethod
def get_mult ip le_senses ( d e s c r i p t i o n ) :

l s t = [ ]
def_part = ’ ’ # This c o r r e c t s unnecessary s p l i t t i n g
pos_for_mult ip le_senses = ’ unknown ’
for s ense in unicode . s p l i t ( d e s c r i p t i o n , ’#1$D ’ ) :

i f def_part :
s ense = def_part + sense

def_and_pos = C o l l i n s P a r s e r . separate_def_and_pos ( sense )
d e f i n i t i o n = def_and_pos [ 1 ]
i f not d e f i n i t i o n :

def_part = sense
continue

else :
def_part = ’ ’

pos = def_and_pos [ 0 ]
i f pos == ’ unknown ’ :

pos = pos_for_mult ip le_senses
else :

pos_for_mult ip le_senses = pos
l s t . append ({ ’ d e f i n i t i o n ’ : d e f i n i t i o n , ’ pos ’ : pos })

return l s t

i f __name__ == "__main__" :
C o l l i n s P a r s e r . p r i n t _ d e f i n i t i o n s ( C o l l i n s P a r s e r . p a r s e _ f i l e ( sys . argv [ 1 ] ) )

nszt_parser

The NSZTParser class processes an XML format of a single volume of A Magyar Nyelv
Nagyszótára, made available to the author by editor-in-chief Nóra Ittzés:
#! usr / bin / python
# −∗− coding : u t f−8 −∗−

import sys
import re
# import j son
import textwrap

class NSzTParser ( ) :
@staticmethod
def p r i n t _ d e f i n i t i o n s ( d e f i n i t i o n s ) :

# with open ( ’ magyar_out . j son ’ , ’w ’) as out :
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# json . dump(None , out )
# f o r s e c t i o n in d e f i n i t i o n s :
# i f s e c t i o n != None :
## p r i n t s e c t i o n
# with open ( ’ magyar_out . j son ’ , ’ a ’ ) as out :
# json . dump( sec t ion , out )

for s e c t i o n in d e f i n i t i o n s :
# i f s e c t i o n i s not None :
# p r i n t ’ s t a r t ’

print
# p r i n t " s e c t i o n : " + s t r ( s e c t i o n )

print s e c t i o n [ ’hw ’ ] . encode ( ’ ut f−8 ’ )
i f ’ r e d i r e c t ’ in s e c t i o n :

print textwrap . f i l l (
’ r e d i r e c t : ’ + s e c t i o n [ ’ r e d i r e c t ’ ] ,
i n i t i a l _ i n d e n t=’ ’ ,
subsequent_indent=’ ’ ) . encode ( ’ ut f−8 ’ )

i f ’ s e n s e s ’ in s e c t i o n :
for s ense in s e c t i o n [ ’ s e n s e s ’ ] :

i f ’ l a t i n ’ in s ense :
print textwrap . f i l l (
’ l a t i n : ’ + sense [ ’ l a t i n ’ ] ,
i n i t i a l _ i n d e n t=’ ’ ,
subsequent_indent=’ ’ ) . encode ( ’ ut f−8 ’ )

print textwrap . f i l l (
s ense [ ’ d e f i n i t i o n ’ ] ,
i n i t i a l _ i n d e n t=’ ’ ,
subsequent_indent=’ ’ ) . encode ( ’ ut f−8 ’ )

# p r i n t
# p r i n t ’ end ’

@staticmethod
def p a r s e _ f i l e ( i n p u t _ f i l e ) :

# f o r l i n e in i t e r ( open ( i n p u t _ f i l e ) ) :
for entry in re . f i n d i t e r ( ’<entry .+?<lemma>.+?</lemma>.∗?</ entry ’ ,

# avoid e n t r i e s with empty lemmas
open( i n p u t _ f i l e ) . read ( ) . decode ( ’ ut f−8 ’ ) . s t r i p ( ) ) :

y i e l d NSzTParser . parse_entry ( entry . group (0 ) )

@staticmethod
def parse_entry ( entry ) :

# p r i n t ’ type o f entry : ’ + s t r ( type ( entry ) )
# i f entry [ : 6 ] == ’< entry ’ :
# entry_dic t = { ’hw ’ : NSzTParser . get_hw ( entry ) ,
# ’ senses ’ : NSzTParser . get_senses ( entry ) }
# e l s e :
# entry_dic t = None
# i f entry [ : 8 ] == ’< entryxr ’ :
# entry_dic t [ ’ r e d i r e c t ’ ] = NSzTParser . get_xr ( entry )
# return entry_dic t

entry_dict = { ’hw ’ : NSzTParser . get_hw ( entry ) }
i f entry [ : 8 ] == ’<entryxr ’ :

entry_dict [ ’ r e d i r e c t ’ ] = NSzTParser . get_xr ( entry )
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else :
entry_dict [ ’ s e n s e s ’ ] = NSzTParser . get_senses ( entry )

# xr ?
return entry_dict

@staticmethod
def get_hw ( entry ) :

hw = re . s earch ( ’<lemma>(.+?)</lemma>’ , entry , re . S ) . group (1 )
tags = [ ’<hom>[1−9]</hom>’ , ’</?deduced>’ , ’</? r e f l e x >’ ]
for tag in tags :

hw = re . sub ( tag , ’ ’ , hw)
return hw

@staticmethod
def get_senses ( entry ) :

hw = NSzTParser . get_hw ( entry )
i f hw [ 0 ] == ’− ’ or hw[−1] == ’− ’ : # e l o t a g / uto tag

return [ { ’ d e f i n i t i o n ’ : NSzTParser . c l e a n _ d e f i n i t i o n ( re . s earch (
’<def >(.+?)</def>’ , entry ) . group (1 ) ) } ]

raw_sense_l i s t = re . f i n d a l l (
’<mainsens >.∗?<def >(.∗?)</def >.∗?</mainsens>’ , entry )

mod i f i ed_sense_l i s t = [ ]
for s ense in raw_sense_l i s t :

i f s ense != ’<same/> ’ :
mod i f i ed_sense_l i s t . append (

{ ’ d e f i n i t i o n ’ : NSzTParser . c l e a n _ d e f i n i t i o n ( sense ) })
i f ’<tr>’ in s ense :

mod i f i ed_sense_l i s t [ −1 ] [ ’ l a t i n ’ ] = NSzTParser . g e t_ la t in (
s ense )

return modi f i ed_sense_l i s t

@staticmethod
def get_xr ( entry ) :

r e d i r e c t = re . s earch ( ’<xr >(.+?)</xr>’ , entry ) . group (1 )
return re . sub ( ’<hom>[1−9]</hom>’ , ’ ’ , r e d i r e c t )

@staticmethod
def ge t_ la t in ( s ense ) :

l a t i n = re . search ( ’<tr >(.+?)</tr>’ , s ense ) . group (1 )
l a t i n = re . sub ( ’</?sub>’ , ’ ’ , l a t i n )
return l a t i n

@staticmethod
def c l e a n _ d e f i n i t i o n ( d e f i n i t i o n ) :

tags = [ ’ g l o s s ’ , ’ mention ’ , ’ syn ’ , ’ tr >.+?</ t r ’ , ’hom>[1−9]</hom ’ ,
’ sub ’ , ’ syn s p e c i a l ="no " ’ , ’mean ’ ]

for tag in tags :
d e f i n i t i o n = re . sub ( ’</? ’ + tag + ’> ’ , ’ ’ , d e f i n i t i o n )

d e f i n i t i o n = ’ ’ + d e f i n i t i o n
b e f o r e = [ ’</?hint>’ , ’<syn s p e c i a l =" semico lon"> ’ ,

’<syn s p e c i a l ="comma"> ’ , ’<syn s p e c i a l =" i l l "> ’ ,
’<syn s p e c i a l ="v"> ’ , ’ e s \ . ’ , ’ gyakr \ . ’ , ’ haszn \ . ’ , ’ i l l \ . ’ ,
’ kapcs \ . ’ , u ’ k\ x f 6 l \ . ’ , ’ rendsz \ . ’ , ’ r i t k \ . ’ , ’ v \ . ’ ,
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’ vonatk \ . ’ , u ’ \ x e 1 l t \ . ’ , ’ vm ’ , ’ vk i ’ , ’ mn ’ , ’ fn ’ , ’ p l . ’ ,
u ’ \ xfan . ’ , ’ {2 ,} ’ , ’ , ’ ]

a f t e r = [ ’ ’ , ’ ; ’ , ’ , ’ , ’ i l l e t v e ’ , ’ vagy ’ , ’ e s e t l e g ’ , ’ gyakran ’ ,
u ’ haszn \ x e 1 l t ’ , ’ i l l e t v e ’ , ’ k a p c s o l a t o s ’ , u ’ k\ x f c l \ xf6n \ x f6sen ’ ,
’ r e n d s z e r i n t ’ , u ’ r i t k \xe1bban ’ , ’ vagy ’ , u ’ vonatkoz \ xf3 ’ ,
u ’ \ x e 1 l t a l \xe1ban ’ , ’ valam ’ , ’ v a l a k i ’ , u ’ mel l \xe9kn\xe9v ’ , u ’ f \u0151n\

xe9v ’ ,
u ’ p\ xe9 ld \ xe1ul ’ , u ’ \ x fagyneveze t t ’ , ’ ’ , ’ , ’ ]

# p l a c e s o f l a s t two items are important
for b , a in zip ( be fore , a f t e r ) :

d e f i n i t i o n = re . sub (b , a , d e f i n i t i o n )

# d e f i n i t i o n = re . sub ( ’</? hint > ’ , ’ ’ , d e f i n i t i o n )
# d e f i n i t i o n = re . sub (’<syn s p e c i a l ="semicolon " > ’ , ’ ; ’ , d e f i n i t i o n )
# d e f i n i t i o n = re . sub (’<syn s p e c i a l ="comma" > ’ , ’ , ’ , d e f i n i t i o n )
# d e f i n i t i o n = re . sub (’<syn s p e c i a l =" i l l " > ’ , ’ i l l e t v e ’ , d e f i n i t i o n )
# d e f i n i t i o n = re . sub ( ’ {2 ,} ’ , ’ ’ , d e f i n i t i o n )
# d e f i n i t i o n = re . sub ( ’ , ’ , ’ , ’ , d e f i n i t i o n )

return d e f i n i t i o n . s t r i p ( )

@staticmethod
def sub ( s t r i n g , pattern , r e p l ) :

pass

i f __name__ == "__main__" :
for i n p u t _ f i l e in sys . argv [ 1 : ] :

NSzTParser . p r i n t _ d e f i n i t i o n s ( NSzTParser . p a r s e _ f i l e ( i n p u t _ f i l e ) )

eksz_parser

Finally, the EKSZParser class processes an interim format ofMagyar Értelmező Kéziszótár,
created by Márton Miháltz:
#!/ usr / bin /env python
# Module f o r reading Longman XML and producing JSON output

import j s on
import sys

from xml_parser import XMLParser

a s s e r t j son # s i l e n c e p y f l a k e s

u ’ \ xe1rv \ xedzt \ u0171r \u0151 t \ xfck \ x f 6 r f \ x f a r \ xf3g \xe9p\n ’

class EkszParser ( XMLParser ) :
a b b r e v i a t i o n s = [

(u "mo.− i " , u ’ magyarorsz \ xe1g i ’ ) ,
(u "Mo.−on " , u ’ Magyarorsz \xe1gon ’ ) ,
(u "Mo.−hoz " , u ’ Magyarorsz \ xe1ghoz ’ ) ,
(u "Mo. " , u ’ Magyarorsz \ xe1g ’ ) ,
(u " bp.− i " , u " budapest i " ) ,
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(u " vonatk . " , u " vonatkoz \ xf3 " ) ,
(u " vki " , u " v a l a k i " ) ,
(u " Vki " , u " Valaki " ) ,
(u " vmi " , u " valami " ) ,
(u "Vmi" , u " Valami " ) ,
(u " vhol " , u " v a l a h o l " ) ,
(u " Vhol " , u " Valahol " ) ,
(u " vhonnan " , u " valahonnan " ) ,
(u " Vhonnan " , u " Valahonnan " ) ,
(u " vmely " , u " valamely " ) ,
(u " Vmely " , u " Valamely " ) ,
(u " vmilyen " , u " va lami lyen " ) ,
(u " Vmilyen " , u " Valamilyen " ) ,
(u " kapcs . " , u " k a p c s o l a t o s " ) ,
(u " k i f−" , u " k i f e j e z \ xe9s " ) ,
(u " haszn . " , u " haszn \ x e 1 l t " ) ,
(u " . , " , u " ; " ) ,
(u " . ; " , u " ; " ) ,
(u " . . " , u " . " ) ,
(u " . a . " , u " a . " ) , # a s i n g l e l i n e in the data
(u " sz .− " , u " sz \ xe1zad " ) ,
(u " sz \ xf3haszn−\xe1ban " , u " sz \ xf3haszn \ x e 1 l a t \xe1ban " ) ,
(u " (Na2SO4 .10H2O) " , u " " ) ,
(u " (CaSO4 . 2H2O) " , u " " ) ,
(u " MgSO4. 7H2O" , u " " ) ,
(u " KAlSO42 .12H2O" , u " " ) ,
(u " jan . " , u " janu \ xe1r " ) ,
(u " J\ xfan .− " , u " J\ x f a n i u s " ) ,
(u " j \ xfan .− " , u " j \ x f a n i u s " ) ,
(u " aug . " , u " augusztus " ) ,
(u " s zept .− " , u " szeptember " ) ,
(u " okt .− " , u " okt \ x f3ber " ) ,
(u " dec . " , u " december " ) ,
(u "h . : " , u " hogy : " ) ,
(u " h . " , u " h e l y e t t " ) ,
(u " f i l m . a " , u " f i l m a " ) ,

]

@staticmethod
def parse_headword ( sense ) :

hw = EkszParser . ge t_sect ion ( "LEMMA" , sense )
hom_num = int ( EkszParser . ge t_sect ion ( "HOM" , hw) )
hw = EkszParser . remove_sect ions ( "HOM" , hw)
return hw, hom_num

@staticmethod
def c l e a n _ d e f i n i t i o n (d) :

for a , b in EkszParser . a b b r e v i a t i o n s :
d = d . r e p l a c e ( a , b)

return d

@staticmethod
def parse_sense ( s ense ) :

hw, hom_num = EkszParser . parse_headword ( sense )
d e f i n i t i o n = EkszParser . ge t_sect ion ( ’DEF ’ , s ense )
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d e f i n i t i o n = EkszParser . c l e a n _ d e f i n i t i o n ( d e f i n i t i o n )
pos = EkszParser . ge t_sect ion ( ’POS ’ , s ense )
return hw, hom_num, pos , d e f i n i t i o n

@staticmethod
def g e t _ e n t r i e s ( xml_text ) :

completed_hws = set ( )
curr_hw = None
curr_pos = None
curr_senses = [ ]
for s ense in EkszParser . i t e r _ s e c t i o n s ( "SENSE" , xml_text ) :

hw, hom_num, pos , d e f i n i t i o n = EkszParser . parse_sense ( s ense )
i f hom_num > 1 :

continue # temporary s o l u t i o n
i f curr_hw i s None : # f i r s t l i n e

curr_hw = hw
e l i f curr_hw != hw :

i f hw in completed_hws :
sys . s t d e r r . wr i t e (

"INPUT NOT SORTED BY HW: {0}\n " . format (hw) . encode (
’ ut f−8 ’ ) )

sys . e x i t (−1)
else :

completed_hws . add (hw)

y i e l d {
"hw" : curr_hw ,
" pos " : curr_pos i f curr_pos i s not None else pos ,
" s e n s e s " : curr_senses }

curr_pos = pos # we ’ l l use the pos o f the f i r s t occurence
curr_hw = hw
curr_senses = [ ]

curr_senses . append ({ " d e f i n i t i o n " : d e f i n i t i o n })
y i e l d {

"hw" : curr_hw ,
" pos " : curr_pos i f curr_pos i s not None else pos ,
" s e n s e s " : curr_senses }

@staticmethod
def parse_xml ( xml_text ) :

" " " Give i tems o f generator o f " Entry " s t r i n g s in xml_text to
’ parse_entry ’ method one by one . " " "
for entry in EkszParser . g e t _ e n t r i e s ( xml_text ) :

y i e l d entry

@staticmethod
def pr int_de f s ( eksz_obj ) :

for entry in eksz_obj :
for s ense in entry [ ’ s e n s e s ’ ] :

print u " {0}\ t {1} " . format (
entry [ ’hw ’ ] , s ense [ ’ d e f i n i t i o n ’ ] ) . encode ( " utf−8" )
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i f __name__ == "__main__" :
# EkszParser . pr in t_de f s ( EkszParser . p a r s e _ f i l e ( sys . argv [ 1 ] ) )
with open( sys . argv [ 2 ] , ’w ’ ) as o u t _ f i l e :

j s on . dump( l i s t ( EkszParser . p a r s e _ f i l e ( sys . argv [ 1 ] ) ) , o u t _ f i l e )

7.4.2 Preprocessing entries

The output from parsing dictionary data is passed to the EntryPreprocessor module,
which performs various steps that clean and simplify data before it is passed to external
syntactic parsers. This module defines a list of regex patterns to be removed or replaced
in definitions, and each pattern can be associated with one or more flags that are added to
the entry if a replacement took place. It is therefore straightforward to define, given a new
datasource, rules that will e.g. remove the string of person from a definition and simulta-
neously add the flag person to the entry being processed. The preprocessor also performs
sentence tokenization (via nltk.punkt) and by default keeps only the first sentence of the
first definition for each headword (but see Section 7.9 on how to change this).
from c o l l e c t i o n s import d e f a u l t d i c t
import l o g g i n g
import re

from unidecode import unidecode

from hunmisc . x s t r i n g . encoding import encode_to_proszeky
import n l tk . data

a s s e r t logg ing , unidecode # s i l e n c e p y f l a k e s

class EntryPreprocessor ( ) :
word_replacement_pairs = [

( re . compile ( patt , re .UNICODE) , r e p l ) for patt , r e p l in [
(u ’ / ’ , u ’_PER_’ ) , (u ’ \? ’ , u ’_Q_’ ) , (u ’ \ . ’ , u ’_P_’ ) ,
(u ’ \( ’ , u ’_LRB_’ ) , (u ’ \) ’ , u ’_RRB_’ ) ] ]

def_replacement_pairs = [
( re . compile ( patt , re .UNICODE) , rep l , f l a g s ) for patt , r ep l , f l a g s in [

(u ’ ( [ ^ , ] ) e t c ’ , u ’ \\1 , e t c ’ , ( ) ) , # comma b e f o r e e t c .
(u ’ someone or something that i s ’ , u ’ ’ , ( ) ) ,
(u ’ someone or something that ’ , u ’ ’ , ( ) ) ,
(u ’ someone who i s ’ , u ’ ’ , ( ’ person ’ , ) ) ,
(u ’ someone who ’ , u ’ ’ , ( ’ person ’ , ) ) ,
(u ’ someone whose job i s ’ , u ’ ’ , ( ’ person ’ , ) ) ,
(u ’ ^someone ’ , u ’ ’ , ( ’ person ’ , ) ) ,
(u ’ ( ∗) a kind o f ’ , u ’ \\1a ’ , ( ) ) ,
(u ’ ( ∗) a type o f ’ , u ’ \\1a ’ , ( ) ) ,
(u ’=’ , u ’ ’ , ( ) ) ,

] ]

@staticmethod
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def clean_headword ( word ) :
c l ean = encode_to_proszeky ( word )
# clean = unidecode ( c lean ) #w i l l map d i f f e r e n t words t o g e t h e r !
for pattern , replacement in EntryPreprocessor . word_replacement_pairs : # nopep8

c l ean = pattern . sub ( replacement , c l ean )
return c l ean

def __init__ ( s e l f , c f g ) :
s e l f . c f g = c f g
for package in ( ’ stopwords ’ , ’ punkt ’ ) :

n l tk . download ( package , q u i e t=True )
s e l f . s ent_detector = n l tk . data . load ( ’ t o k e n i z e r s /punkt/ e n g l i s h . p i c k l e ’ )
s e l f . word_counter = d e f a u l t d i c t ( int )

def preprocess_word ( s e l f , orig_word , o r i g _ d e f i n i t i o n=None ) :
word = EntryPreprocessor . clean_headword ( orig_word )
return word , set ( )

def p r e p r o c e s s _ d e f i n i t i o n ( s e l f , o r i g _ d e f i n i t i o n , word ) :
a l l _ f l a g s = set ( )
i f o r i g _ d e f i n i t i o n i s None :

return o r i g _ d e f i n i t i o n , a l l _ f l a g s
d e f i n i t i o n = s e l f . s ent_detector . t o k e n i z e ( o r i g _ d e f i n i t i o n ) [ 0 ]
for pattern , replacement , f l a g s in EntryPreprocessor . def_replacement_pairs : #

nopep8
i f pattern . search ( d e f i n i t i o n ) :

a l l _ f l a g s |= set ( f l a g s )
d e f i n i t i o n = pattern . sub ( replacement , d e f i n i t i o n )

return d e f i n i t i o n , a l l _ f l a g s

def preprocess_entry ( s e l f , entry ) :
i f s e l f . c f g . getboo lean ( ’ f i l t e r ’ , ’ f i r s t _ o n l y ’ ) :

entry [ ’ s e n s e s ’ ] = entry [ ’ s e n s e s ’ ] [ : 1 ]
entry [ ’ t o _ f i l t e r ’ ] = s e l f . t o _ f i l t e r ( entry [ ’hw ’ ] )
i f entry [ ’ t o _ f i l t e r ’ ] :

return entry
entry [ ’hw ’ ] , entry [ ’ word_flags ’ ] = s e l f . preprocess_word ( entry [ ’hw ’ ] )
entry [ ’ word_flags ’ ] = sorted ( l i s t ( entry [ ’ word_flags ’ ] ) )
for s ense in entry [ ’ s e n s e s ’ ] :

s ense [ ’ d e f i n i t i o n ’ ] , s ense [ ’ f l a g s ’ ] = s e l f . p r e p r o c e s s _ d e f i n i t i o n (
sense [ ’ d e f i n i t i o n ’ ] , entry [ ’hw ’ ] )

s ense [ ’ f l a g s ’ ] = sorted ( l i s t ( s ense [ ’ f l a g s ’ ] ) )

return entry

def t o _ f i l t e r ( s e l f , word , d e f i n i t i o n=None ) :
i f ’ ’ in word and not s e l f . c f g . getboo lean (

’ f i l t e r ’ , ’ keep_multiword ’ ) :
return True

i f " ’ " in word and not s e l f . c f g . getboo lean (
’ f i l t e r ’ , ’ keep_apostrophes ’ ) :

return True
return False
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7.4.3 Parsing definitions

Definitions returned by EntryPreprocessor are passed to one of two external tools for
dependency parsing: the Stanford Parser for English definitions and the magyarlanc
tool for Hungarian, both accessed via the python wrappers stanford_wrapper.py and
magyarlanc_wrapper.py. Both wrappers use the Subprocess module to launch exter-
nal tools; magyarlanc is launched directly and the Stanford Parser is used via a Jython
wrapper.

Parser wrappers

Since the dict_to_4lang module requires access to the Stanford Parser’s API (see below
for details), a wrapper (stanford_parser.py) was written in Jython, a Java implemen-
tation of the Python interpreter that allows direct access to Java classes from Python
code. Access to the Stanford Parser API is necessary to pass custom constraints to the
parser before processing sentences, limiting the types of possible parse trees. Currently
this feature is used to enforce that dictionary definitions of nouns get parsed as noun
phrases (NPs). When using the parse_definitions function for parsing, part-of-speech
tags for each entry are passed to the get_constraints function, which returns a list of
ParserConstraint instances – currently a list of length 0 or 1 (more ParserConstraints
can be created from regex Patterns).
import j s on
import l o g g i n g
import math
import os
import sys
from t e m p f i l e import NamedTemporaryFile

p a r s e r = sys . argv [ 1 ]
sys . path . append ( p ar s e r )
sys . path . append ( os . path . j o i n ( os . path . dirname ( pa r s e r ) , ’ ejml −0.23. j a r ’ ) )

from edu . s t a n f o r d . nlp . p r o c e s s import Morphology , PTBTokenizer , WordTokenFactory
from edu . s t a n f o r d . nlp . p a r s e r . common import Parse rConst ra int
from edu . s t a n f o r d . nlp . p a r s e r . l e x p a r s e r import Options
from edu . s t a n f o r d . nlp . p a r s e r . l e x p a r s e r import L e x i c a l i z e d P a r s e r
from edu . s t a n f o r d . nlp . l i n g import Sentence
from edu . s t a n f o r d . nlp . t r e e s import PennTreebankLanguagePack

from java . i o import Str ingReader
from java . u t i l . regex import Pattern

class StanfordParser :

@staticmethod
def g e t _ c o n s t r a i n t s ( sentence , pos ) :
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c o n s t r a i n t s = [ ]
l ength = len ( sentence )
i f pos == ’n ’ :

c o n s t r a i n t s . append (
Parse rConst ra int (0 , length , Pattern . compile ( "NP. ∗ " ) ) )

return c o n s t r a i n t s

def __init__ ( s e l f , p a r s e r _ f i l e ,
parser_opt ions =[ ’−maxLength ’ , ’ 80 ’ ,

’−reta inTmpSubcategor ies ’ ] ) :

" " " @param p a r s e r _ f i l e : path to the s e r i a l i s e d parser model
( e . g . englishPCFG . ser . gz )

@param parser_opt ions : op t ions
" " "

a s s e r t os . path . e x i s t s ( p a r s e r _ f i l e )
opt ions = Options ( )
opt ions . se tOpt ions ( parser_opt ions )
s e l f . lp = L e x i c a l i z e d P a r s e r . getParserFromFi le ( p a r s e r _ f i l e , opt ions )
t l p = PennTreebankLanguagePack ( )
s e l f . g s f = t l p . grammatica lStructureFactory ( )
s e l f . lemmer = Morphology ( )
s e l f . word_token_factory = WordTokenFactory ( )
s e l f . parser_query = None

def t o k e n i z e ( s e l f , t ex t ) :
r eader = Str ingReader ( t ex t )
t o k e n i s e r = PTBTokenizer ( reader , s e l f . word_token_factory , None )
tokens = t o k e n i s e r . t o k e n i z e ( )
return tokens

def get_parse ( s e l f , s entence ) :
tokens = [ unicode ( x ) for x in s e l f . t o k e n i z e ( sentence ) ]
parse = s e l f . lp . apply ( Sentence . toWordList ( tokens ) )
return parse

def get_grammatical_structure ( s e l f , parse ) :
return s e l f . g s f . newGrammaticalStructure ( parse )

def get_kbest ( s e l f , query , k=3) :
for candidate_tree in query . getKBestPCFGParses ( k ) :

parse = candidate_tree . object ( )
prob = math . e ∗∗ candidate_tree . s c o r e ( )
y i e l d prob , parse

def parse ( s e l f , s entence ) :
return s e l f . parse_with_constra ints ( sentence , None )

def parse_with_constra ints ( s e l f , sentence , c o n s t r a i n t s ) :
# l o g g i n g . debug (" g e t t i n g query . . . " )
query = s e l f . lp . parserQuery ( )
i f c o n s t r a i n t s i s not None :

query . s e t C o n s t r a i n t s ( c o n s t r a i n t s )
# l o g g i n g . debug (" t o k e n i z i n g . . . " )
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toks = s e l f . t o k e n i z e ( sentence )
# l o g g i n g . debug (" running parse . . . " )
query . parse ( toks )
# l o g g i n g . debug (" g e t t i n g b e s t . . . " )
parse = query . getBestParse ( )
# l o g g i n g . debug (" g e t t i n g gs . . . " )
gs = s e l f . get_grammatical_structure ( parse )
# dependencies = gs . typedDependenciesCol lapsed ()
dependenc ies = gs . typedDependenciesCCprocessed ( )
return parse , gs , dependenc ies

def parse_sens ( s e l f , i n _ f i l e , out_f i l e , l og=False ) :
l o g g i n g . debug ( " read ing input . . . " )
with open( i n _ f i l e ) as in_obj :

sens = j son . load ( in_obj )
parsed_sens = [ ]
i f l og :

l o g _ f i l e = NamedTemporaryFile ( dir=" /tmp" , d e l e t e=Fal se )
for c , s entence in enumerate( sens ) :

i f l og and c % 100 == 0 :
l o g _ f i l e . wr i t e ( " parsed {0} s e n t e n c e s \n " . format ( c ) )
l o g _ f i l e . f l u s h ( )

parse , _, dependenc ies = s e l f . parse ( sentence )

dep_str ings = map( unicode , dependenc ies )
parsed_sens . append ({

’ sen ’ : sentence ,
’ deps ’ : dep_str ings })

with open( out_f i l e , ’w ’ ) as out :
j son . dump( parsed_sens , out )

def p a r s e _ d e f i n i t i o n s ( s e l f , i n _ f i l e , o u t _ f i l e ) :
with open( i n _ f i l e ) as in_obj :

l o g g i n g . i n f o ( " l oad ing input . . . " )
e n t r i e s = j son . load ( in_obj )
l o g g i n g . i n f o ( " done ! " )

with NamedTemporaryFile ( dir=" /tmp" , d e l e t e=Fal se ) as l o g _ f i l e :
l o g g i n g . i n f o ( ’ l o g g i n g to {0} ’ . format ( l o g _ f i l e . name) )
for c , entry in enumerate( e n t r i e s ) :

# l o g _ f i l e . wr i t e (
# ’ entry : {0}\n ’ . format ( entry [ ’ hw ’ ] ) . encode ( ’ u t f −8 ’) )
# l o g _ f i l e . f l u s h ()
i f c % 100 == 0 :

l o g _ f i l e . wr i t e ( " parsed {0} e n t r i e s \n " . format ( c ) )
l o g _ f i l e . f l u s h ( )

for s ense in entry [ ’ s e n s e s ’ ] :
s entence = sense [ ’ d e f i n i t i o n ’ ]
i f sentence i s None :

continue
# sentence += ’ . ’ # f i x e s some parses and ru ins o t h e r s
pos = sense [ ’ pos ’ ]
c o n s t r a i n t s = StanfordParser . g e t _ c o n s t r a i n t s ( sentence , pos )
try :

parse , _, dependenc ies = s e l f . parse_with_constra ints (
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sentence , c o n s t r a i n t s )
except :

sys . s t d e r r . wr i t e (
u ’ parse f a i l e d on sentence : {0} ’ . format (

sentence ) . encode ( ’ ut f−8 ’ ) )
dep_str ings = [ ]

else :
dep_str ings = map( unicode , dependenc ies )

s ense [ ’ d e f i n i t i o n ’ ] = {
’ sen ’ : sentence ,
’ deps ’ : dep_str ings }

with open( out_f i l e , ’w ’ ) as out :
j son . dump( e n t r i e s , out )

def t e s t ( ) :
l o g g i n g . warning ( " running te s t , not main ! " )
p a r s e r = StanfordParse r ( sys . argv [ 2 ] )

# dv_model = parser . l p . reranker . getModel ( )
# p r i n t dv_model

# sentence = ’ the s i z e o f a radio wave used to broadcas t a radio s i g n a l ’
sentence = ’ a man whose job i s to persuade people to buy h i s company \ ’ s \

products . ’
pos = ’n ’
parse , gs , dependenc ies = p a r s e r . parse_with_constra ints (

sentence , Stan fordParse r . g e t _ c o n s t r a i n t s ( sentence , pos ) )

print type ( parse ) , type ( gs )
print parse . pennPrint ( )
print " \n " . j o i n (map( str , dependenc ies ) )

def main ( ) :
p a r s e r _ f i l e , i n _ f i l e , out_f i l e , i s_def s , l o g l e v e l = sys . argv [ 2 : 7 ]
l o g g i n g . bas i cCon f i g (

l e v e l=int ( l o g l e v e l ) ,
format="%(asct ime ) s : " +
"%(module ) s (%( l i n e n o ) s ) − %(levelname ) s − %(message ) s " )

l o g g i n g . i n f o ( " i n i t i a l i z i n g pa r s e r . . . " )
p a r s e r = StanfordParse r ( p a r s e r _ f i l e )
l o g g i n g . i n f o ( " done ! " )
i f int ( i s _ d e f s ) :

p a r s e r . p a r s e _ d e f i n i t i o n s ( i n _ f i l e , o u t _ f i l e )
else :

p a r s e r . parse_sens ( i n _ f i l e , o u t _ f i l e )

i f __name__ == "__main__" :
main ( )
# t e s t ( )

The Jython module stanford_parser.py is not to be confused with the python module
stanford_wrapper.py: the latter can be imported by any Python application and will
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launch a Jython session running the former.
from Conf igParser import Conf igParser
import j s on
import l o g g i n g
import os
import r e q u e s t s
import subproces s
from subproces s import Popen , PIPE
import sys
from t e m p f i l e import NamedTemporaryFile

from u t i l s import ensure_dir

class StanfordWrapper ( ) :

http_request_headers = {
’ Content−type ’ : ’ a p p l i c a t i o n / j son ’ , ’ Accept ’ : ’ t ex t / p l a i n ’ }

class ParserError ( Exception ) :
pass

def __init__ ( s e l f , c fg , i s _ s e r v e r=False ) :
s e l f . c f g = c f g
remote = s e l f . c f g . getboo lean ( ’ s t a n f o r d ’ , ’ remote ’ )
i f i s _ s e r v e r or not remote :

s e l f . get_stanford_paths ( )
i f i s _ s e r v e r :

# used as s e r v e r
s e l f . s t a r t _par s e r ( )
s e l f . parse_sentences = s e l f . parse_sentences_server

else :
# standalone , us ing jy thon
s e l f . get_jython_paths ( )
s e l f . parse_sentences = s e l f . par se_sentences_loca l

else :
# used as c l i e n t
s e l f . s e rve r_ur l = s e l f . c f g . get ( ’ s t a n f o r d ’ , ’ u r l ’ )
s e l f . parse_sentences = s e l f . parse_sentences_remote

def get_stanford_paths ( s e l f ) :
s e l f . s tan fo rd_di r = s e l f . c f g . get ( ’ s t a n f o r d ’ , ’ d i r ’ )
parser_fn = s e l f . c f g . get ( ’ s t a n f o r d ’ , ’ pa r s e r ’ )
s e l f . model_fn = s e l f . c f g . get ( ’ s t a n f o r d ’ , ’ model ’ )
s e l f . parser_path = os . path . j o i n ( s e l f . s tanford_dir , parser_fn )
s e l f . model_path = os . path . j o i n ( s e l f . s tanford_dir , s e l f . model_fn )
i f not ( os . path . e x i s t s ( s e l f . parser_path ) and

os . path . e x i s t s ( s e l f . model_path ) ) :
raise Exception ( " cannot f i n d p ar s e r and model f i l e s ! " )

def get_jython_paths ( s e l f ) :
s e l f . jython_path = s e l f . c f g . get ( ’ s t a n f o r d ’ , ’ jython ’ )
i f not os . path . e x i s t s ( s e l f . jython_path ) :

raise Exception ( " cannot f i n d jython executab l e ! " )

s e l f . jython_module = os . path . j o i n (
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os . path . dirname ( __file__ ) , " s tan ford_parse r . py " )

s e l f . tmp_dir = s e l f . c f g . get ( ’ data ’ , ’ tmp_dir ’ )
ensure_dir ( s e l f . tmp_dir )

def s ta r t_par s e r ( s e l f ) :
command = [

’ java ’ , ’−mx1500m ’ , ’−cp ’ , ’ {0}/∗ : ’ . format ( s e l f . s tan fo rd_di r ) ,
’ edu . s t a n f o r d . nlp . p a r s e r . l e x p a r s e r . L e x i c a l i z e d P a r s e r ’ ,
’−outputFormat ’ , ’ typedDependenciesCol lapsed ’ ,
’−s e n t e n c e s ’ , ’ newl ine ’ ,
’ edu/ s t a n f o r d / nlp / models / l e x p a r s e r /{0} ’ . format ( s e l f . model_fn ) ,
’− ’ ]

l o g g i n g . i n f o (
" s t a r t i n g s t a n f o r d p ar s e r with t h i s command : {0} " . format (

’ ’ . j o i n (command) ) )

s e l f . par se r_proces s = Popen (command , s t d i n=PIPE , stdout=PIPE)

def parse_sentences_server ( s e l f , sens , d e f i n i t i o n s=False ) :
parsed_sens = [ ]
for c , s entence in enumerate( sens ) :

parsed_sens . append ({ ’ sen ’ : sentence , ’ deps ’ : [ ] } )
# l o g g i n g . i n f o ( ’ w r i t i n g to s t d i n . . . ’ )
s e l f . par se r_proces s . s t d i n . wr i t e ( sentence+’ \n ’ )
s e l f . par se r_proces s . s t d i n . f l u s h ( )

# l o g g i n g . i n f o ( ’ reading from s t d o u t . . . ’ )
l i n e = s e l f . par se r_proces s . s tdout . r e a d l i n e ( ) . s t r i p ( )
while l i n e :

# l o g g i n g . i n f o ( ’ read t h i s : {0} ’ . format ( repr ( l i n e ) ) )
i f l i n e == ’ ’ :

break
parsed_sens [ −1 ] [ ’ deps ’ ] . append ( l i n e . s t r i p ( ) )
l i n e = s e l f . par se r_proces s . s tdout . r e a d l i n e ( ) . s t r i p ( )

# l o g g i n g . i n f o ( ’ re turn ing parsed sens ’)
return parsed_sens

def c r e a t e _ i n p u t _ f i l e ( s e l f , s entences , token ) :
s e n _ f i l e = NamedTemporaryFile (

dir=s e l f . tmp_dir , p r e f i x=token , d e l e t e=False )
for sen in s e n t e n c e s :

# need to add a per iod so the Stanford Parser knows where
# sentence boundaries are . There shou ld be a smarter way . . .
s e n _ f i l e . wr i t e (

u " {0}\n " . format ( sen [ ’ sen ’ ] ) . encode ( ’ ut f−8 ’ ) )

return s e n _ f i l e . name

def run_parser ( s e l f , i n _ f i l e , out_f i l e , d e f i n i t i o n s ) :
return_code = subproces s . c a l l ( [

s e l f . jython_path , s e l f . jython_module , s e l f . parser_path ,
s e l f . model_path , i n _ f i l e , out_f i l e , str ( int ( d e f i n i t i o n s ) ) ,
str ( l o g g i n g . getLogger (__name__) . g e t E f f e c t i v e L e v e l ( ) ) ] )
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return return_code == 0

def parse_sentences_old ( s e l f , s e n t e n c e s ) :
" " " sentences shou ld be a l i s t o f d i c t i o n a r i e s , each with a " sen " key
whose va lue w i l l be parsed , a " deps " key whose va lue i s a l i s t f o r
c o l l e c t i n g dependencies , and a " pos " key t h a t may map to c o n s t r a i n t s on
the parse " " "
with NamedTemporaryFile ( dir=s e l f . tmp_dir , d e l e t e=Fal se ) as i n _ f i l e :

j s on . dump( sentences , i n _ f i l e )
in_file_name = i n _ f i l e . name

with NamedTemporaryFile ( dir=s e l f . tmp_dir , d e l e t e=Fal se ) as o u t _ f i l e :
s u c c e s s = s e l f . run_parser ( in_file_name , o u t _ f i l e . name)
i f not s u c c e s s :

l o g g i n g . c r i t i c a l (
" jython returned non−zero e x i t code , abor t ing " )

raise StanfordWrapper . ParserError ( )
parsed_sentences = j son . load ( o u t _ f i l e )

s e n t e n c e s . update ( parsed_sentences )
return True

def parse_sentences_remote ( s e l f , e n t r i e s , d e f i n i t i o n s=False ) :
req = r e q u e s t s . get (

s e l f . s e rver_ur l , data=j son . dumps( e n t r i e s ) ,
headers=StanfordWrapper . http_request_headers )

return j s on . l oads ( req . t ex t )

def parse_sentences_loca l ( s e l f , e n t r i e s , d e f i n i t i o n s=False ) :
with NamedTemporaryFile ( dir=s e l f . tmp_dir , d e l e t e=Fal se ) as i n _ f i l e :

j s on . dump( e n t r i e s , i n _ f i l e )
in_file_name = i n _ f i l e . name

l o g g i n g . i n f o ( "dumped input to {0} " . format ( in_file_name ) )

with NamedTemporaryFile ( dir=s e l f . tmp_dir , d e l e t e=Fal se ) as o u t _ f i l e :
out_file_name = o u t _ f i l e . name
l o g g i n g . i n f o ( " w r i t i n g par s e s to {0} " . format ( out_file_name ) )
s u c c e s s = s e l f . run_parser ( in_file_name , out_file_name , d e f i n i t i o n s )

i f not s u c c e s s :
l o g g i n g . c r i t i c a l (

" jython returned non−zero e x i t code , abor t ing " )
raise StanfordWrapper . ParserError ( )

l o g g i n g . debug ( " read ing output . . . " )
with open( out_file_name ) as o u t _ f i l e :

new_entries = j son . load ( o u t _ f i l e )

return new_entries

def main_flask ( wrapper ) :
from f l a s k import Flask , request , Response
app = Flask (__name__)

@app . route ( " / " )
def h e l l o ( ) :
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sens = reques t . get_json ( )
# l o g g i n g . i n f o ( ’ go t t h i s : {0} ’ . format ( sens ) )
parsed_sens = wrapper . parse_sentences ( sens )
# l o g g i n g . i n f o ( ’ re turn ing response . . . ’ )
# l o g g i n g . i n f o ( ’ re turn ing t h i s : {0} ’ . format ( parsed_sens ) )
return Response ( j son . dumps( parsed_sens ) , mimetype=’ a p p l i c a t i o n / j son ’ )

app . run ( )

TEST_DATA = [
( " rawhide " , " l e a t h e r that i s in i t s natura l s t a t e " , " n " ) ,
( " playback " , " the playback o f a tape that you have recorded i s when you play i t on a

machine in order to watch or l i s t e n to i t " , " n " ) , # nopep8
( " playhouse " , " a t h e a t r e − used in the name o f t h e a t r e s " , " n " ) ,
( " extent " , " used to say how true something i s or how great an e f f e c t or change i s " , "

n " ) , # nopep8
( " ind igenous " , " ind igenous people or t h i n g s have always been in the p lace where they

are , r a t h e r than being brought the re from somewhere e l s e " , "n " ) , # nopep8
( " o f f−s t r e e t " , " p l a c e s f o r parking that are not on p u b l i c s t r e e t s " , " n " ) ,
( " ha l f−c a s t e " , " a very o f f e n s i v e word f o r someone whose parents are o f d i f f e r e n t

r a c e s . " , " n " ) , # nopep8
( " concordant " , " be ing in agreement or having the same r e g u l a r pattern " , " n " ) , #

nopep8
( " groundsman " , " a man whose job i s to take care o f a l a r g e garden or s p o r t s f i e l d " , "

n " ) # nopep8
]
def t e s t ( wrapper ) :

e n t r i e s = [ { "hw" : w,
" s e n s e s " : [ {

" d e f i n i t i o n " : d , " pos " : " a " i f n else ’ a ’ , " f l a g s " : [ ] } ] }
for w, d , n in TEST_DATA]

e n t r i e s += [ {
"hw" : "wombat" ,
" s e n s e s " : [ {

" d e f i n i t i o n " : " an Aust ra l i an animal l i k e a smal l bear whose bab ie s \
l i v e in a pocket o f sk in on i t s body " ,

" pos " : "n " ,
" f l a g s " : [ ] } ] } ]

par sed_entr i e s = wrapper . parse_sentences (
e n t r i e s , d e f i n i t i o n s=True )

print j s on . dumps( par sed_entr i e s )

def main ( ) :
l o g g i n g . bas i cCon f i g (

l e v e l=l o g g i n g . INFO,
format="%(asct ime ) s : " +
"%(module ) s (%( l i n e n o ) s ) − %(levelname ) s − %(message ) s " )

c f g _ f i l e = ’ conf / d e f a u l t . c f g ’ i f len ( sys . argv ) < 2 else sys . argv [ 1 ]
c f g = Conf igParser ( )
c f g . read ( [ c f g _ f i l e ] )

wrapper = StanfordWrapper ( c f g )
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t e s t ( wrapper )

i f __name__ == ’__main__ ’ :
main ( )

The magyarlanc library is run directly as a subprocess launched by the Magyarlanc
class, which also processes the parser’s output to obtain dependencies as well as morpho-
logical information.
import l o g g i n g
import os
import subproces s
from Str ingIO import Str ingIO
import sys
from t e m p f i l e import NamedTemporaryFile
import t raceback

from hunmisc . c o r p u s t o o l s . t sv_too l s import s entence_i t e ra to r , get_dependencies

class Magyarlanc ( ) :
def __init__ ( s e l f , c f g ) :

s e l f . j a rpath = c f g . get ( ’ magyarlanc ’ , ’ j a r ’ )
s e l f . magyarlanc_dir = c f g . get ( ’ magyarlanc ’ , ’ d i r ’ )
s e l f . tmp_dir = c f g . get ( ’ data ’ , ’ tmp_dir ’ )

def dump_entries ( s e l f , e n t r i e s ) :
l o g g i n g . i n f o ( ’ dumping to f i l e . . . ’ )
with NamedTemporaryFile ( dir=s e l f . tmp_dir , d e l e t e=Fal se ) as i n _ f i l e :

for e in e n t r i e s :
d e f i n i t i o n = e [ ’ s e n s e s ’ ] [ 0 ] [ ’ d e f i n i t i o n ’ ]
d e f i n i t i o n = d e f i n i t i o n . r e p l a c e ( ’ i . e . ’ , ’ i . e . ’ ) # TODO
i n _ f i l e . wr i t e (u " {0}\n " . format ( d e f i n i t i o n ) . encode ( ’ ut f−8 ’ ) )
in_file_name = i n _ f i l e . name

l o g g i n g . i n f o ( "dumped input to {0} " . format ( in_file_name ) )
return in_file_name

def dump_text ( s e l f , t ex t ) :
l o g g i n g . i n f o ( ’ dumping to f i l e . . . ’ )
with NamedTemporaryFile ( dir=s e l f . tmp_dir , d e l e t e=Fal se ) as i n _ f i l e :

t = text . r e p l a c e ( ’ i . e . ’ , ’ i . e . ’ ) # TODO
i n _ f i l e . wr i t e ( t . encode ( ’ ut f−8 ’ ) )
in_file_name = i n _ f i l e . name

l o g g i n g . i n f o ( "dumped input to {0} " . format ( in_file_name ) )
return in_file_name

def run_parser ( s e l f , in_file_name ) :
os . chd i r ( s e l f . magyarlanc_dir )
with NamedTemporaryFile ( dir=s e l f . tmp_dir , d e l e t e=Fal se ) as o u t _ f i l e :

return_code = subproces s . c a l l ( [
’ java ’ , ’−Xmx2G ’ , ’− j a r ’ , s e l f . jarpath ,
’−mode ’ , ’ depparse ’ , ’−input ’ , in_file_name ,
’−output ’ , o u t _ f i l e . name ] )

i f return_code == 0 :
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return o u t _ f i l e . name
return None

@staticmethod
def l ines_to_deps ( l i n e s ) :

t ext_st r = u " \n " . j o i n ( ( u " " . j o i n ( sen ) for sen in l i s t ( l i n e s ) ) )
tsv_stream = Str ingIO ( text_st r )
return map( get_dependencies , s e n t e n c e _ i t e r a t o r ( tsv_stream ) )

def add_deps ( s e l f , entry , l i n e s ) :
deps = Magyarlanc . l ines_to_deps ( [ l i n e s ] ) [ 0 ]
entry [ ’ s e n s e s ’ ] [ 0 ] [ ’ d e f i n i t i o n ’ ] = {

" sen " : entry [ ’ s e n s e s ’ ] [ 0 ] [ ’ d e f i n i t i o n ’ ] ,
" deps " : deps }

def parse_text ( s e l f , t ex t ) :
in_file_name = s e l f . dump_text ( t ex t )
raw_parses = s e l f . p a r s e _ f i l e ( in_file_name )
deps = Magyarlanc . l ines_to_deps ( raw_parses )
return deps , [ ]

def p a r s e _ e n t r i e s ( s e l f , e n t r i e s ) :
in_file_name = s e l f . dump_entries ( e n t r i e s )
raw_parses = s e l f . p a r s e _ f i l e ( in_file_name )
for count , parse in enumerate( raw_parses ) :

try :
s e l f . add_deps ( e n t r i e s [ count ] , parse )

except :
l o g g i n g . e r r o r ( " count : {0} " . format ( count ) )
l o g g i n g . e r r o r ( " l a s t entry : {0} " . format ( e n t r i e s [ count −1]) )
l o g g i n g . e r r o r (u " f a i l e d with : {0} " . format ( parse ) )
t raceback . pr int_exc ( )
sys . e x i t (−1)

return e n t r i e s

def p a r s e _ f i l e ( s e l f , in_file_name ) :
l o g g i n g . i n f o ( ’ pa r s e r input : {0} ’ . format ( in_file_name ) )
out_file_name = s e l f . run_parser ( in_file_name )
l o g g i n g . i n f o ( ’ pa r s e r output : {0} ’ . format ( out_file_name ) )
i f out_file_name i s None :

l o g g i n g . e r r o r ( ’ pa r s e r f a i l e d ’ )
sys . e x i t (−1)

count = 0
c u r r _ l i n e s = [ ]
for l i n e in open( out_file_name ) :

i f l i n e == ’ \n ’ :
y i e l d c u r r _ l i n e s
c u r r _ l i n e s = [ ]
count += 1

else :
c u r r _ l i n e s . append ( l i n e . decode ( ’ utf−8 ’ ) )

def t e s t ( ) :
import sys
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from u t i l s import get_cfg
c f g = get_cfg ( sys . argv [ 1 ] )
m = Magyarlanc ( c f g )
te s t_sens = [ " valamely a s z t a l o n vagy padon az ablakra i l l e s z t e t t k e r e t " ]
# tes t_sens = [ " Egy " , " Hat " , " Nyolc " ]
for sen in te s t_sens :

for l i n e in m. tag ( sen ) :
print l i n e

i f __name__ == ’__main__ ’ :
t e s t ( )

7.4.4 Processing dependencies

The language-specific postprocessing of dependencies described in Section 4.5 takes place
in the dependency_processor module. The DependencyProcessor class defines one or
more functions for each of the processing steps described, these functions take as their input
instances of either the Dependencies or the NewDependencies class. The Dependencies
class is deprecated, new functions should support the NewDependencies class.
from c o l l e c t i o n s import d e f a u l t d i c t
from copy import deepcopy
import l o g g i n g
import re

class Dependencies ( ) :
dep_regex = re . compile ( " ( . ∗ ? ) \ ( ( . ∗ ? ) −([0−9]∗) ’∗ , ( . ∗ ? ) −([0−9]∗) ’∗\) " )

@staticmethod
def parse_dependency ( s t r i n g ) :

dep_match = Dependencies . dep_regex . match ( s t r i n g )
i f not dep_match :

raise Exception ( ’ cannot parse dependency : {0} ’ . format ( s t r i n g ) )
dep , word1 , id1 , word2 , id2 = dep_match . groups ( )
return dep , ( word1 , id1 ) , ( word2 , id2 )

@staticmethod
def create_from_str ings ( dep_str ings ) :

dep_l i s t = map( Dependencies . parse_dependency , dep_str ings )
return Dependencies ( dep_l i s t )

def __init__ ( s e l f , dep_l i s t ) :
s e l f . dep_l i s t = dep_l i s t
s e l f . index_dependencies ( dep_l i s t )

def index_dependencies ( s e l f , deps ) :
s e l f . index = d e f a u l t d i c t (lambda : ( d e f a u l t d i c t ( set ) , d e f a u l t d i c t ( set ) ) )
deps = [ ( dep , tuple (w1) , tuple (w2) ) for dep , w1 , w2 in deps ]
for t r i p l e in deps :

s e l f . add ( t r i p l e )

def remove ( s e l f , ( dep , word1 , word2 ) ) :
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s e l f . index [ word1 ] [ 0 ] [ dep ] . remove ( word2 )
s e l f . index [ word2 ] [ 1 ] [ dep ] . remove ( word1 )

def add ( s e l f , ( dep , word1 , word2 ) ) :
s e l f . index [ word1 ] [ 0 ] [ dep ] . add ( word2 )
s e l f . index [ word2 ] [ 1 ] [ dep ] . add ( word1 )

def get_dep_l ist ( s e l f , exc lude = [ ] ) :
dep_l i s t = [ ]
for word1 , ( dependants , _) in s e l f . index . i t e r i t e m s ( ) :

for dep , words in dependants . i t e r i t e m s ( ) :
i f any( dep . s t a r t s w i t h ( patt ) for patt in exc lude ) :

continue
for word2 in words :

dep_l i s t . append ( ( dep , word1 , word2 ) )
return dep_l i s t

def get_root ( s e l f ) :
root_words = s e l f . index [ ( u ’ROOT’ , u ’ 0 ’ ) ] [ 0 ] [ ’ root ’ ]
i f len ( root_words ) != 1 :

l o g g i n g . warning ( ’ no unique root element : {0} ’ . format ( root_words ) )
return None

return iter ( root_words ) . next ( )

def merge ( s e l f , word1 , word2 , exc lude = [ ] ) :
for dep , w1 , w2 in s e l f . get_dep_l ist ( exc lude=exc lude ) :

i f w1 in ( word1 , word2 ) and w2 in ( word1 , word2 ) :
pass

e l i f w1 == word1 :
s e l f . add ( ( dep , word2 , w2) )

e l i f w1 == word2 :
s e l f . add ( ( dep , word1 , w2) )

e l i f w2 == word1 :
s e l f . add ( ( dep , w1 , word2 ) )

e l i f w2 == word2 :
s e l f . add ( ( dep , w1 , word1 ) )

else :
pass

class NewDependencies ( ) :

@staticmethod
def create_from_old_deps ( old_deps ) :

deps = [ ]
for d_type , gov , dep in old_deps . get_dep_l ist ( ) :

deps . append ({
" type " : d_type ,
" gov " : {

" word " : gov [ 0 ] ,
" id " : gov [ 1 ] } ,

" dep " : {
" word " : dep [ 0 ] ,
" id " : dep [ 1 ] } } )

return NewDependencies ( deps )
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def __init__ ( s e l f , deps ) :
s e l f . deps = deps
s e l f . indexed = False
s e l f . index ( )

def index ( s e l f ) :
s e l f . tok_index = d e f a u l t d i c t (lambda : [ None , [ ] , [ ] ] )
s e l f . dep_index = d e f a u l t d i c t ( l i s t )
for d in s e l f . deps :

s e l f . tok_index [ d [ ’ gov ’ ] [ ’ id ’ ] ] [ 0 ] = d [ ’ gov ’ ]
s e l f . tok_index [ d [ ’ dep ’ ] [ ’ id ’ ] ] [ 0 ] = d [ ’ dep ’ ]
s e l f . tok_index [ d [ ’ gov ’ ] [ ’ id ’ ] ] [ 1 ] . append (d)
s e l f . tok_index [ d [ ’ dep ’ ] [ ’ id ’ ] ] [ 2 ] . append (d)
s e l f . dep_index [ d [ ’ type ’ ] ] . append (d)

s e l f . indexed = True

def add ( s e l f , d_type , gov , dep ) :
s e l f . deps . append ({ " type " : d_type , " gov " : gov , " dep " : dep })
s e l f . indexed = False

def remove_tok ( s e l f , i ) :
s e l f . deps = [

d for d in s e l f . deps
i f d [ ’ gov ’ ] [ ’ id ’ ] != i and d [ ’ dep ’ ] [ ’ id ’ ] != i ]

s e l f . indexed = False

def remove_type ( s e l f , d_type ) :
s e l f . deps = [ d for d in s e l f . deps i f d [ ’ type ’ ] != d_type ]
s e l f . indexed = False

class DependencyProcessor ( ) :
copu la r s = set ( [

" ’ s " , ’ are ’ , ’ be ’ , ’ been ’ , ’ be ing ’ , ’ i s ’ , ’ s ’ , ’ was ’ , ’ were ’ ] )

def __init__ ( s e l f , c f g ) :
s e l f . c f g = c f g
s e l f . lang = s e l f . c f g . get ( " deps " , " lang " )

def proces s_coord inat ion_stan ford ( s e l f , deps ) :
for word1 , word_deps in deepcopy ( deps . index . i tems ( ) ) :

for i in (0 , 1) :
for dep , words in word_deps [ i ] . i t e r i t e m s ( ) :

i f dep . s t a r t s w i t h ( ’ conj_ ’ ) :
for word2 in words :

deps . merge ( word1 , word2 , exc lude =[ ’ conj_ ’ ] )
e l i f dep . s t a r t s w i t h ( ’ conj : ’ ) :

for word2 in words :
deps . merge ( word1 , word2 , exc lude =[ ’ conj : ’ ] )

return deps

def process_coordinated_root ( s e l f , deps ) :
root_word = deps . get_root ( )
for i in (0 , 1) :
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for dep , words in deepcopy ( deps . index [ root_word ] [ i ] ) . i t e r i t e m s ( ) :
i f dep . s t a r t s w i t h ( ’ conj_ ’ ) :

for word in words :
deps . merge ( word , root_word , exc lude =[ ’ conj_ ’ ] )

e l i f dep . s t a r t s w i t h ( ’ conj : ’ ) :
for word in words :

deps . merge ( word , root_word , exc lude =[ ’ conj : ’ ] )
return deps

def process_rcmods ( s e l f , deps ) :
# rcmods = [
# (w1 , w2) f o r w1 , ( dependants , _) in deps . index . i t e r i t e m s ()
# f o r dep , words in dependants . i t e r i t e m s ()
# f o r w2 in words i f dep == ’ rcmod ’ ]
return deps

def process_negat ion ( s e l f , deps ) :
for dep in deps . get_dep_l ist ( ) :

dtype , w1 , w2 = dep
i f dtype == ’ neg ’ and w2 [ 0 ] != ’ not ’ :

deps . remove ( dep )
deps . add ( ( dtype , w1 , ( ’ not ’ , w2 [ 1 ] ) ) )

return deps

def proces s_copu lar s ( s e l f , deps ) :
# nsubj ( i s , x ) , prep_P( is , y ) −> prep_P( x , y )
# rcmod ( x , i s ) , prep_P( is , y ) −> prep_P( x , y )
copu la r s = [ ( word , w_id) for word , w_id in deps . index . i t e r k e y s ( )

i f word in DependencyProcessor . copu la r s ]
new_deps = [ ]
for cop in copu la r s :

i f ’ nsubj ’ in deps . index [ cop ] [ 0 ] :
for dep , words in deps . index [ cop ] [ 0 ] . i t e r i t e m s ( ) :

i f dep . s t a r t s w i t h ( ’ prep_ ’ ) :
for word2 in words :

new_deps += [
( dep , word3 , word2 )
for word3 in deps . index [ cop ] [ 0 ] [ ’ nsubj ’ ] ]

i f ’ rcmod ’ in deps . index [ cop ] [ 1 ] :
for dep , words in deps . index [ cop ] [ 0 ] . i t e r i t e m s ( ) :

i f dep . s t a r t s w i t h ( ’ prep_ ’ ) :
for word2 in words :

new_deps += [
( dep , word3 , word2 )
for word3 in deps . index [ cop ] [ 1 ] [ ’ rcmod ’ ] ]

for new_dep in new_deps :
# l o g g i n g . i n f o ( ’ adding new dep : {0} ’ . format (new_dep) )
deps . add (new_dep)

return deps

def remove_copulars ( s e l f , deps ) :
for dep , word1 , word2 in deps . get_dep_l ist ( ) :

i f ( word1 [ 0 ] in DependencyProcessor . copu la r s or
word2 [ 0 ] in DependencyProcessor . copu la r s ) :

deps . remove ( ( dep , word1 , word2 ) )
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return deps

def process_conjunction_magyarlanc ( s e l f , deps ) :
# f o r a l l conj ( x , conj ) , f o r a l l D( conj , y ) c r e a t e D( x , y )
# where conj in ( hogy , de )
# g e t conj dependants o f conj r e l a t i o n s
c o n j s = set ( (

d [ ’ dep ’ ] [ ’ id ’ ]
for d in deps . dep_index [ ’ conj ’ ]
i f d [ ’ dep ’ ] [ ’ lemma ’ ] in ( ’ hogy ’ , ’ de ’ ) ) )

# then f o r each o f t h e s e :
for conj in c o n j s :

# g e t a l l t h e i r governors
govs = [

d [ ’ gov ’ ]
for d in deps . tok_index [ conj ] [ 2 ] i f d [ ’ type ’ ] == ’ conj ’ ]

# then f o r a l l dependents o f hogy ,
for dep in deps . tok_index [ conj ] [ 1 ] :

# copy each dependency to each governor
for gov in govs :

deps . add ( dep [ ’ type ’ ] , gov , dep [ ’ dep ’ ] )

deps . remove_tok ( conj )
deps . index ( )
return deps

def process_copulars_magyarlanc ( s e l f , deps ) :
# mapping a l l p a i r s o f the form nsubj ( x , c ) and pred ( c , y )
# ( such t h a t c i s a copu lar verb ) to the r e l a t i o n s u b j ( x , y )
pred_gov_cop_ids = [

d [ ’ gov ’ ] [ ’ id ’ ] for d in deps . dep_index [ ’ pred ’ ]
i f d [ ’ gov ’ ] [ ’ lemma ’ ] == ’ van ’ ]

for gov_id in pred_gov_cop_ids :
subj_deps = [ d [ ’ dep ’ ] for d in deps . tok_index [ gov_id ] [ 1 ] ]
for subj in subj_deps :

preds = [
d [ ’ dep ’ ] for d in deps . tok_index [ gov_id ] [ 1 ]
i f d [ ’ type ’ ] == ’ pred ’ ]

for pred in preds :
deps . add ( " subj " , subj , pred )

deps . remove_tok ( gov_id )
deps . index ( )
return deps

def process_coordinat ion_magyarlanc ( s e l f , deps ) :
# g e t governors o f coord r e l a t i o n s
govs = set ( ( d [ ’ gov ’ ] [ ’ id ’ ] for d in deps . dep_index [ ’ coord ’ ] ) )
# then f o r each o f t h e s e :
for gov in govs :

# g e t dep−neighbours o f each o f t h e s e
coord = [

d [ ’ dep ’ ] [ ’ id ’ ] for d in deps . tok_index [ gov ] [ 1 ]
i f d [ ’ type ’ ] in ( ’ coord ’ , ’ conj ’ ) ]

# p r i n t ’ coord : ’ , [ deps . tok_index [ c ] [ 0 ] [ ’ lemma ’ ] f o r c in coord ]
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coord += [
d [ ’ gov ’ ] [ ’ id ’ ] for d in deps . tok_index [ gov ] [ 2 ]
i f d [ ’ type ’ ] in ( ’ coord ’ , ’ conj ’ ) ]

# p r i n t ’ coord : ’ , [ deps . tok_index [ c ] [ 0 ] [ ’ lemma ’ ] f o r c in coord ]
# and un i f y t h e i r r e l a t i o n s
# l o g g i n g . i n f o ( ’ u n i f y i n g t h e s e : ’ )
# f o r c in coord :
# l o g g i n g . i n f o (u " { 0 } " . format (
# deps . tok_index [ c ] [ 0 ] [ ’ word ’ ] ) )
gov_tok = deps . tok_index [ ’ gov ’ ] [ 0 ]
i f gov_tok i s None or gov_tok [ ’msd ’ ] [ 0 ] != ’C ’ :

# i f the gov i s not a conjunct ion , then i t must take par t
# in the u n i f i c a t i o n
coord . append ( gov )

else :
# otherwi se i t shou ld be removed
deps . remove_tok ( gov )

deps = s e l f . uni fy_dependencies (
coord , deps , exc lude=set ( [ ’ coord ’ , ’ punct ’ ] ) )

# we re index in the end only !
deps . index ( )
return deps

def uni fy_dependencies ( s e l f , tokens , deps , exc lude ) :
for tok1 in tokens :

for tok2 in tokens :
i f tok2 == tok1 :

continue
for dep in deps . tok_index [ tok1 ] [ 1 ] :

i f dep [ ’ type ’ ] in exc lude :
continue

# l o g g i n g . i n f o ( ’ copying : {0} ’ . format ( dep ) )
deps . add ( dep [ ’ type ’ ] , deps . tok_index [ tok2 ] [ 0 ] , dep [ ’ dep ’ ] )

for dep in deps . tok_index [ tok1 ] [ 2 ] :
i f dep [ ’ type ’ ] in exc lude :

continue
# l o g g i n g . i n f o ( ’ copying : {0} ’ . format ( dep ) )
deps . add ( dep [ ’ type ’ ] , dep [ ’ gov ’ ] , deps . tok_index [ tok2 ] [ 0 ] )

return deps

def process_dependenc ies ( s e l f , deps ) :
i f s e l f . lang == ’ en ’ :

return s e l f . process_stanford_dependenc ies ( deps )
e l i f s e l f . lang == ’ hu ’ :

return s e l f . process_magyarlanc_dependencies ( deps )
else :

raise Exception ( ’ unsupported language : {0} ’ . format ( s e l f . lang ) )

def process_magyarlanc_dependencies ( s e l f , deps ) :
deps = NewDependencies ( deps )
deps . remove_type ( ’ punct ’ )
deps . index ( )
deps = s e l f . process_conjunction_magyarlanc ( deps )
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deps = s e l f . process_copulars_magyarlanc ( deps )
deps = s e l f . process_coordinat ion_magyarlanc ( deps )
return deps . deps

def process_stanford_dependenc ies ( s e l f , dep_str ings ) :
try : # TODO

deps = Dependencies . c reate_from_str ings ( dep_str ings )
except TypeError :

deps = Dependencies ( dep_str ings )
deps = s e l f . p roces s_copu lar s ( deps )
deps = s e l f . remove_copulars ( deps )
deps = s e l f . process_rcmods ( deps )
deps = s e l f . process_negat ion ( deps )
# deps = s e l f . process_coordinated_root ( deps )
deps = s e l f . p roces s_coord inat ion_stan ford ( deps )

return NewDependencies . create_from_old_deps ( deps ) . deps

7.5 The Lexicon class

The Lexicon class stores 4lang definitions for words, separating the manually written
ones in the 4lang dictionary from those built by the dict_to_4lang module. When
invoked from the command line, Lexicon.py processes the 4lang dictionary (using the
definition_parser module of the pymachine library) and saves the resulting Lexicon
instance in pickle format. dict_to_4lang loads the lexicon built from 4lang, adds def-
initions built from dictionaries, and saves the output. All other applications can load
any of the pickle files to use the corresponding Lexicon instance. Applications typically
use the get_machine function to obtain the 4lang definition graph for some word. By
default, get_machine first searches for definitions of a word in 4lang, then among words
for which graphs have been built automatically, and finally falls back to creating a new
Machine instance with no definition (i.e. no connections to other Machines). The expand
function implements expansion of definitions (see Section 5.3), adding links to all nodes
in a definition taken from their own definitions. Stopwords are omitted by default, the
user can specify other words that are to be skipped. Expansion does not affect definition
graphs stored in the lexicon.
import copy
import c P i c k l e
import j s on
import l o g g i n g
import sys

from n l tk . corpus import stopwords as nltk_stopwords
from pymachine . d e f i n i t i o n _ p a r s e r import read as read_defs
from pymachine . machine import Machine
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from pymachine . c o n t r o l import ConceptControl
from pymachine . u t i l s import MachineGraph , MachineTraverser

from u t i l s import get_cfg

import networkx as nx
import csv

class Lexicon ( ) :
" " "A mapping from lemmas to machines " " "

@staticmethod
def build_from_4lang ( c f g ) :

fn = c f g . get ( " machine " , " d e f i n i t i o n s " )
p lura l_fn = c f g . get ( " machine " , " p l u r a l s " )
pr imi t ive_fn = c f g . get ( " machine " , " p r i m i t i v e s " )
p r i m i t i v e s = set (

[ l i n e . decode ( ’ ut f−8 ’ ) . s t r i p ( ) for l i n e in open( pr imi t ive_fn ) ] )
l o g g i n g . i n f o ( ’ par s ing 4 lang d e f i n i t i o n s . . . ’ )
pn_index = 1 i f c f g . get ( " deps " , " lang " ) == ’ hu ’ else 0
d e f i n i t i o n s = read_defs (

f i l e ( fn ) , p lura l_fn , pn_index , three_parts=True )
l o g g i n g . i n f o ( ’ parsed {0} e n t r i e s , done ! ’ . format ( len ( d e f i n i t i o n s ) ) )
l e x i c o n = Lexicon . create_from_dict ( d e f i n i t i o n s , p r i m i t i v e s , c f g )
return l e x i c o n

@staticmethod
def load_from_binary ( f i le_name ) :

l o g g i n g . i n f o ( ’ l oad ing l e x i c o n from { 0 } . . . ’ . format ( f i le_name ) )
data = c P i c k l e . load ( f i l e ( f i le_name ) )
machines_dump , ext_machines_dump = map(

lambda s : j s on . l oads ( data [ s ] ) , ( " de f " , " ext " ) )
c fg , p r i m i t i v e s = data [ ’ c f g ’ ] , data [ ’ prim ’ ]
l e x i c o n = Lexicon . create_from_dumps ( machines_dump , ext_machines_dump ,

p r i m i t i v e s , c f g )
l o g g i n g . i n f o ( ’ done ! ’ )
return l e x i c o n

def save_to_binary ( s e l f , f i le_name ) :
l o g g i n g . i n f o ( ’ sav ing l e x i c o n to { 0 } . . . ’ . format ( f i le_name ) )
data = {

" de f " : j s on . dumps( Lexicon . dump_machines ( s e l f . l e x i c o n ) ) ,
" ext " : j s on . dumps( Lexicon . dump_machines ( s e l f . ext_lex icon ) ) ,
" prim " : s e l f . p r i m i t i v e s ,
" c f g " : s e l f . c f g }

with open( fi le_name , ’w ’ ) as o u t _ f i l e :
c P i c k l e . dump( data , o u t _ f i l e )

l o g g i n g . i n f o ( ’ done ! ’ )

@staticmethod
def create_from_dumps ( machines_dump , ext_machines_dump , p r i m i t i v e s , c f g ) :

" " " b u i l d s the l e x i c o n from dumps crea ted by Lexicon . dump_machines " " "
l e x i c o n = Lexicon ( c f g )
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l e x i c o n . p r i m i t i v e s = p r i m i t i v e s
for word , dumped_def_graph in machines_dump . i t e r i t e m s ( ) :

new_machine = Machine ( word , ConceptControl ( ) )
l e x i c o n . add_def_graph ( word , new_machine , dumped_def_graph )
l e x i c o n . add ( word , new_machine , e x t e r n a l=Fal se )

for word , dumped_def_graph in ext_machines_dump . i t e r i t e m s ( ) :
new_machine = Machine ( word , ConceptControl ( ) )
l e x i c o n . add_def_graph ( word , new_machine , dumped_def_graph )
l e x i c o n . add ( word , new_machine , e x t e r n a l=True )

return l e x i c o n

def add_def_graph ( s e l f , word , word_machine , dumped_def_graph ,
allow_new_base=False , allow_new_ext=False ) :

node2machine = {}
graph = MachineGraph . from_dict ( dumped_def_graph )
for node in graph . nodes_iter ( ) :

pn = "_" . j o i n ( node . s p l i t ( ’_ ’ ) [ : −1 ] )
i f pn == word :

node2machine [ node ] = word_machine
else :

i f not pn :
l o g g i n g . warning (u " empty pn in node : {0} , word : {1} " . format (

node , word ) )
node2machine [ node ] = s e l f . get_machine (pn , new_machine=True )

for node1 , adjacency in graph . ad jacency_ite r ( ) :
machine1 = node2machine [ node1 ]
for node2 , edges in adjacency . i t e r i t e m s ( ) :

machine2 = node2machine [ node2 ]
for i , a t t r i b u t e s in edges . i t e r i t e m s ( ) :

part_index = a t t r i b u t e s [ ’ c o l o r ’ ]
machine1 . append ( machine2 , part_index )

@staticmethod
def dump_definition_graph ( machine , seen=set ( ) ) :

graph = MachineGraph . create_from_machines ( [ machine ] )
return graph . to_dict ( )

@staticmethod
def dump_machines ( machines ) :

" " " proces se s a map of lemmas to machines and dumps them to l i s t s
o f s t r i n g s , f o r s e r i a l i z a t i o n " " "
dump = {}
for word , machine_set in machines . i t e r i t e m s ( ) :

i f len ( machine_set ) > 1 :
raise Exception ( " cannot dump l e x i c o n with ambiguous \

printname : ’{0} ’ " . format ( word ) )
machine = next ( i ter ( machine_set ) )

# l o g g i n g . i n f o ( ’ dumping t h i s : {0} ’ . format (
# MachineGraph . create_from_machines ( [ machine ] ) . to_dot () ) )

dump [ word ] = Lexicon . dump_definition_graph ( machine )
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return dump

@staticmethod
def create_from_dict ( word2machine , p r i m i t i v e s , c f g ) :

l e x i c o n = Lexicon ( c f g )
l e x i c o n . l e x i c o n = dict ( word2machine )
l e x i c o n . p r i m i t i v e s = p r i m i t i v e s
return l e x i c o n

def __init__ ( s e l f , c f g ) :
s e l f . c f g = c f g
s e l f . l e x i c o n = {}
s e l f . ext_lex icon = {}
s e l f . oov_lexicon = {}
s e l f . _known_words = None
s e l f . expanded = set ( )
s e l f . expanded_lexicon = {}
s e l f . stopwords = set ( nltk_stopwords . words ( ’ e n g l i s h ’ ) )
s e l f . stopwords . add ( ’ as ’ ) # TODO
s e l f . stopwords . add ( ’ root ’ ) # TODO
s e l f . fu l l_graph = None
s e l f . shortest_path_dict = None

def get_words ( s e l f ) :
return set ( s e l f . l e x i c o n . keys ( ) ) . union ( set ( s e l f . ext_lex icon . keys ( ) ) )

def known_words ( s e l f ) :
i f s e l f . _known_words i s None :

s e l f . _known_words = s e l f . get_words ( )
return s e l f . _known_words

def add ( s e l f , printname , machine , e x t e r n a l=True , oov=False ) :
i f printname in s e l f . oov_lexicon :

a s s e r t oov i s False
del s e l f . oov_lexicon [ printname ]

l e x i c o n = s e l f . oov_lexicon i f oov else (
s e l f . ext_lex icon i f e x t e r n a l else s e l f . l e x i c o n )

s e l f . _add( printname , machine , l e x i c o n )

def _add( s e l f , printname , machine , l e x i c o n ) :
i f printname in l e x i c o n :

raise Exception ( " d u p l i c a t e word in l e x i c o n : ’{0} ’ " . format ( l e x i c o n ) )
l e x i c o n [ printname ] = set ( [ machine ] )

def get_expanded_def in it ion ( s e l f , printname ) :
machine = s e l f . expanded_lexicon . get ( printname )
i f machine i s not None :

return machine

machine = copy . deepcopy ( s e l f . get_machine ( printname ) )
s e l f . expand_def in i t ion ( machine )
s e l f . expanded_lexicon [ printname ] = machine
return machine
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def get_machine ( s e l f , printname , new_machine=False , allow_new_base=False ,
allow_new_ext=False , allow_new_oov=True ) :

" " " re turns the l o w e s t l e v e l ( base < e x t < oov ) e x i s t i n g machine
f o r the printname . I f none e x i s t , c r e a t e s a new machine in the l o w e s t
l e v e l a l l owed by the allow_∗ f l a g s . Wi l l a lways c r e a t e new machines
f o r uppercase printnames " " "

# re turns a new machine wi thout adding i t to any l e x i c o n
i f new_machine :

return Machine ( printname , ConceptControl ( ) )

# TODO
i f not printname :

return s e l f . get_machine ( "_empty_" )

i f printname . i supper ( ) :
return s e l f . get_machine ( printname , new_machine=True )

machines = s e l f . l e x i c o n . get (
printname , s e l f . ext_lex icon . get (

printname , s e l f . oov_lexicon . get ( printname , set ( ) ) ) )
i f len ( machines ) == 0 :

# l o g g i n g . i n f o (
# u ’ c r e a t i n g new machine f o r unknown word : " { 0 } " ’ . format (
# printname ) )
new_machine = Machine ( printname , ConceptControl ( ) )
i f allow_new_base :

s e l f . add ( printname , new_machine , e x t e r n a l=False )
e l i f allow_new_ext :

s e l f . add ( printname , new_machine )
e l i f allow_new_oov :

s e l f . add ( printname , new_machine , oov=True )
else :

return None

return s e l f . get_machine ( printname )
else :

i f len ( machines ) > 1 :
debug_str = u ’ ambiguous printname : {0} , machines : {1} ’ . format (

printname ,
[ l e x . get ( printname , set ( [ ] ) )

for l e x in ( s e l f . l ex i con , s e l f . ext_lexicon ,
s e l f . oov_lexicon ) ] )

raise Exception ( debug_str )

return next ( i ter ( machines ) )

def expand_def in i t ion ( s e l f , machine , stopwords = [ ] ) :
def_machines = dict (

[ ( pn , m) for pn , m in [
(m2. printname ( ) , m2) for m2 in MachineTraverser . get_nodes (

machine , names_only=False , keep_upper=True ) ]
i f pn != machine . printname ( ) ] )

s e l f . expand ( def_machines , stopwords=stopwords )
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def expand ( s e l f , words_to_machines , stopwords =[ ] , cached=False ) :
i f len ( stopwords ) == 0 :

stopwords = s e l f . stopwords
for lemma , machine in words_to_machines . i t e r i t e m s ( ) :

i f (
( not cached or lemma not in s e l f . expanded ) and
lemma in s e l f . known_words ( ) and lemma not in stopwords ) :

# deepcopy so t h a t the ver s ion in the l e x i c o n keeps i t s l i n k s
d e f i n i t i o n = s e l f . get_machine ( lemma)
copied_def = copy . deepcopy ( d e f i n i t i o n )

" " "
f o r parent , i in l i s t ( d e f i n i t i o n . parents ) :

copied_parent = copy . deepcopy ( parent )
f o r m in l i s t ( copied_parent . p a r t i t i o n s [ i ] ) :

i f m. printname () == lemma :
copied_parent . remove (m, i )
break

e l s e :
r a i s e Exception ()
# " can ’ t f i n d {0} in p a r t i t i o n {1} o f {2}: {3}" . format (
# ) )

copied_parent . append ( copied_def , i )
" " "

case_machines = [
m for m in MachineTraverser . get_nodes (

copied_def , names_only=False , keep_upper=True )
i f m. printname ( ) . s t a r t s w i t h ( ’=’ ) ]

machine . un i fy ( copied_def , exclude_0_case=True )

for cm in case_machines :
i f cm . printname ( ) == "=AGT" :

i f machine . p a r t i t i o n s [ 1 ] :
machine . p a r t i t i o n s [ 1 ] [ 0 ] . un i fy (cm)

i f cm . printname ( ) == "=PAT" :
i f machine . p a r t i t i o n s [ 2 ] :

machine . p a r t i t i o n s [ 2 ] [ 0 ] . un i fy (cm)

s e l f . expanded . add ( lemma)

def get_ful l_graph ( s e l f ) :
i f not s e l f . fu l l_graph == None :

return s e l f . fu l l_graph
a l lwords = set ( )
a l lwords . update ( s e l f . l e x i c o n . keys ( ) , s e l f . ext_lex icon . keys ( ) , s e l f . oov_lexicon .

keys ( ) )
s e l f . fu l l_graph = nx . MultiDiGraph ( )

# TODO: only f o r debugging
u n t i l = 10
for i , word in enumerate( a l lwords ) :

# TODO: only f o r debugging
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# i f word not in [ ’ dumb ’ , ’ i n t e l l i g e n t ’ , ’ s t u p i d ’ ] :
# cont inue
# i f i > u n t i l :
# break

machine = s e l f . get_machine ( word )
MG = MachineGraph . create_from_machines ( [ machine ] , str_graph=True )
G = MG.G

# TODO: to p r i n t out a l l graphs
# t r y :
# fn = os . path . j o i n ( ’/home/ e s z t e r / p r o j e c t s /4 lang / data / graphs / a l l w o r d s ’ , u

"{0} . dot " . format ( word ) ) . encode ( ’ u t f −8 ’)
# with open ( fn , ’w ’) as dot_obj :
# dot_obj . wr i t e (MG. to_dot_str_graph () . encode ( ’ u t f −8 ’) )
# excep t :
# p r i n t "EXCEPTION: " + word

# TODO: words to t e s t have nodes
# i f ’ o ther ’ in G. nodes () and ’ car ’ in G. nodes () :
# p r i n t word
#
# i f word == ’ merry−go−round ’ or word == ’ Klaxon ’ :
# p r i n t G. edges ()

s e l f . fu l l_graph . add_edges_from (G. edges ( data=True ) )
# TODO: needed ??
# s e l f . f u l l_graph . add_nodes_from (G. nodes () )

# TODO: only f o r debugging
# MG.G = s e l f . f u l l_graph
# fn = os . path . j o i n ( ’/home/ e s z t e r / p r o j e c t s /4 lang / t e s t / graphs / fu l l_graph ’ , u

"{0} . dot " . format ( i ) ) . encode ( ’ u t f −8 ’)
# with open ( fn , ’w ’) as dot_obj :
# dot_obj . wr i t e (MG. to_dot_str_graph () . encode ( ’ u t f −8 ’) )

return s e l f . fu l l_graph

def get_shortest_path ( s e l f , word1 , word2 , f i l e ) :
i f s e l f . shortest_path_dict == None :

s e l f . shortest_path_dict = dict ( )
with open( f i l e , ’ r ’ ) as f :

r eader = csv . r eader ( f , d e l i m i t e r=" \ t " )
d = l i s t ( r eader )
for path in d :

key = path [ 0 ] + "_" + path [−1]
s e l f . shortest_path_dict [ key ] = len ( path )

key = word1 + "_" + word2
i f key in s e l f . shortest_path_dict . keys ( ) :

return s e l f . shortest_path_dict [ key ]
else :

return 0

i f __name__ == "__main__" :
l o g g i n g . bas i cCon f i g (
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l e v e l=l o g g i n g . INFO,
format="%(asct ime ) s : " +
"%(module ) s (%( l i n e n o ) s ) − %(levelname ) s − %(message ) s " )

c f g _ f i l e = sys . argv [ 1 ] i f len ( sys . argv ) > 1 else None
c f g = get_cfg ( c f g _ f i l e )
l e x i c o n = Lexicon . build_from_4lang ( c f g )
l e x i c o n . save_to_binary ( c f g . get ( " machine " , " d e f i n i t i o n s _ b i n a r y " ) )

7.6 The Lemmatizer class

The Lemmatizer combines various external tools in trying to map words to 4lang concepts.
For each word processed, the lemmatize function invokes the hunmorph morphological
analyzer (using wrappers around ocamorph and hundisambig from the hunmisc library),
as well as the Porter stemmer. lemmatize caches the results of each analysis step, storing
for each word form it encounters the stem (according to the Porter stemmer), the list
of possible morphological analyses (according to ocamorph) and the analysis chosen by
hundisambig. In using all these to select the lemma to be returned, the lemmatize
function supports several strategies for different applications.

If no flags are passed, lemmatize returns the output of hundisambig. The option
defined can be used to pass the list of all lemmas from which lemmatize should try to
return one (e.g. the list of all concepts defined) – if specified, lemmatize will return the
word itself if it is defined, then try the lemma from hundisambig, and then go through all
other lemmas proposed by ocamorph. If no match is found, the stemmed form is tried as
a last resort before returning None. If the flag stemmed_first is set to True, lemmatize
will run the above process on the stem first and only return to the original word form if
no defined lemma is found. If defined is left unspecified and stem_first is set to true
at the same time, lemmatize will act as a plain Porter stemmer, and a warning is issued.
By default, Lemmatizer loads on startup a cache file of previously analyzed words. To
save a new cache file (or overwrite an old one), the program using Lemmatizer must call
its write_cache function.
import l o g g i n g
import os
import sys

from n l tk . corpus import stopwords as nltk_stopwords
from hunmisc . u t i l s . huntool_wrapper import Hundisambig , Ocamorph , OcamorphAnalyzer ,

MorphAnalyzer # nopep8
from stemming . por t e r2 import stem as porter_stem

from u t i l s import get_cfg

class Lemmatizer ( ) :
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def __init__ ( s e l f , c f g ) :
s e l f . c f g = c f g
s e l f . ana lyzer , s e l f . morph_analyzer = s e l f . get_analyzer ( )

s e l f . stopwords = set ( nltk_stopwords . words ( ’ e n g l i s h ’ ) )
s e l f . stopwords . add ( ’ as ’ ) # TODO
s e l f . stopwords . add ( ’ root ’ ) # TODO

s e l f . read_cache ( )
s e l f . oov = set ( )

def c lear_cache ( s e l f ) :
s e l f . cache = {}
s e l f . oov = set ( )

def _analyze ( s e l f , word ) :
stem = porter_stem ( word )
lemma = l i s t ( s e l f . ana lyze r . ana lyze (

[ [ word ] ] ) ) [ 0 ] [ 0 ] [ 1 ] . s p l i t ( ’ | | ’ ) [ 0 ] . s p l i t ( ’< ’ ) [ 0 ]

cand_krs = s e l f . morph_analyzer . ana lyze ( [ [ word ] ] ) . next ( ) . next ( )
cand idate s = [ cand . s p l i t ( ’ | | ’ ) [ 0 ] . s p l i t ( ’< ’ ) [ 0 ] for cand in cand_krs ]

s e l f . cache [ word ] = ( stem , lemma , cand idates )

def _lemmatize_with_stopwords ( s e l f , word , uppercase ) :
i f word == ’ have ’ :

return ’HAS ’
e l i f not uppercase :

return word
e l i f word in s e l f . stopwords :

return word . upper ( )
else :

return word

def lemmatize ( s e l f , word , d e f i n ed=None , s t em_f i r s t=False , uppercase=False ,
debug=False ) :

# i f ’ de f ined ’ i s provided , w i l l r e f u s e to re turn lemmas not in i t

# i f the word i s de f ined , we j u s t re turn i t
i f d e f i n e d i s not None and word in d e f i n e d :

return s e l f . _lemmatize_with_stopwords ( word , uppercase )

# i f the word i s not in our cache , we run a l l ana ly se s
i f word not in s e l f . cache :

s e l f . _analyze ( word )

stem , lemma , cand idates = s e l f . cache [ word ]

# i f s t em_f i r s t f l a g i s on , we rerun lemmatize on the stem
# and return the r e s u l t u n l e s s i t doesn ’ t e x i s t
i f s t em_f i r s t :

i f d e f i n e d i s None :
l o g g i n g . warning ( " s t em_f i r s t=True and d e f i ne d=None , \
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’ lemmatize ’ i s now a b l ind Porter stemmer " )
stemmed_lemma = s e l f . lemmatize (

stem , d e f i n e d=def ined , s t em_f i r s t=False , uppercase=uppercase )
i f stemmed_lemma i s not None :

return s e l f . _lemmatize_with_stopwords ( stemmed_lemma , uppercase )

# we return the lemma u n l e s s i t ’ s not in de f ined
i f d e f i n e d i s None or lemma in d e f i n e d :

return s e l f . _lemmatize_with_stopwords ( lemma , uppercase )

# we go over the o ther cand ida tes as a l a s t r e s o r t
for cand in cand idate s :

i f cand in d e f i n e d :
return s e l f . _lemmatize_with_stopwords ( cand , uppercase )

# l a s t r e s o r t i s the por t e r stem :
i f stem in d e f i n e d :

return s e l f . _lemmatize_with_stopwords ( stem , uppercase )

# i f t h a t doesn ’ t work e i t h e r , we return None
return None

def get_analyzer ( s e l f ) :
hunmorph_path = s e l f . c f g . get ( ’ lemmatizer ’ , ’ hunmorph_path ’ )
ocamorph_fn = os . path . j o i n ( hunmorph_path , " ocamorph " )
morphdb_model_fn = os . path . j o i n ( hunmorph_path , " morphdb_en . bin " )
hundisambig_fn = os . path . j o i n ( hunmorph_path , " hundisambig " )
hunpos_model_fn = os . path . j o i n ( hunmorph_path , " en_wsj . model " )

l o g g i n g . warning ( ’ l oad ing hunmorph us ing b i n a r i e s in {0} ’ . format ( hunmorph_path ) )
for fn in ( ocamorph_fn , morphdb_model_fn , hundisambig_fn ,

hunpos_model_fn ) :
i f not os . path . e x i s t s ( fn ) :

raise Exception ( " can ’ t f i n d hunmorph r e s o u r c e : {0} " . format ( fn ) )

ocamorph = Ocamorph ( ocamorph_fn , morphdb_model_fn )
ocamorph_analyzer = OcamorphAnalyzer ( ocamorph )
hundisambig = Hundisambig ( hundisambig_fn , hunpos_model_fn )
morph_analyzer = MorphAnalyzer ( ocamorph , hundisambig )

return morph_analyzer , ocamorph_analyzer

def read_cache ( s e l f ) :
s e l f . c l ear_cache ( )
cache_fn = s e l f . c f g . get ( ’ lemmatizer ’ , ’ c a c h e _ f i l e ’ )
i f not os . path . e x i s t s ( cache_fn ) :

return
l o g g i n g . i n f o ( ’ read ing hunmorph cache . . . ’ )
with open( cache_fn ) as f_obj :

for l i n e in f_obj :
try :

f i e l d s = l i n e . decode ( ’ ut f−8 ’ ) . s t r i p ( ) . s p l i t ( ’ \ t ’ )
except ( ValueError , UnicodeDecodeError ) , e :

raise Exception ( ’ e r r o r par s ing l i n e in tok2lemma f i l e : \
{0}\n{1} ’ . format ( e , l i n e ) )
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word , stem , lemma = f i e l d s [ : 3 ]
cand idate s = f i e l d s [ 3 : ]

s e l f . cache [ word ] = ( stem , lemma , cand idates )

l o g g i n g . i n f o ( ’ done ! ’ )

def write_cache ( s e l f ) :
cache_fn = s e l f . c f g . get ( ’ lemmatizer ’ , ’ c a c h e _ f i l e ’ )
l o g g i n g . i n f o ( ’ w r i t i n g hunmorph cache . . . ’ )
with open( cache_fn , ’w ’ ) as f_obj :

for word , ( stem , lemma , cand idates ) in s e l f . cache . i t e r i t e m s ( ) :
f_obj . wr i t e (u " {0}\ t {1}\ t {2}\ t {3}\n " . format (

word , stem , lemma , " \ t " . j o i n ( cand idate s ) ) . encode ( ’ ut f−8 ’ ) )

l o g g i n g . i n f o ( ’ done ! ’ )

def main ( ) :
l o g g i n g . bas i cCon f i g (

l e v e l=l o g g i n g . INFO,
format="%(asct ime ) s : " +
"%(module ) s (%( l i n e n o ) s ) − %(levelname ) s − %(message ) s " )

c f g _ f i l e = sys . argv [ 1 ] i f len ( sys . argv ) > 1 else None
c f g = get_cfg ( c f g _ f i l e )
lemmatizer = Lemmatizer ( c f g )
while True :

word = raw_input( ’> ’ )
print lemmatizer . lemmatize ( word )

i f __name__ == "__main__" :
main ( )

7.7 The pymachine library

Concept graphs built by 4lang are encoded using the external library pymachine (http://
www.github.com/kornai/pymachine), which implements Eilenberg machines via the Machine
class. Currently 4lang uses these objects simply as graph nodes, not as Eilenberg ma-
chines. pymachine.utils provides, among others, the MachineGraph class for build-
ing, manipulating, (de)serializing and visualizing graphs of Machines. This class relies
on the open-source library networkx as its backend for encoding directed graphs. The
pymachine.definition_parser module provides a parser for the format used by the
4lang dictionary, generation is currently not supported, i.e. graphs created with 4lang
cannot be saved in this format. pymachine also contains several modules that form the
codebase of the system described in (Nemeskey et al., 2013), these are not used by the
4lang library.
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7.8 The similarity module

All systems for measuring word similarity or textual similarity, described in Chapter 6,
rely on 4lang’s similarity module to return similarity scores for pairs of English words.
Main functions are exposed by the WordSimilarity class, which performs lemmatization,
accesses Lexicons, and generates scores using one of several strategies, depending on the
application at hand:
from c o l l e c t i o n s import d e f a u l t d i c t
from Conf igParser import Conf igParser
import l o g g i n g
import math
import sys

from gensim . models import Word2Vec
from n l tk . corpus import stopwords as nltk_stopwords
from s c i p y . s t a t s . s t a t s import pearsonr

from pymachine . u t i l s import average , harmonic_mean , jaccard , min_jaccard , MachineGraph ,
MachineTraverser , my_max # nopep8

from pymachine . wrapper import Wrapper as MachineWrapper

from lemmatizer import Lemmatizer
from l e x i c o n import Lexicon
from text_to_4lang import TextTo4lang
from u t i l s import ensure_dir , get_cfg , print_text_graph , print_4lang_graph
from s im_feats import SimFeatures , MachineInfo

a s s e r t jaccard , min_jaccard # s i l e n c e p y f l a k e s

class WordSimilar ity ( ) :
def __init__ ( s e l f , c fg , c f g _ s e c t i o n=’ word_sim ’ ) :

s e l f . batch = c f g . getboo lean ( c fg_sect ion , ’ batch ’ )

l o g g i n g . warning ( " four langpath i s {0} " . format (
c f g . get ( c fg_sect ion , ’ f our langpath ’ ) ) )

s e l f . c f g = c f g
s e l f . graph_dir = c f g . get ( c fg_sect ion , " graph_dir " )
ensure_dir ( s e l f . graph_dir )
s e l f . lemmatizer = Lemmatizer ( c f g )
s e l f . l ex i con_fn = s e l f . c f g . get ( c fg_sect ion , " d e f i n i t i o n s _ b i n a r y " )
s e l f . l e x i c o n = Lexicon . load_from_binary ( s e l f . l ex i con_fn )
s e l f . defined_words = s e l f . l e x i c o n . get_words ( )
s e l f . word_sim_cache = {}
s e l f . lemma_sim_cache = {}
s e l f . l inks_nodes_cache = {}
s e l f . stopwords = set ( nltk_stopwords . words ( ’ e n g l i s h ’ ) )
s e l f . s im_feats = SimFeatures ( c fg , c fg_sect ion , s e l f . l e x i c o n )
s e l f . expand = c f g . getboo lean ( c fg_sect ion , " expand " )
l o g g i n g . i n f o ( " expand i s {0} " . format ( s e l f . expand ) )

def l og ( s e l f , s t r i n g ) :
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i f not s e l f . batch :
l o g g i n g . i n f o ( s t r i n g )

def sim_type_to_function ( s e l f , sim_type ) :
return lambda w1 , w2 : s e l f . w o r d _ s i m i l a r i t i e s (w1 , w2) [ sim_type ]

def m a c h i n e _ s i m i l a r i t i e s ( s e l f , machine1 , machine2 , machine1_expand , machine2_expand ) :
pn1 , pn2 = machine1 . printname ( ) , machine2 . printname ( )
s e l f . l og (u ’ machine1 : {0} , machine2 : {1} ’ . format ( pn1 , pn2 ) )

l i n k s 1 , nodes1 = s e l f . get_links_nodes ( machine1 )
l i n k s 2 , nodes2 = s e l f . get_links_nodes ( machine2 )
links1_expand , nodes1_expand = s e l f . get_links_nodes ( machine1_expand )
links2_expand , nodes2_expand = s e l f . get_links_nodes ( machine2_expand )

s e l f . l og ( ’ l i n k s 1 : {0} , l i n k s 2 : {1} ’ . format ( l i n k s 1 , l i n k s 2 ) )
s e l f . l og ( ’ nodes1 : {0} , nodes2 : {1} ’ . format ( nodes1 , nodes2 ) )
s e l f . l og ( ’ l inks1_expand : {0} , l inks2_expand : {1} ’ . format ( l inks1_expand ,

l inks2_expand ) )
s e l f . l og ( ’ nodes1_expand : {0} , nodes2_expand : {1} ’ . format ( nodes1_expand ,

nodes2_expand ) )

sims = s e l f . s im_feats . g e t _ a l l _ f e a t u r e s ( MachineInfo ( machine1_expand , nodes1 ,
nodes1_expand , l i n k s 1 , l inks1_expand ) ,

MachineInfo ( machine2_expand , nodes2 ,
nodes2_expand , l i n k s 2 , l inks2_expand ) )

# TODO: we shou ld use t h i s way , but so f a r i t didn ’ t prove to be b e t t e r
# i f sims [ ’ is_antonym ’ ] == 1:
# sims [ ’ shor tes t_path ’ ] = 0

return sims

def l emma_s imi la r i t i e s ( s e l f , lemma1 , lemma2 ) :
i f ( lemma1 , lemma2 ) in s e l f . lemma_sim_cache :

return s e l f . lemma_sim_cache [ ( lemma1 , lemma2 ) ]

i f lemma1 == lemma2 :
lemma_sims = s e l f . s im_feats . o n e _ s i m i l a r i t i e s ( )

machine1 , machine2 = map(
s e l f . l e x i c o n . get_machine , ( lemma1 , lemma2 ) )

machine1_expand , machine2_expand = map(
s e l f . l e x i c o n . get_expanded_def init ion , ( lemma1 , lemma2 ) )

i f not s e l f . batch :
for w, m in ( ( lemma1 , machine1 ) , ( lemma2 , machine2 ) ) :

print_4lang_graph (w, m, s e l f . graph_dir )
for w, m in ( ( lemma1 , machine1_expand ) , ( lemma2 , machine2_expand ) ) :

print_4lang_graph (w, m, s e l f . graph_dir + " _expand " )

lemma_sims = s e l f . m a c h i n e _ s i m i l a r i t i e s ( machine1 , machine2 , machine1_expand ,
machine2_expand )

s e l f . lemma_sim_cache [ ( lemma1 , lemma2 ) ] = lemma_sims
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s e l f . lemma_sim_cache [ ( lemma2 , lemma1 ) ] = lemma_sims
return lemma_sims

def w o r d _ s i m i l a r i t i e s ( s e l f , word1 , word2 ) :
i f ( word1 , word2 ) in s e l f . word_sim_cache :

return s e l f . word_sim_cache [ ( word1 , word2 ) ]
lemma1 , lemma2 = [ s e l f . lemmatizer . lemmatize (

word , d e f i n e d=s e l f . defined_words , s t em_f i r s t=True , uppercase=True )
for word in ( word1 , word2 ) ]

# s e l f . l o g (u ’ lemmas : {0} , {1} ’ . format ( lemma1 , lemma2) )
i f lemma1 i s None or lemma2 i s None :

i f lemma1 i s None :
l o g g i n g . debug ( "OOV: {0} " . format ( word1 ) )

i f lemma2 i s None :
l o g g i n g . debug ( "OOV: {0} " . format ( word2 ) )

word_sims = s e l f . s im_feats . z e r o _ s i m i l a r i t i e s ( )
else :

word_sims = s e l f . l emma_s imi la r i t i e s ( lemma1 , lemma2 )
s e l f . word_sim_cache [ ( word1 , word2 ) ] = word_sims
s e l f . word_sim_cache [ ( word2 , word1 ) ] = word_sims
return word_sims

def get_links_nodes ( s e l f , machine , use_cache=True ) :
i f use_cache and machine in s e l f . l inks_nodes_cache :

return s e l f . l inks_nodes_cache [ machine ]
s e l f . s een_for_l inks = set ( )
l i n k s , nodes = s e l f . _get_links_and_nodes ( machine , depth=0)
l i n k s , nodes = set ( l i n k s ) , set ( nodes )
l i n k s . add ( machine . printname ( ) )
nodes . add ( machine . printname ( ) )
s e l f . l inks_nodes_cache [ machine ] = ( l i n k s , nodes )
return l i n k s , nodes

def _get_links_and_nodes ( s e l f , machine , depth , exc lude_l inks=False ) :
name = machine . printname ( )
i f name . i supper ( ) or name == ’=AGT’ :

l i n k s , nodes = [ ] , [ ]
e l i f exc lude_l inks :

l i n k s , nodes = [ ] , [ name ]
else :

l i n k s , nodes = [ name ] , [ name ]

# l o g g i n g . i n f o ("{0}{1} ,{2}" . format ( depth ∗" " , l i n k s , nodes ) )
i s_negated = False
i s _ b e f o r e = False
i f machine in s e l f . s een_for_l inks or depth > 5 :

return [ ] , [ ]
s e l f . s een_for_l inks . add ( machine )
for i , part in enumerate( machine . p a r t i t i o n s ) :

for hypernym in part :
h_name = hypernym . printname ( )
# l o g g i n g . i n f o ("{0} h : {1}" . format ( depth ∗" " , h_name) )
i f h_name in ( " l a ck " , " not " , " b e f o r e " ) :

i s_negated = True
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continue

c_l inks , c_nodes = s e l f . _get_links_and_nodes (
hypernym , depth=depth +1, exc lude_l inks=i != 0)

i f not h_name . i supper ( ) :
l i n k s += c_l inks

nodes += c_nodes

i f not exc lude_l inks :
l i n k s += s e l f . get_binary_l inks ( machine )

i f i s_negated :
add_lack = lambda l i n k : " lack_ {0} " . format ( l i n k ) i f isinstance ( l ink , unicode )

else ( " lack_ {0} " . format ( l i n k [ 0 ] ) , l i n k [ 1 ] ) # nopep8
l i n k s = map( add_lack , l i n k s )
nodes = map( add_lack , nodes )

return l i n k s , nodes

def get_binary_l inks ( s e l f , machine ) :
for parent , p a r t i t i o n in machine . parents :

parent_pn = parent . printname ( )
# i f not parent_pn . i supper () or p a r t i t i o n == 0:
i f p a r t i t i o n == 0 :

# haven ’ t seen i t ye t but p o s s i b l e
continue

e l i f p a r t i t i o n == 1 :
l i n k s = set ( [ ( parent_pn , other . printname ( ) )

for other in parent . p a r t i t i o n s [ 2 ] ] )
e l i f p a r t i t i o n == 2 :

l i n k s = set ( [ ( other . printname ( ) , parent_pn )
for other in parent . p a r t i t i o n s [ 1 ] ] )

else :
raise Exception (

’ machine {0} has more than 3 p a r t i t i o n s ! ’ . format ( machine ) )
for l i n k in l i n k s :

y i e l d l i n k

def conta in s ( s e l f , l i n k s , machine ) :
pn = machine . printname ( )
for l i n k in l i n k s :

i f l i n k == pn or ( pn in l i n k and isinstance ( l ink , tuple ) ) :
s e l f . l og ( ’ l i n k "{0}" i s / conta in s name "{1}" ’ . format ( l ink , pn ) )
return True

else :
return False

class GraphSimi lar i ty ( ) :
@staticmethod
def graph_s imi l a r i ty ( graph1 , graph2 ) :

return j a c c a r d ( graph1 . edges , graph2 . edges )

@staticmethod
def o ld_graph_s imi lar i ty ( graph1 , graph2 ) :

sim1 , ev1 = GraphSimi lar i ty . supported_score ( graph1 , graph2 )
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sim2 , ev2 = GraphSimi lar i ty . supported_score ( graph2 , graph1 )
i f sim1 + sim2 > 0 :

pass
# l o g g i n g . i n f o ( ’ ev idence s e t s : {0} , {1} ’ . format ( ev2 , ev2 ) )

return harmonic_mean ( ( sim1 , sim2 ) )

@staticmethod
def supported_score ( graph , context_graph ) :

edge_count = len ( graph . edges )
supported = graph . edges . i n t e r s e c t i o n ( context_graph . edges )
return len ( supported ) / f loat ( edge_count ) , supported

@staticmethod
def old_supported_score ( graph , context_graph ) :

zero_count , zero_supported , bin_count , bin_supported = 0 , 0 , 0 , 0
ev idence = [ ]
b i n a r i e s = d e f a u l t d i c t ( set )

# l o g g i n g . i n f o ( ’ con tex t edges : {0} ’ . format ( context_graph . edges ) )
for edge in graph . edges :

# l o g g i n g . i n f o ( ’ t e s t i n g edge : {0} ’ . format ( edge ) )
i f edge [ 2 ] == 0 :

zero_count += 1
i f edge in context_graph . edges :

# l o g g i n g . i n f o ( ’ supported 0−edge : {0} ’ . format ( edge ) )
ev idence . append ( edge )
zero_supported += 1

else :
b i n a r i e s [ edge [ 0 ] ] . add ( edge )

for binary , edges in b i n a r i e s . i t e r i t e m s ( ) :
bin_count += 1
i f a l l ( edge in context_graph . edges for edge in edges ) :

# l o g g i n g . i n f o ( ’ supported b inary : {0} ’ . format ( edges ) )
ev idence . append ( edges )
bin_supported += 1

i f zero_count + bin_count == 0 :
l o g g i n g . warning ( " nothing to support : {0} " . format ( graph ) )
return 0 . 0 , [ ]

return ( zero_supported + bin_supported ) / f loat (
zero_count + bin_count ) , ev idence

class SimComparer ( ) :
def __init__ ( s e l f , c f g _ f i l e , batch=True ) :

s e l f . c o n f i g _ f i l e = c f g _ f i l e
s e l f . c o n f i g = Conf igParser ( )
s e l f . c o n f i g . read ( c f g _ f i l e )
s e l f . get_vec_sim ( )
s e l f . get_machine_sim ( batch )

def get_vec_sim ( s e l f ) :
model_fn = s e l f . c o n f i g . get ( ’ v e c t o r s ’ , ’ model ’ )
model_type = s e l f . c o n f i g . get ( ’ v e c t o r s ’ , ’ model_type ’ )
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l o g g i n g . warning ( ’ Loading model : {0} ’ . format ( model_fn ) )
i f model_type == ’ word2vec ’ :

s e l f . vec_model = Word2Vec . load_word2vec_format ( model_fn ,
b inary=True )

e l i f model_type == ’ gensim ’ :
s e l f . vec_model = Word2Vec . load ( model_fn )

else :
raise Exception ( ’Unknown LSA model format ’ )

l o g g i n g . warning ( ’ Model loaded : {0} ’ . format ( model_fn ) )

def vec_sim ( s e l f , w1 , w2) :
i f w1 in s e l f . vec_model and w2 in s e l f . vec_model :

return s e l f . vec_model . s i m i l a r i t y (w1 , w2)
return None

def get_machine_sim ( s e l f , batch ) :
wrapper = MachineWrapper (

s e l f . c o n f i g _ f i l e , include_longman=True , batch=batch )
s e l f . sim_wrapper = WordSimilar ity ( wrapper )

def sim ( s e l f , w1 , w2) :
return s e l f . sim_wrapper . word_s imi lar i ty (w1 , w2 , −1, −1)

def get_words ( s e l f ) :
s e l f . words = set ( (

l i n e . s t r i p ( ) . decode ( " utf−8" ) for l i n e in open(
s e l f . c o n f i g . get ( ’ words ’ , ’ word_f i l e ’ ) ) ) )

l o g g i n g . warning ( ’ read {0} words ’ . format ( len ( s e l f . words ) ) )

def get_machine_sims ( s e l f ) :
s i m _ f i l e = s e l f . c o n f i g . get ( ’ machine ’ , ’ s i m _ f i l e ’ )
s e l f . machine_sims = {}
out = open( s im_f i l e , ’w ’ )
count = 0
for w1 , w2 in s e l f . sorted_word_pairs :

i f count % 100000 == 0 :
l o g g i n g . warning ( " {0} p a i r s done " . format ( count ) )

sim = s e l f . sim (w1 , w2)
i f sim i s None :

l o g g i n g . warning (
u " sim i s None f o r non−ooovs : {0} and {1} " . format (w1 , w2) )

l o g g i n g . warning ( " t r e a t i n g as 0 to avoid problems " )
s e l f . machine_sims [ ( w1 , w2) ] = 0

else :
s e l f . machine_sims [ ( w1 , w2) ] = sim

count += 1
out . wr i t e (

u " {0}_{1}\ t {2}\n " . format (w1 , w2 , sim ) . encode ( ’ ut f−8 ’ ) )
out . c l o s e ( )

def get_vec_sims ( s e l f ) :
s i m _ f i l e = s e l f . c o n f i g . get ( ’ v e c t o r s ’ , ’ s i m _ f i l e ’ )
out = open( s im_f i l e , ’w ’ )
s e l f . vec_sims = {}
for w1 , w2 in s e l f . sorted_word_pairs :

158



vec_sim = s e l f . vec_sim (w1 , w2)
s e l f . vec_sims [ ( w1 , w2) ] = vec_sim
out . wr i t e (

u " {0}_{1}\ t {2}\n " . format (w1 , w2 , vec_sim ) . encode ( ’ ut f−8 ’ ) )
out . c l o s e ( )

def get_sims ( s e l f ) :
s e l f . get_words ( )
s e l f . non_oov = set (

( word for word in s e l f . words i f word in s e l f . vec_model ) )

l o g g i n g . warning (
’ kept {0} words a f t e r d i s c a r d i n g those not in embedding ’ . format (

len ( s e l f . non_oov ) ) )

l o g g i n g . warning ( ’ lemmatiz ing words to determine machine−OOVs . . . ’ )
s e l f . non_oov = set (

( word for word in s e l f . non_oov
i f s e l f . sim_wrapper . lemmatizer . lemmatize (

word , d e f i n e d=s e l f . sim_wrapper . machine_wrapper . d e f i n i t i o n s ,
s t em_f i r s t=True , uppercase=True ) i s not None ) )

l o g g i n g . warning (
’ kept {0} words a f t e r d i s c a r d i n g those not in machine sim ’ . format (

len ( s e l f . non_oov ) ) )

s e l f . sorted_word_pairs = set ( )
for w1 in s e l f . non_oov :

for w2 in s e l f . non_oov :
i f w1 != w2 and w1 == sorted ( [ w1 , w2 ] ) [ 0 ] :

s e l f . sorted_word_pairs . add ( ( w1 , w2) )

s e l f . get_machine_sims ( )
s e l f . get_vec_sims ( )

def compare ( s e l f ) :
s ims = [ s e l f . machine_sims [ p a i r ] for p a i r in s e l f . sorted_word_pairs ]
vec_sims = [ s e l f . vec_sims [ p a i r ] for p a i r in s e l f . sorted_word_pairs ]

pearson = pearsonr ( sims , vec_sims )
print " compared {0} d i s t a n c e p a i r s . " . format ( len ( s ims ) )
print " Pearson−c o r r e l a t i o n : {0} " . format ( pearson )

def main_compare ( c f g ) :
comparer = SimComparer ( c f g )
comparer . get_sims ( )
comparer . compare ( )

def main_sen_sim ( c f g ) :
graph_dir = c f g . get ( " sim " , " graph_dir " )
dep_dir = c f g . get ( " sim " , " deps_dir " )
ensure_dir ( graph_dir )
ensure_dir ( dep_dir )
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text_to_4lang = TextTo4lang ( c f g )
for i , l i n e in enumerate( sys . s t d i n ) :

p r e p ro ce s s e d _l i ne = l i n e . decode ( ’ ut f−8 ’ ) . s t r i p ( ) . lower ( )
sen1 , sen2 = p r ep r oc e s s ed _ l i n e . s p l i t ( ’ \ t ’ )
machines1 = text_to_4lang . p r o c e s s (

sen1 , dep_dir=dep_dir , fn=" {0}a " . format ( i ) )
machines2 = text_to_4lang . p r o c e s s (

sen2 , dep_dir=dep_dir , fn=" {0}b " . format ( i ) )

print_text_graph ( machines1 , graph_dir , fn=" {0}a " . format ( i ) )
print_text_graph ( machines2 , graph_dir , fn=" {0}b" . format ( i ) )

graph1 , graph2 = map(
MachineGraph . create_from_machines ,
( machines1 . va lue s ( ) , machines2 . va lue s ( ) ) )

print GraphSimi lar i ty . g raph_s imi l a r i ty ( graph1 , graph2 )

# text_to_4lang . dep_to_4lang . lemmatizer . write_cache ()

def get_test_pa i r s ( fn ) :
p a i r s = {}
for l i n e in open( fn ) :

w1 , w2 , sim_str = l i n e . decode ( ’ ut f−8 ’ ) . s t r i p ( ) . s p l i t ( ’ \ t ’ )
p a i r s [ ( w1 , w2) ] = f loat ( sim_str ) / 10

return p a i r s

def main_word_test ( c f g ) :
from s c i p y . s t a t s . s t a t s import pearsonr
word_sim = WordSimilar ity ( c f g )

# TODO: only t e s t i n g
# machine = word_sim . l e x i c o n . get_machine ( ’ merry−go−round ’)
# l i n k s , nodes = word_sim . get_l inks_nodes ( machine )

t e s t _ p a i r s = get_test_pa i r s ( c f g . get ( ’ sim ’ , ’ word_test_data ’ ) )
sims , gold_sims = [ ] , [ ]
for (w1 , w2) , gold_sim in t e s t _ p a i r s . i t e r i t e m s ( ) :

sim = word_sim . word_s imi lar i ty (w1 , w2 , ’ foo ’ , ’ f oo ’ ) # dummy POS−t a g s
i f sim i s None :

continue
gold_sims . append ( gold_sim )
sims . append ( sim )
print " {0}\ t {1}\ t {2}\ t {3}\ t {4} " . format (

w1 , w2 , gold_sim , sim , math . f abs ( sim−gold_sim ) )

print " Pearson : {0} " . format ( pearsonr ( gold_sims , sims ) )

def main ( ) :
l o g g i n g . bas i cCon f i g (

l e v e l=l o g g i n g . INFO,
format="%(asct ime ) s : " +
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"%(module ) s (%( l i n e n o ) s ) − %(levelname ) s − %(message ) s " )

c f g _ f i l e = sys . argv [ 1 ] i f len ( sys . argv ) > 1 else None
c f g = get_cfg ( c f g _ f i l e )
sim_type = c f g . get ( ’ sim ’ , ’ s i m i l a r i t y _ t y p e ’ )
i f sim_type == ’ sentence ’ :

main_sen_sim ( c f g )
e l i f sim_type == ’ word ’ :

raise Exception ( " main f u n c t i o n f o r word sim not implemented yet " )
e l i f sim_type == ’ word_test ’ :

main_word_test ( c f g )
else :

raise Exception ( ’ unknown s i m i l a r i t y type : {0} ’ . format ( sim_type ) )

i f __name__ == ’__main__ ’ :
# import c P r o f i l e
# c P r o f i l e . run ( ’ main () ’ )
main ( )

Feature generation based on 4lang subgraphs takes place in the SimFeats module, which
also implements some recent experimental features:
import l o g g i n g
from pymachine . u t i l s import MachineGraph , j a c c a r d

import networkx as nx
import networkx . a lgor i thms . isomorphism as i s o
import i t e r t o o l s
import os . path

class SimFeatures :
def __init__ ( s e l f , c fg , s e c t i o n , l e x i c o n ) :

s e l f . l e x i c o n = l e x i c o n
s e l f . batch = c f g . getboo lean ( s e c t i o n , ’ batch ’ )
s e l f . feats_to_get = c f g . get ( s e c t i o n , ’ sim_types ’ ) . s p l i t ( ’ | ’ )
s e l f . f e a t s _ d i c t = {

’ l i n k s _ j a c c a r d ’ : [ ’ l i n k s _ j a c c a r d ’ ] ,
’ e n t i t i e s _ j a c c a r d ’ : [ ’ e n t i t i e s _ j a c c a r d ’ ] ,
’ nodes_jaccard ’ : [ ’ nodes_jaccard ’ ] ,
’ l i nks_conta in ’ : [ ’ l i nks_conta in ’ ] ,
’ nodes_contain ’ : [ ’ nodes_contain ’ ] ,
’0−connected ’ : [ ’0−connected ’ ] ,
’ is_antonym ’ : [ ’ is_antonym ’ ] ,
’ subgraphs ’ : [ ’ subgraph_3N ’ ] ,
’ f u l l g r a p h ’ : [ ’ shortest_path ’ ]

}

s e l f . shortest_path_fi le_name = c f g . get ( s e c t i o n , ’ shortest_path_res ’ )
i f not os . path . i s f i l e ( s e l f . shortest_path_fi le_name ) or c f g . getboo lean ( s e c t i o n , ’

ca lc_shortest_path ’ ) :
s e l f . calc_path = True
shortest_path_dir = os . path . dirname ( s e l f . shortest_path_fi le_name )
i f not os . path . e x i s t s ( shortest_path_dir ) :

os . makedirs ( shortest_path_dir )
s e l f . shortest_path_res = open( s e l f . shortest_path_fi le_name , ’w ’ )
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else :
s e l f . calc_path = False

i f ’ f u l l g r a p h ’ in s e l f . feats_to_get :
s e l f . fu l l_graph = s e l f . l e x i c o n . get_ful l_graph ( )
print "NODES count : {0} " . format ( len ( s e l f . fu l l_graph . nodes ( ) ) )
print "EDGES count : {0} " . format ( len ( s e l f . fu l l_graph . edges ( ) ) )
s e l f .UG = s e l f . fu l l_graph . to_undirected ( )

def g e t _ a l l _ f e a t u r e s ( s e l f , graph1 , graph2 ) :
a l l _ f e a t s = dict ( )
for f in s e l f . feats_to_get :

a l l _ f e a t s . update ( s e l f . g e t_fea ture_c la s s ( f , graph1 , graph2 ) )
return a l l _ f e a t s

def ge t_feature_c la s s ( s e l f , feature_name , graph1 , graph2 ) :
i f feature_name == ’ l i n k s _ j a c c a r d ’ :

return s e l f . l i n k s _ j a c c a r d ( graph1 . links_expand , graph2 . l inks_expand )
e l i f feature_name == ’ e n t i t i e s _ j a c c a r d ’ :

return s e l f . e n t i t i e s s _ j a c c a r d ( graph1 . links_expand , graph2 . l inks_expand )
e l i f feature_name == ’ nodes_jaccard ’ :

return s e l f . nodes_jaccard ( graph1 . nodes_expand , graph2 . nodes_expand )
e l i f feature_name == ’ l inks_conta in ’ :

return s e l f . l i nks_conta in ( graph1 . name , graph1 . links_expand , graph2 . name ,
graph2 . l inks_expand )

e l i f feature_name == ’ nodes_contain ’ :
return s e l f . nodes_contain ( graph1 . name , graph1 . nodes_expand , graph2 . name ,

graph2 . nodes_expand )
e l i f feature_name == ’0−connected ’ :

return s e l f . zero_connected ( graph1 . name , graph1 . l i n k s , graph1 . links_expand ,
graph2 . name , graph2 . l i n k s , graph2 . l inks_expand )

e l i f feature_name == ’ is_antonym ’ :
return s e l f . is_antonym ( graph1 . name , graph1 . nodes_expand , graph2 . name , graph2 .

nodes_expand )
e l i f feature_name == ’ subgraphs ’ :

return s e l f . subgraphs ( graph1 . machine , graph2 . machine )
e l i f feature_name == ’ f u l l g r a p h ’ :

return s e l f . f u l l g r a p h ( graph1 . name , graph2 . name)
else :

return { feature_name : 0 }

def l i n k s _ j a c c a r d ( s e l f , l i n k s 1 , l i n k s 2 ) :
return { " l i n k s _ j a c c a r d " : j a c c a r d ( l i n k s 1 , l i n k s 2 ) }

def e n t i t i e s s _ j a c c a r d ( s e l f , l i n k s 1 , l i n k s 2 ) :
e n t i t i e s 1 = f i l t e r (lambda l : "@" in l , l i n k s 1 )
e n t i t i e s 2 = f i l t e r (lambda l : "@" in l , l i n k s 2 )
return { ’ e n t i t i e s _ j a c c a r d ’ : j a c c a r d ( e n t i t i e s 1 , e n t i t i e s 2 ) }

def nodes_jaccard ( s e l f , nodes1 , nodes2 ) :
return { " nodes_jaccard " : j a c ca r d ( nodes1 , nodes2 ) }

def l i nks_conta in ( s e l f , name1 , l i n k s 1 , name2 , l i n k s 2 ) :
va l = −1
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i f ( s e l f . c onta in s ( l i n k s 1 , name2 ) or
s e l f . c onta in s ( l i n k s 2 , name1 ) ) :

va l = 1
return { " l inks_conta in " : va l }

def nodes_contain ( s e l f , name1 , nodes1 , name2 , nodes2 ) :
va l = −1
i f ( s e l f . c onta in s ( nodes1 , name2 ) or

s e l f . c onta in s ( nodes2 , name1 ) ) :
va l = 1

return { " nodes_contain " : va l }

def zero_connected ( s e l f , name1 , l i n k s 1 , l inks1_expand , name2 , l i n k s 2 , l inks2_expand ) :
va l = −1
i f name1 in l i n k s 2 or name2 in l i n k s 1 :

va l = 1
r e t = { "0−connected " : va l }
va l2 = −1
i f va l == −1:

i f name1 in l inks2_expand or name2 in l inks1_expand :
va l2 = 1

return r e t

def is_antonym ( s e l f , name1 , nodes1 , name2 , nodes2 ) :
is_antonym = −1
i f ( " lack_ " + name1 in nodes2 and name1 not in nodes2 ) :

is_antonym = 1
e l i f ( " lack_ " + name2 in nodes1 and name2 not in nodes1 ) :

is_antonym = 1
return { " is_antonym " : is_antonym }

def subgraphs ( s e l f , machine1 , machine2 ) :
temp = SubGraphFeatures ( machine1 , machine2 , 5)
return temp . subgraph_dict

def f u l l g r a p h ( s e l f , name1 , name2 ) :
####################
# Only f o r c a l c u l a t i n g s h o r t e s t path
####################
i f s e l f . calc_path :

l ength = 0
i f name1 not in s e l f .UG. nodes ( ) or name2 not in s e l f .UG. nodes ( ) :

return { " shortest_path " : l ength }
i f nx . has_path ( s e l f .UG, name1 , name2 ) :

path = nx . shortest_path ( s e l f .UG, name1 , name2 )
l ength = len ( path )
print "PATH: " + name1 + " " + name2
print path
print l ength
s e l f . shortest_path_res . wr i t e ( " \ t " . j o i n ( path ) )
s e l f . shortest_path_res . wr i t e ( " \n " )

else :
l ength = s e l f . l e x i c o n . get_shortest_path (name1 , name2 , s e l f .

shortest_path_fi le_name )
return { " shortest_path " : l ength }
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def conta in s ( s e l f , l i n k s , name) :
for l i n k in l i n k s :

i f l i n k == name or (name in l i n k and isinstance ( l ink , tuple ) ) :
s e l f . l og ( ’ l i n k "{0}" i s / conta in s name "{1}" ’ . format ( l ink , name) )
return True

else :
return False

def u n i f o r m _ s i m i l a r i t i e s ( s e l f , s ) :
temp_dict = dict ( )
for sim_type in s e l f . feats_to_get :

for feat_type in s e l f . f e a t s _ d i c t [ sim_type ] :
temp_dict [ feat_type ] = s

return temp_dict

def z e r o _ s i m i l a r i t i e s ( s e l f ) :
return s e l f . u n i f o r m _ s i m i l a r i t i e s ( 0 . 0 )

def o n e _ s i m i l a r i t i e s ( s e l f ) :
return s e l f . u n i f o r m _ s i m i l a r i t i e s ( 1 . 0 )

def l og ( s e l f , s t r i n g ) :
i f not s e l f . batch :

l o g g i n g . i n f o ( s t r i n g )

class MachineInfo ( ) :
def __init__ ( s e l f , machine , nodes , nodes_expand , l i n k s , l inks_expand ) :

s e l f . name = machine . printname ( )
s e l f . machine = machine
s e l f . nodes = nodes
s e l f . l i n k s = l i n k s
s e l f . nodes_expand = nodes_expand
s e l f . l inks_expand = links_expand

class SubGraphFeatures ( ) :
def __init__ ( s e l f , machine1 , machine2 , max_depth ) :

G1 = MachineGraph . create_from_machines ( [ machine1 ] , max_depth=max_depth )
G2 = MachineGraph . create_from_machines ( [ machine2 ] , max_depth=max_depth )
name1 = machine1 . printname ( )
name2 = machine2 . printname ( )

s e l f . subgraph_dict = dict ( )
# s e l f . subgraph_dict . update ( s e l f . _get_subgraph_N (G1.G, G2.G, name1 , name2) )
# s e l f . subgraph_dict . update ( s e l f . _get_subgraph_N_X_N(G1.G, G2.G, name1 , name2) )
s e l f . subgraph_dict . update ( s e l f . _get_subgraph_3_nodes (G1 .G, G2 .G, name1 , name2 ) )

# TODO: not u s e f u l
def _get_subgraph_N ( s e l f , graph1 , graph2 , name1 , name2 ) :

r e t = 0
subgraphs1 = s e l f . _get_subgraphs ( graph1 , name1 , 1)
subgraphs2 = s e l f . _get_subgraphs ( graph2 , name2 , 1)

for r in i t e r t o o l s . product ( subgraphs1 , subgraphs2 ) :
GM = nx . a lgor i thms . isomorphism . GraphMatcher ( r [ 0 ] , r [ 1 ] ,
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node_match=i s o .
categorical_node_match ( [ ’
str_name ’ ] , [ ’name ’ ] ) ,

edge_match=i s o .
numerical_edge_match ( [ ’ c o l o r
’ ] , [−1]) )

i f GM. is_isomorphic ( ) :
is_upper = False
for n , d in r [ 0 ] . nodes_iter ( data=True ) :

i f d [ ’ str_name ’ ] . i supper ( ) :
is_upper = True

i f not is_upper :
r e t = 1

return { ’ subgraph_N ’ : r e t }

def _get_subgraph_N_X_N( s e l f , graph1 , graph2 , name1 , name2 ) :
r e t = {

’subgraph_N_0_N ’ : 0
}
# TODO: not worth count ing a l l o f them
# r e t = {
# ’subgraph_N_0_N ’ : 0 ,
# ’subgraph_N_1_N ’ : 0 ,
# ’subgraph_N_2_N ’ : 0
# }
subgraphs1 = s e l f . _get_subgraphs ( graph1 , name1 , 2)
subgraphs2 = s e l f . _get_subgraphs ( graph2 , name2 , 2)

for r in i t e r t o o l s . product ( subgraphs1 , subgraphs2 ) :
GM = nx . a lgor i thms . isomorphism . GraphMatcher ( r [ 0 ] , r [ 1 ] ,

node_match=i s o .
categorical_node_match ( [ ’
str_name ’ ] , [ ’name ’ ] ) ,

edge_match=i s o .
numerical_edge_match ( [ ’ c o l o r
’ ] , [−1]) )

i f GM. is_isomorphic ( ) :
for u , v , d in r [ 0 ] . edges ( data=True ) :

i f d [ ’ c o l o r ’ ] == 0 :
r e t [ ’ subgraph_N_0_N ’ ] += 1
# p r i n t u + " " + v + " 0"

# TODO: appears to be unuse fu l
# e l i f d [ ’ c o l o r ’ ] == 1:
# r e t [ ’ subgraph_N_1_N ’ ] += 1
# # p r i n t u + " " + v + " 1"
# e l i f d [ ’ c o l o r ’ ] == 2:
# r e t [ ’ subgraph_N_2_N ’ ] += 1
# # p r i n t u + " " + v + " 2"

return r e t

# TODO: not u s e f u l
def _get_subgraph_3_nodes ( s e l f , graph1 , graph2 , name1 , name2 ) :

r e t = {
’ subgraph_3N ’ : 0

}
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subgraphs1 = s e l f . _get_subgraphs ( graph1 , name1 , 3)
subgraphs2 = s e l f . _get_subgraphs ( graph2 , name2 , 3)

for r in i t e r t o o l s . product ( subgraphs1 , subgraphs2 ) :
GM = nx . a lgor i thms . isomorphism . GraphMatcher ( r [ 0 ] , r [ 1 ] ,

node_match=i s o .
categorical_node_match ( [ ’
str_name ’ ] , [ ’name ’ ] ) ,

edge_match=i s o .
numerical_edge_match ( [ ’ c o l o r
’ ] , [−1]) )

i f GM. is_isomorphic ( ) :
r e t [ ’ subgraph_3N ’ ] += 1

return r e t

def _get_subgraphs ( s e l f , graph , name , s i z e =3) :
subgraphs = set ( )
# p r i n t "\ nSubgraphs START: " + name
t a r g e t = nx . complete_graph ( s i z e )
for sub_nodes in i t e r t o o l s . combinat ions ( graph . nodes ( ) , len ( t a r g e t . nodes ( ) ) ) :

subg = graph . subgraph ( sub_nodes )
i f nx . is_weakly_connected ( subg ) :

# p r i n t subg . edges ()
subgraphs . add ( subg )

# p r i n t " Subgraphs END \n"
return subgraphs

def t e s t ( ) :
s f = SimFeatures ( )
print s f . g e t _ a l l _ f e a t u r e s ( )

i f __name__ == "__main__" :
t e s t ( )

7.9 Configuration

All 4lang modules can be configured using standard Python configuration files, command
line parameters have been avoided nearly everywhere. All parameters left unspecified in
the cfg file passed to a module will be set to the values specified in default.cfg. If no
configuration file is passed, defaults are used everywhere, running simple tests for most
modules on data in the test/input directory. Options are documented in default.cfg,
see Appendix A.
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Chapter 8

Outlook

This chapter outlines our future plans for using 4lang to solve some of the most challenging
tasks in computational semantics. In Section 8.1 we mention some outstanding issues in
the 4lang library which we plan to address in the near future. We shall then proceed
to briefly discuss the tasks of measuring sentence similarity and entailment (Section 8.2),
question answering (Section 8.3), and semantics-based parsing (Section 8.4), arguing that
each of these should be approached via the single generic task of determining the likelihood
of some 4lang representation based on models of context trained on other 4lang graphs
relevant to the task at hand (the context). Our plans for such a generic component are
outlined in Section 8.5. Finally, Section 8.6 will discuss ways to exploit existing sources
of both linguistic and extra-linguistic knowledge in the 4lang system by converting them
to 4lang constructions and graphs, respectively.

8.1 Outstanding issues

8.1.1 True homonyms

At present we do not treat multiple entries for the same word, e.g.

• club1: an organization for people who share a particular interest or enjoy similar
activities, or a group of people who meet together to do something they are interested
in

• club2: a long thin metal stick used in golf to hit the ball

• club3: one of the four suits in a set of playing cards, which has the design of three
round black leaves in a group together
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In the future these will have to be accommodated by three separate 4lang concepts. We
will still not require a separate word sense disambiguation process, we shall rely on the
spreading activation process to select exactly one entry upon encountering the surface
form club.

8.1.2 Alternate word forms, synonyms

When processing dictionaries with dict_to_4lang, we do not currently handle defi-
nitions that consist of a single synonym of the headword. Resulting graphs such as
purchase 0−→ buy are adequate representations of meaning, since the 0-edge warrants
inheritence of all links, but explicitly replacing such words with their synonyms may have
its practical advantages. The Collins Dictionary also lists alternate forms of many head-
words, these could also be added to the concept dictionary, e.g. realise could point to the
graph built from the definition of realize. Sometimes dictionaries give identical definitions
for (perfect) synonyms, e.g. Longman defines both vomit and upchuck as to bring food
or drink up from your stomach and out through your mouth because you are ill or drunk.
Such duplicates can be detected to add the edges vomit

0
⇀↽
0

upchuck.

8.2 Sentence similarity and entailment

In Sections 6.1 and 6.2 we have introduced measures of semantic similarity between words
based on their 4lang definitions which helped achieve state of the art performance on the
tasks of measuring word similarity. Most top STS systems reduce the task of measuring
textual similarity to that of word similarity, and lexical resources such as WordNet and sur-
face features such as character-based similarity play an important role in most approaches.
Our current systems are no exception. We believe that the task of directly quantifying the
similarity of two meaning representations amounts to detecting entailment between parts
of such representations. The nature of the similarity scale (e.g. what it means for two
sentences to be 70% similar) is unclear, but it can be assumed that (i) if two sentences
S1 and S2 are perfectly similar (i.e. mean exactly the same thing), then each of them
must entail the other, and (ii) if S1 and S2 are similar to some extent then there must be
exist some substructures of the meanings of S1 and S2 such that these substructures are
perfectly similar, i.e. entail each other. The connection between STS and RTE tasks has
recently been made by (Vo & Popescu, 2016), who present a corpus annotated for both
semantic relatedness and entailment, measure correlation between the two sets of scores,
and propose a joint architecture for simultaneously performing the two tasks.
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The nature of these substructures is less obvious. A straightforward approach is to
consider subgraphs, and assume that similarity of two representations is connected to
the intersection of graphs (i.e. the intersection of the sets of edges over the intersection
of the sets of nodes). For example, the sentences John walks and John runs, when in-
terpreted in 4lang and properly expanded, will map to graphs that share the subgraph
John

0
⇀↽
1

move 1←− INSTRUMENT 2−→ foot. Other common configurations between graphs
can also warrant similarity, e.g. John walks with a stick and John fights with a stick both
map to John

0
⇀↽
1

X 1←− INSTRUMENT 2−→ stick for some X. If our notion of similarity could
refer to shared subgraphs only, no connection could be made between John and stick and
these sentences could not be judged more similar to each other than to virtually any
sentence about John or about a stick being an instrument. We are therefore inclined to
include such common templates in determining the similarity of two 4lang graphs – tem-
plates are essentially graphs with some unspecified nodes. The number of such templates
matching a given graph grows exponentially with the number of nodes, but we can expect
the relevant templates to be of limited size and a search for common templates in two
graphs seems feasible1.

If similarity can be defined in terms of common substructures of 4lang graphs, a
definition of entailment can follow that takes into account the substructures in one graph
that are also present in the other. Simply put, John walks entails John moves because
the representation of the latter, John

0
⇀↽
1

move, is contained in that of the former, but
entailment does not hold the other way round, because many edges for John walks are
left uncovered by John moves, e.g. those in move 1←− INSTRUMENT 2−→ foot. Since this
asymmetric relationship between graphs – the ratio of templates in one that are present
in the other – is also of a gradual nature, it is more intuitive to think of it as the extent
to which some utterance supports the other – the term entailment is typically used as a
strictly binary concept. John moves may not entail John walks, it nevertheless supports
it to a greater extent than e.g. John sings.

How similarity and support between 4lang graphs should be measured exactly cannot
be worked out without considerable experimenting (we are trying to approximate human
judgment, as in the case of the STS task in Section 6.1), what we argued for here is that
4lang representations are powerful and expressive enough that the semantic relatedness
of utterances can be measured through them effectively.

1 The 4lang theory of representing meaning using networks of Eilenberg machines – of which our
graphs are simplifications – will have the machines walk and fight inherit all properties of all machines
to which they have pointers on their 0th partition; in other words they will end up with all properties of
concepts that are accessible through a path of IS_A relationships, and will probably share at least some
very generic properties such as voluntary action. The machine-equivalent of templates could then be
networks of machines whose sets of properties do not necessarily contain all properties of any concept.
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8.3 Question Answering

In the previous section we discussed the task of measuring the extent to which one utter-
ance supports another – a relationship that differs from entailment in being gradual. A
workable measure of support can take part in question answering: it can be used to rank
candidates in order to determine answers that are more supported by a given context.
There remains the task of finding candidates that are relevant answers to the question
asked. The text_to_4lang pipeline offers no special treatment for questions. A wh-
question such as Who won the 2014 World Cup are handled by all components in the
same way as indicatives, creating e.g. the edges who 1←− win 2−→ cup. Yes-no questions are
simply not detected as such, Did Germany win the 2014 World Cup and Germany won the
2014 World Cup will map to the same 4lang graph. In the future we plan to experiment
with simple methods for finding candidates: e.g. searching for wh-questions allows us to
identify the template X 1←− win 2−→ cup(...) and match it against graphs already in the
context; we shall discuss how such a context might be modeled in Section 8.5.

8.4 Parsing in 4lang

For the purposes of the 4lang modules and applications presented in this thesis, we relegate
syntactic analysis to dependency parsers. In Section 4.4.1 we have seen examples of errors
introduced by the parsing component, and in sections on evaluation we observed that they
are in fact the single greatest source of errors in most of our applications. Our long-term
plans for the 4lang library include an integrated module for semantics-assisted parsing.
Since most of our plans are unimplemented (with the exception of some early experiments
documented in (Nemeskey et al., 2013)), here we shall only provide a summary of our
basic ideas.

Since generic parsing remains a challenging task in natural language processing, many
NLP applications rely on the output of chunkers for high-accuracy syntactic information
about a sentence. Chunkers typically identify the boundaries of phrases at the lowest
level of the constituent structure, e.g. in the sentence A 61-year old furniture salesman
was pushed down the shaft of a freight elevator they would identify the noun phrases [A
61-year old furniture salesman], [the shaft], and [freight elevator]. Since chunking can
be performed with high accuracy across languages ((Kudo & Matsumoto, 2001; Recski
& Varga, 2010)), and some of our past experiments suggest that the internal syntactic
structure of chunks can also be detected with high accuracy (Recski, 2014), our first goal
for 4lang is to detect phrase-internal semantic relations directly.
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The aim of parsing with 4lang is to make the process sensitive to (lexical) semantics.
Currently the phrase blue giraffe would be mapped to the graph giraffe 0−→ blue on the
basis of the dependency relation amod(giraffe, blue), warranted by a particular frag-
ment of the parse-tree, something along the lines of [NP [A blue] [N giraffe ] ], which is again
constructed with little or no regard to the semantics of blue or giraffe. The architecture
we propose would still make use of the constituent structure of phrases, but it would create
a connection between blue giraffe and giraffe 0−→ blue by means of a construction that
pairs the rewrite rule NP → A N with the operation that adds the 0-edge between the con-
cepts corresponding to the words blue and giraffe2. Since many dependency parsers, among
them the Stanford Parser used by dict_to_4lang, derive their analyses from parse trees
using template matching, it seems reasonable to assume that a direct mapping between
syntactic patterns and 4lang configurations can also be implemented straightforwardly.
The task of ranking competing parse trees can then be supplemented by some module
that ranks 4lang representations by likelihood; what likelihood means and how such a
module could be designed is discussed in Section 8.5. Thus, the problem of resolving
ambiguities such as the issue of PP-attachment discussed in Section 4.4.1, e.g. to parse
the sentence He ate spaghetti with meatballs, becomes no more difficult then predicting
that eat 2−→ meatball is significantly more likely than eat 1←− INSTRUMENT 2−→ meatballs.
If we plan to make such predictions based on statistics over 4lang representations seen
previously, our approach can be seen as the semantic counterpart of data-oriented pars-
ing (Bod, 2008), a theory that estimates the likelihood of syntactic parses based on the
likelihood of its substructures, learned from structures in some training data.

8.5 Likelihood of 4lang representations

We have proposed the notion of support, the extent to which parts of one utterance entail
parts of another, in Section 8.2, and we have also indicated in Section 8.3 that we require a
model of context that allows us to measure the extent to which the context supports some
utterance. Finally, in Section 8.4, we argued that a method for ranking 4lang (sub)graphs
by the extent to which the context supports them could be used to improve the quality
of syntactic parsing and thereby reduce errors in the entire text_to_4lang pipeline. We
shall refer to this measure as the likelihood of some 4lang graph (given some context);
we conclude this chapter by presenting our ideas for the design of a future 4lang module

2As mentioned in Section 3.1, the directed graphs used throughout this thesis are simplifications of
our formalism; the constructions in 4lang actually map surface patterns to operations over Eilenberg-
machines, in this case one that places a pointer to a blue machine on the 0th partition of a giraffe
machine
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that models context and measures likelihood. Given a system capable of comparing the
likelihoods of competing semantic representations, we will have a chance of successfully
addressing more complex tasks in artificial intelligence, such as the Winograd-schema
Challenge (Levesque et al., 2011).

8.5.1 A probabilistic approach

In Section 8.2 we introduced 4lang templates – sets of concepts and paths of edges between
them – as the structures shared by 4lang graphs that are semantically related. Templates
are more general structures than subgraphs, two graphs may share many templates over
a set of nodes in spite of having only few shared edges; a previous example was the pair
of sentences John walks with a stick and John fights with a stick, sharing the template
John

0
⇀↽
1

X 1←− INSTRUMENT 2−→ stick. Our initial approach is to think of the likelihood
of some graph as some product of the likelihood of matching templates, given a model of
the context. We believe that both the likelihood of templates in some context and the way
they can be combined to obtain the likelihood of an utterance should be learned from the
set of 4lang graphs associated with the context. E.g. if we are to establish the likelihood
of the utterance Germany won the 2014 World Cup and the context is a set of 4lang
graphs obtained by processing a set of newspaper articles on sports using text_to_4lang,
our answer should be based on (i) the frequency of templates in the target 4lang graph,
as observed in the set of context graphs and (ii) our knowledge of how important each
template is, e.g. based on their overall frequency in the context or among all occurrences
over their sets of nodes3.

In theory there is an enormous number of templates to consider over some graph
(doubly exponential in the number of nodes), but the search space can be effectively
reduced in a fashion similar to the way standard language modeling reduces the space of
all possible word sequences to that of trigrams. If e.g. we consider templates of no more
than 4 nodes, and we use expansion to reduce all graphs to some form of ‘plain English’
with a vocabulary no greater than 105 (in (Kornai et al., 2015) we have shown that an even
greater reduction is possible, by iterative expansion 4lang representations can be reduced
to 129 primitives, possibly fewer), then the number of node sets will remain in the 1015

range, and while the total number of theoretically possible 4lang graphs over 4 nodes is
as high as 26(4

2) ≈ 1012, we cannot expect to observe more than a fraction of them: the
3 At this point we must note that likelihood is not (directly related to) truth; in fact none of our

previous discussions leading up to this notion makes reference to truth. Neither do we suggest that
calculating likelihood can take the place of inference – a context may entail or contradict an utterance
regardless of how likely the latter is; our notion is rather motivated by the various applications discussed
in this chapter.
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present 4lang architecture in itself determines a much smaller variety.
Note that templates likely to occur in data are also mostly meaningful: e.g. templates

over the graph for Germany won the 2014 World Cup are representations for states-of-
affairs such as ‘Germany won a 2014 something’ ( Germany 1←− win 2−→ X 0−→ 2014), ‘some-
body won a world cup’ ( X 1←− win 2−→ cup 0−→ world), or ‘Germany did something to
a world something’ ( Germany 1←− X 2−→ Y 0−→ world) – our proposed parameters are the
likelihoods of each of these states-of-affairs based on what we’ve learned from previous
experience.

What we outlined here are merely directions for further investigation – the exact ar-
chitecture, the method of learning (including reduction of the parameter space) need to
be determined by experiments, as does the question of how far such an approach can scale
across many domains, genres, and large amounts of data. Our purpose was once again to
argue for the expressiveness of 4lang representations, and to indicate our plans for future
research in computational semantics.

8.5.2 An inference-based approach

In Section 3.3 we have discussed the expected capabilities of an inferencing component in
4lang. The rate of success with which such a component can perform simple reasoning over
4lang graphs may also be an indication of the likelihood of some 4lang representation.
Quillian’s example presented in Section 2.2.1, the phrase lawyer’s client, allows for a
simplification of its initial 4lang representation (compare Figures 3.7 and 3.8). When
dismbiguating between multiple representations of e.g. the same piece of raw text, the
potential of a given 4lang subgraph for such simplifications may be a good indicator of
its likelihood.

8.6 External sources

8.6.1 World knowledge

Even the most simple forms of reasoning will require some model of world knowledge,
and 4lang representations are capable of representing facts taken from publicly available
knowledge bases such as WikiData (successor to the widely used but discontinued Freebase
(Bollacker et al., 2008)). Such datasets contain triplets of the form predicate(argument1,
argument2) such as author(George_Orwell, 1984). author is defined in Longman as
someone who has written a book, which dict_to_4lang uses to build the definition graph
in Figure 8.1. If we are ready to make the assumption that the first and second arguments
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Figure 8.1: 4lang definition of author

of the WiktData predicate author correspond to the 1- and 2-neighbours of the only bi-
nary relation in this definition (write), we can combine the fact author(George_Orwell,
1984) with the definition of author to obtain the graph in Figure 8.2.

Figure 8.2: 4lang graph inferred from author(George_Orwell, 1984)

A system for building 4lang graphs from WiktData automatically will require a high-
precision method for matching WiktData relations with arguments of 4lang definitions, as
we did in the case of author above. Simple heuristics like the one used in this example will
have to be evaluated and only those with reaasonable precision selected. Such a curated
set of patterns can then be applied to any subset of WiktData to convert large amounts
of factual information to the 4lang format and efficiently combine them with 4lang’s
knowledge of linguistic semantics.

8.6.2 Constructions

As discussed in Section 8.4, in the future we plan to map text to 4lang representations
using constructions, which are essentially pairs of patterns mapping classes of surface forms
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to classes of 4lang graphs. Such constructions need not be hand-coded, they may be
created on a large scale from existing linguistic ontologies. One example is the PropBank
database (Palmer et al., 2005), mentioned in Section 2.2.5 and a key component of the
AMR representation. PropBank contains argument lists of English verbs along with the
semantic roles each argument takes. The example entry in Figure 8.3 establishes that
the mandatory roles associated with arguments of the verb agree are those of agreer and
proposition and that their functions are those of prototypical agent (PAG) and prototypical
patient (PPT), respectively. This information could be represented as a 4lang construction
stating that concepts accessible from agree via 1- and 2-edges should have 0-edges leading
to the concepts agreer and proposition. This construction could be used to extend the
4lang definition of agree (see Figure 8.4). Once again, the large-scale extension of 4lang
data based on this external source will require a carefully selected set of high-precision
patterns. A method must be devised to decide for each pair of PropBank frameset and
4lang definition whether such an extension of the latter is warranted.

<frameset>
<predicate lemma="agree">

<roleset id="agree.01" name="agree">
(...)
<roles>

<role descr="agreer" f="PAG" n="0">
<vnrole vncls="36.1-1" vntheta="Agent"/>

</role>
<role descr="proposition" f="PPT" n="1">

<vnrole vncls="36.1-1" vntheta="Theme"/>
</role>
<role descr="other entity agreeing" f="COM" n="2">

<vnrole vncls="36.1-1" vntheta="co-agent"/>
</role>

</roles>
(...)

</roleset>
</predicate>

</frameset>

Figure 8.3: Part of the PropBank frameset for agree4
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Figure 8.4: Extending the 4lang definition of agree (new nodes are shown in grey)
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Appendix A

Configuration file of the 4lang
module

#When loading some cfg file in a 4lang module, unspecified parameters are
#assigned default values from this file
#Wherever possible, these values correspond to the most typical settings and
#test datasets distributed with 4lang

#Stanford Parser
[stanford]
#may in the future support using remote servers for parsing, leave it False for now
remote = False

#full path of Stanford Parser directory
dir = /home/recski/projects/stanford_dp/stanford-parser-full-2015-01-30/

#name of parser JAR file
parser = stanford-parser.jar

#name of model to load
model = englishRNN.ser.gz

#full path of jython executable
jython = /home/recski/projects/jython/jython

#Stanford CoreNLP
[corenlp]
#name of Java class to load
class_name = edu.stanford.nlp.pipeline.StanfordCoreNLP

#full path of Stanford CoreNLP directory
#CAUTION: when you change this path to point to your download, make sure it
#still ends with /*
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classpath = /home/recski/projects/stanford_coreNLP/stanford-corenlp-full-2015-04-20/*

[magyarlanc]
path = magyarlanc/magyarlanc-2.0.jar

#miscellaneous data
[data]
#directory to save output of dependency parsing
deps_dir = test/deps
#directory for temporary files
tmp_dir = test/tmp

#dictionary data
[dict]
#input format
#possible values are: longman, collins, wiktionary, eksz, nszt
input_type = longman

#path to input file
input_file = test/input/longman_test.xml

#path to JSON file containing parsed dictionary entries
output_file = test/dict/longman_test.json

#text_to_4lang options
[text]
#path to input data
input_sens = test/input/mrhug_story.sens

#set to True to perform expansion on graphs built from text
expand = False

#set True to print dot files for each sentence
print_graphs = True

#path to save dot files
graph_dir = test/graphs/text

#if True, only dependency parsing will run and its output saved, but 4lang
#graphs won’t be built. Useful when working with large datasets.
parse_only = False

#path to save output of parsers
deps_dir = test/deps/text
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#options to control which definitions are included by dict_to_4lang
[filter]

#include multiword expressions
keep_multiword = False

#include words with apostrophes
keep_apostrophes = False

#discard all but the first definition of each headword
first_only = True

[lemmatizer]
#full path of hunmorph binaries and models
hunmorph_path = /home/recski/sandbox/huntools_binaries

#path of cache (loaded but not updated by default, see docs)
cache_file = data/hunmorph_cache.txt

#options related to 4lang graphs
[machine]
#file containing 4lang dictionary
definitions = 4lang

#extra data for 4lang, currently not in use
plurals = 4lang.plural
primitives = 4lang.primitive

#pickle file to load 4lang graphs from
definitions_binary = data/machines/4lang.pickle

#pickle file to save 4lang graphs
definitions_binary_out = test/machines/wikt_test.pickle

#pickle file to save expanded 4lang graphs
expanded_definitions = test/machines/wikt_test_expanded.pickle

#path of directory for printing dot graphs
graph_dir = test/graphs/wikt_test

[deps]
#path to the map from dependencies to 4lang edges
dep_map = dep_to_4lang.txt
#language of the mapping (en or hu)
lang = en
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#options for testing the word similarity module
[word_sim]
4langpath = /home/recski/sandbox/4lang
definitions_binary = %(4langpath)s/data/machines/longman_firsts.pickle
dep_map = %(4langpath)s/dep_to_4lang.txt
graph_dir = %(4langpath)s/data/graphs/sts
batch = true

#options for experimental sentence similarity system
[sim]
similarity_type = word_test
word_test_data = ws_data/wordsim_similarity_goldstandard.txt
graph_dir = test/graphs/sts_test
deps_dir = test/deps/sts_test

#options for experimental question answering system
[qa]
input_file = test/input/clef_qa_sample.xml
output_file = test/qa/clef_qa_sample.answers
graph_dir = test/graphs/qa_test
deps_dir = test/deps/qa_test
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