/Q( g}Eﬂ:ﬂ{;amwmﬂmﬂmrf BME-VIK

ﬁ. o : \
BME TMIT MUEGYETEM1782

Introduction to
Automatic Speech Recognition (ASR)

Dr. Peter MIHAIJLIK
mihajlik.peter@vik.bme.hu

BME-TMIT

Speech Recognition Group

SmartlLabs




Speech technology?

Speech is complex...

* Speech-to-text (ASR)

* Text-to-speech (TTS)

* Who speaks when (diarization)

* Emotional state from speech
* Speaker recognition
e Speaker verification

* Dialogue managers...

Smarflab mihajlik.peter@vik.bme.hu 2/47
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Speech technology and
Artificial Intelligence
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,Conversational Al” — key components

[mm e e e e e e e e e e ———
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Al? —the ,myth”:
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Figure 4: Feed forward module. The first linear layer uses an expansion factor of 4 and the second linear layer projects it back to the
model dimension. We use swish activation and a pre-norm residual units in feed forward module.
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Figure 2: Convolution module. The convolution module contains a pointwise convolution with an expansion factor of 2 projecting the
number of channels with a GLU activation layer, followed by a 1-D Depthwise convolution. The [-D depthwise conv is followed by a
Batchnorm and then a swish activation laver.
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Figure 3: Multi-Headed self-attention module. We use multi-
................... ' headed self-attention with relative positional embedding in a
pre-norm residual unit.

Figure 1: Conformer encoder model architecture. Conformer
comprises of two macaron-like feed-forward layers with half-
step residual connections sandwiching the multi-headed self- ,,Conformer: Convolution-a ugmented Transformer for SpEECh
;memion and convolution modules. This is followed by a post Recognition”, by Anmol Gulati et aI, in Proc. Interspeech-2020
ayernorm.
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The evolution of ASR technology
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Automatic Speech Recognition

* Speech wave (acoustic time-pressure signal) = transcription (text)

Smartlab

Speech Recognition



The beginning: electronic filters, rules-
based algorithms
* 1950-52 Bell Laboratories:

* Audrey (Automatic Digit Recognizer)
* Numbers 1-9

e 1961 IBM
* Shoebox
* Numbers 0-9,
* 6 basic arithmetic operations

Smal'flab mihajlik.peter@vik.bme.hu 10/47
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Template based, isolated-word recognition

* From 1970 0 —

* Dynamic Time Warping o)

*
|
| L . T . O (L L

The recorded Speeech template

,apple” H

Utterance 1
unknown 0 1 2 8 "t ¢ T Gt VPP
,0ra nge" DTW test data for speech recognition

= M
o 111111 NIRRT

|:| |:| |:| Acoustic feature extraction: o
124

Y

,hut

10000.0

5000.0
0.0

-5000.0 |-
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More data, phoneme-based ASR

* Hidden Markov-modell (HMM), from 1975...

* Similarity measure: by GMM ——>
»alma” : H\ :
S — Utterance
,barack” 1
— [0000L

__4
& unknown
M@ » o O o o Highest similarity?
& A

,,Szilva” H H

12/47
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Adding text data and Language Model (LM)

* HMM: Machine Learning in ASR
e Data/statistics driven

* Pronunciation dictionar X X .
=\ 00000000 0000000000040
LM AM
W =argmax P(W )-P(O|W)

Smal'flab mihajlik.peter@vik.bme.hu
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Acoustic modeling

« Acoustic similarity measurement— based on the
statistics of speech data

GMM

0 Gaussian mixture models

[ 1

Smarflab mihajlik.peter@vik.bme.hu 14/47
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Phonetic pronunciation dictionary

ABOARD AH@ B ADL R D

ABODE AH® B OWl1l D

ABOHALIMA AE® B AH® HH AH® L IY1 M AHG
ABOLISH AHe B AALl L IHe SH

ABOLISHED AHO B AAL L IH@ SH T

ABOLISHES AH@ B AAl L IH@ 5H IH® Z
ABOLISHING AH® B AA1 L IH® SH IH@ NG
ABOLITION AEZ B AH® L IH1 SH AH@ N
ABOLITIONISM AEZ B AHB L IH1 SH AH@ N IH2| £ AHB M
ABOLITIONIST AEZ2 B AHB L IH1 SH AH@ N AH@ 5 T
ABOLITIONISTS AE2Z B AHE L w SH AHB N AHB 5 T 5

Cambridge
English
Pronouncing
Dictionary

08 by Foue Baach,

Smarflab mihajlik@tmit.bme.hu
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Word language models N

mansfiela"m

* N-gram models w0

h wentworth'sy . de\
* Based on text i\ N

entwstth
Sta t dalrympld captain thousanm"l;aﬁa?
middleton
usse
replie
- russell's
o A hou
SSIgNS
! maple
ol e hen P hal
knightle tilne'
Prooanliiity to g
™ s crawforgd
word sequences oty
Steele} 1qvlo} fitzwillia
lomas's berirafms
tashwood /
mora
walte yegrg
g O hamet
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:Tf' . steeles fhorpe ~\ bate
. / wabdhousé
fann: Janéj price cad
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0 mada
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o ')M(/'Wf
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cried
elizabeth
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10 5
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Classic ASR

* Phoneme based

* Linguistic knowledge extensively used

* Expert linguists needed

e Separate levels of language modelled explicitely
* On-line, fast

* Flexible

* ASR Accuracy << Human accuracy

Smartlab
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,The Deep Learning revolution”
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Microsoft and the rosetta-stone of ASR

_ Dahl, Yu, Deng, and Acero, “Context-Dependent Pre-trained Deep
After no improvement for 10+ years by the Neural Networks for Large Vocabulary Speech Recognition,” IEEE
research community... Trans. ASLP, Jan. 2012 (also ICASSP 2011)

Seide et al, Interspeech, 2011.

Progress of spontaneous speech recognition

100%

90%

B 80%
©
(e 70%
H
g oo Dictation systems appear on the market
LL]
O 50%
H S
o
; 40%
S0 \Iittle progress for 10+ yrs
20%
- MSR Rashid
- Demo
5 2 B B 2 B B 8 8 8 8 8 8 288858833
S 2 2 8 9 £ 8 8 2 8 8 8 28 8 2 8 8 58 2 K8
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— Transition Probabilities Determined
R R R N B N R B B B B B B N E N E RN B N B B N N ]
Deep Neural Networks with Trphone Stcture
l % $a 41 Fre1 ar /]Scnoms
Ic
| ®] ®]|@] [®] &) |
' § H 3 H 3 |
1980 | | QLIO|®] @] &) wwm
TF = Linear T Y : o 3 r : 4;:,,, : > 3 I
LR = Delta Rule #11 Output layer l @ - @ . @ @
Fully connect 2011 | @ N——
—> | Randomize (-0.1,\+0.1) . 51)14ee @ % _Q"'“* % romabiy
TF = sigmoid — - = -l - - AN L
Fully connect Wy \ = Jwy | l“’ull War .
(AMT=1) - M1 M- -1,
> | Randomize (-0.1, +0.1) I WS | | LAcs, i | K
TF - sigmoid
LR = Delta Rul fn layer 1
— » | Fully connect
Randomize (-0.1,/+0.1)

TF = Linear

i£256 Input layer

Py /

Figure 3. Back-propagation neural network topology
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Deep learning acoustic models

* Deeper structures — higher abstraction

Simple Neural Network Deep Learning Neural Network

@ nput Layer () Hidden Layer

Output Layer

Smarflab mihajlik.peter@vik.bme.hu 21/47
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Deep learning acoustic models (2)

* Recurrent structure —,we don’t forget what has
happened before”

. ® ® ®
9 L.\lp l l
& &

LSTM (Long Short-Term Memory) T r_,Tj ’_,T_
I:ili Tal o)

Smal'flab mihajlik.peter@vik.bme.hu 22/47
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Deep learning acoustic models (3)

* Do we really need to remember everything from the past?

Figure 1: Computation in TDNN with sub-sampling (red) and

without sub-sampling (blue+red)
Smarflab mihajlik.peter@vik.bme.hu 23/47
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The effect of Deep Learning on WER

= [
16 ~ea
~ . sequence loss
14 ~
first DNN -
o

word 12| S .
arror Tt - o - 7x more data
rate 10 RN - /

8 | R

sl human level = hnh__-. -

-_-
2012 2013 2014 2015 2016 2017

Improvements in word error rate over time on the|Switchboard

conversational speech recognition benchmark.

The test set was collected in 2000. It consists of 40 phone conversations between two random native English

speakers.

Smartlab
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End-to-end deep neural net
based ASR
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Basic idea: sequence 2 sequence modeling using
recurrent nets

* LSTM

Highest pri:bability? Text (chars, words, word fragments ...)
[ |
AR
& ® )
T N A\ TL
L I
© ® ©

Acoustic feature vectors

Smal'flab mihajlik.peter@vik.bme.hu 26/47
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The challenge: time alignment

,connectionist Temporal Classification”

PC_TH____E_-_C__AAA__TT__-)
P(THE—CAT—)
PCT__H__EE__—-_C__AA__T___-)

i !ﬁ !l qgll ' l
il
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LM

Time alignment

Acoustic
preprocessing

Smartlab

Speech Recognition
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Convolutional end-to-end (2019)

* NVIDIA — Jasper (Just Another Speech Recognizer)

Block k
ey )

IDilation:Z

]

Stride:2
Block 1

()
Ll . -
527 =
— g O 1
N —= O (]
= 2 2

X 7

, S Ik'-_-l J
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Data augmentation

e Speed perturbation
* Noise addition
 Room Impulse Response SpecAugment (2019)

e Spectral masking!

Smartlab mihajlik.peter@vik.bme.hu 30/47
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RE— State-of-the-art in ASR:
Conformer end-to-end

i

./ .\-
[+ —
S

1/2 xT

Feed Forward Module

Dropout T
40 ms rate T + \e
Linear

Convolution Module

1
1
1
1
1
1
1
1
1
1
1
1
1
1
40 ms rate T :
i Y 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Self-attention + Convolution

Convolution (+ e———

Subsampling 1
;T— Multi-Head Self Attention
10 ms rate Module

A

SpecAug | E—

(+ )je——
10 ms rate T A
1/2 XT

Feed Forward Module GO gle
_________ I----------l
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End-to-end Deep Learning approach

I

* No phonemes
 No dictionaries

— Fully data driven

* No language experts
e Still good to have LM ]

Smartlab mihajlik.peter@vik.bme.hu 32/47
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2020: the beginning of a new era
In ASR

Paradigm shift from fully supervised learning to unsupervised pre-training +
supervised fine tuning

Smaﬂﬂbﬂbz mihajlik.peter@vik.bme.hu
Speech Recognition
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Any better
|d eq th an initialize Hungarian (end-to-end) ASR training

e We still need a lot of manually transcribed data (in

initializing el

Unsupervised pre-training on pure acoustic

N N WElghtS data?

e Retsricted Boltzmann-machines (outdated)

with

Self-supervised pre-training!
random

? e Based on the very successful BERT training...
numbers:

Smarflab mihajlik.peter@vik.bme.hu 34/47
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Wav2vec2.0

Contrastive loss

L
Context C ] D []
representations T T T
Transformer
\ Masked
Quantized
representations Q
Latent speech Z
representations CNN

raw waveform X
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Wav2vec2.0 + fine tuning

Contrastive loss —

L .
Context
representations C I%’ /;l Attention

/ Transformer / T h eENC

Masked
Quantized — Encoder

representations Q

Latent speech Z T
representations
CNN X

raw waveform X
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In practice...
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Lots of tools, more and more data

* Hybrid * End-to-end FAIRSEQ

@KALDI J‘Q@W \j; £

Speech Braiﬁ\{

Audio Feature -7
II|III| |I|II—' Extractor and N
Preprocessor
Audio Input Spectrogram Neural Acoustic Model Problt, c] Decoder With Output Transcript

Language Model

Languages: English, Deutsch, pycckun, francais, italiano, Espanol ...

s00gle
NVIDIA

NEMO BT 0
SmarfLab - . 38
Speech Recognition mihajlik.peter@vik.bme.hu

Common Voice
tensorflow/lingvo 1F _ - g




Using a deep learning (ASR) toolkit can be hard in real life...

... but it is getting easier!

No ASR without deep neural nets.

S Umma ry Wav2vec self supervised pretraining + fine tuning seems

unbeatable

Fully unsupervised techiques are coming!

Deployment needs simpler models.

If you are interested in ASR e-mail me.

Smartlab
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Questions?
Remarks?

Thank you.

Smartlab

Speech Recognition
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Librispeech training process

Prediction: h'otodtozaorodozortafzogoaronorhf rngoaoahnaoacazdntoazarmanazarazaglalanagad ...

Oh : ) :
Reference: i am so glad we met them so we drove along talking together we each assured the girl ...

40h Prediction:
Reference: she can't help it and the funny thing is i don't believe that in her heart she is capable of ...

240h Prediction: matbatsfots oanan tssen
Reference: thaddeus i i had a letter from jehiel to day you did and never told me why harriet what he ...

200h Prediction: form nt tisas the bots drown u pon the shaltof pea  seem let mear twoise than they woulds ban ...
Reference: from that distance the boats drawn upon the sheltered beach seemed like mere toys then they would span...

5000h Prediction: another truth which his abscare t me i wished to know if man constisfy you for broken vows with other...
Reference: another truth which is obscure to me i wish  to know if man can satisfy you for broken vows with other...

200Kh Prediction: their upper jaw they move wonder if tom rockford will do anything with that invention of his wasting...
Reference: their upper jaw they move wonder if tom rochford will do anything with that invention of his wasting ...
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