
Introduction to
Automatic Speech Recognition (ASR)

Dr. Peter MIHAJLIK 
mihajlik.peter@vik.bme.hu

SmartLabs
Speech Recognition Group

BME-TMIT

BME-VIK



SmartLab
Speech Recognition

Speech technology?

Speech is complex…

• Speech-to-text (ASR)

• Text-to-speech (TTS)

• Who speaks when (diarization)

• Emotional state from speech

• Speaker recognition

• Speaker verification

• Dialogue managers…
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Speech technology and 
Artificial Intelligence
„Conversational AI”
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„Conversational AI”
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„Conversational AI” – key components
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AI? – the „myth”:
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AI – in reality:

mihajlik.peter@vik.bme.hu 7/47

„Conformer: Convolution-augmented Transformer for Speech 
Recognition”, by Anmol Gulati et al, in Proc. Interspeech-2020
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The evolution of ASR technology
A co-evolution with AI
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Automatic Speech Recognition

• Speech wave (acoustic time-pressure signal) → transcription (text)
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„I think …”
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The beginning: electronic filters, rules-
based algorithms

• 1950-52 Bell Laboratories:

• Audrey (Automatic Digit Recognizer)

• Numbers 1-9

• 1961 IBM

• Shoebox

• Numbers 0-9, 

• 6 basic arithmetic operations
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Template based, isolated-word recognition

• From 1970

• Dynamic Time Warping
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Highest similarity?

„apple”

„orange”

„ananas”

„nut”

Utterance
unknown

Acoustic feature extraction:
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More data, phoneme-based ASR

• Hidden Markov-modell (HMM), from 1975…

• Similarity measure: by GMM
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Highest similarity?

„alma”

„barack”

„szilva”

„dió”

Utterance
unknown
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Adding text data and Language Model (LM)
• HMM:  Machine Learning in ASR

• Data/statistics driven

• Pronunciation dictionary
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Acoustic modeling
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• Acoustic similarity measurement– based on the
statistics of speech data
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Phonetic pronunciation dictionary
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Word language models
• N-gram models

• Based on text 
stat

• Assigns
probability to
word sequences

• Language
Models
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Classic ASR

• Phoneme based

• Linguistic knowledge extensively used

• Expert linguists needed

• Separate levels of language modelled explicitely

• On-line, fast

• Flexible

• ASR Accuracy <<  Human accuracy
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„The Deep Learning revolution”
2011 -
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Microsoft and the rosetta-stone of ASR
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19

Dahl, Yu, Deng, and Acero, “Context-Dependent Pre-trained Deep 
Neural Networks for Large Vocabulary Speech Recognition,” IEEE 
Trans. ASLP, Jan. 2012 (also ICASSP 2011)

Seide et al, Interspeech, 2011.

After no improvement for 10+ years by the 

research community…

Dictation systems appear on the market
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Deep Neural Networks
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1980

2011
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Deep learning acoustic models
• Deeper structures – higher abstraction
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Deep learning acoustic models (2)
• Recurrent structure – „we don’t forget what has 

happened before”
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LSTM (Long Short-Term Memory)
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Deep learning acoustic models (3)

• Do we really need to remember everything from the past?
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The effect of Deep Learning on WER
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End-to-end deep neural net 
based ASR
End-to-end automatic speech recognition
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Basic idea: sequence 2 sequence modeling using
recurrent nets

• LSTM
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Acoustic feature vectors

Text (chars, words, word fragments …)

A B C Z…

Highest probability?

… …
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The challenge: time alignment
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„Connectionist Temporal Classification”
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Listen – Attend – Spell (LAS) end-to-end (2016)
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Acoustic
preprocessing

Time alignment

LM



SmartLab
Speech Recognition

Convolutional end-to-end (2019)

• NVIDIA – Jasper (Just Another Speech Recognizer)
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Data augmentation

• Speed perturbation

• Noise addition

• Room Impulse Response SpecAugment (2019)

• …

• Spectral masking!
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State-of-the-art in ASR: 
Conformer end-to-end
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Self-attention + Convolution
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End-to-end Deep Learning approach

• No phonemes

• No dictionaries

• No language experts

• Still good to have LM
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Fully data driven
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2020: the beginning of a new era
in ASR
Paradigm shift from fully supervised learning to unsupervised pre-training + 
supervised fine tuning
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Any better 
idea than 
initializing 
NN weights 
with 
random 
numbers?
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Transfer learning: use English model weights to 
initialize Hungarian (end-to-end) ASR training

• We still need a lot of manually transcribed data (in 
English)!

Unsupervised pre-training on pure acoustic 
data?

• Retsricted Boltzmann-machines (outdated)

• ?

Self-supervised pre-training!

• Based on the very successful BERT training…
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Wav2vec2.0
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Wav2vec2.0 +  fine tuning
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In practice…
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Lots of tools, more and more data

38
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• End-to-end

Languages: English, Deutsch, русский, français, italiano, Español …

• Hybrid
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Summary
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Using a deep learning (ASR) toolkit can be hard in real life…

… but it is getting easier!

No ASR without deep neural nets.

Wav2vec self supervised pretraining + fine tuning seems 
unbeatable

Fully unsupervised techiques are coming!

Deployment needs simpler models.

If you are interested in ASR e-mail me.
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Questions?
Remarks?
Thank you.
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Librispeech training process
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Prediction: h'otodtozaorodozortafzogoaronorhf rngoaoahnaoacazdntoazarmanazarazaglalanagad …
Reference: i am so glad we met them so we drove along talking together we each assured the girl …

Prediction: 
Reference: she can't help it and the funny thing is i don't believe that in her heart she is capable of …

0h

40h

Prediction:  m a t b a ts fots o an an ts sen
Reference: thaddeus i i had a letter from jehiel to day you did and never told me why harriet what he …

240h

Prediction: form nt tis as the bots  drown u pon the shaltof pea seem let mear twoise than they woulds ban …
Reference: from that distance the boats drawn upon the sheltered beach seemed like mere toys then they would span…

700h

Prediction: another truth which his abscare t me i wished to know if man constisfy you for broken vows with other…
Reference: another truth which is obscure to me i wish to know if man can satisfy you for broken vows with other…

5000h

Prediction: their upper jaw they move wonder if tom rockford will do anything with that invention of his wasting…
Reference: their upper jaw they move wonder if tom rochford will do anything with that invention of his wasting …

200Kh


