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ABSTRACT

How do the relations used in semantic networks appear in (static)
word embeddings? My dissertation is organized around this question.
In other words, how can the cognitive structure and lexical relations
between concepts be read out from the models trained based on co-
occurrences? In addition to lexical relations proper, several chapters
deal with argument structure. Another feature of the dissertation is
that the tool of linear translation between word embeddings of differ-
ent languages is used, in addition to its original goals (translation itself
(7.4) and the estimation of the quality of translation pairs (7.5)) for
measuring the precision of multi-sense word embeddings. measurement.
Our theoretical framework is the 4lang semantic network.
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ACRONYMS

ACH the axiom-concept hypergraph, see Section 2.2.6
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ACT Actions in CD, see Section 2.2.3

AGT Agent, verbal role, see Chapter 5

AI Artificial Intelligence, technically synonymous to ML.
For its history, see Table 1

ALS Alternating Least Squares algorithm, see Section 6.3

AMR Abstract Meaning Representation, see Section 2.5.7

AT The locative case of static location, see Chapter 5

BERT A deep LM architecture, the most famous one, see Section 4.3

BPE Bite-pair encoding, mentioned in Sections 4.2.11.1 and 4.3.2

CAUSE A binary predicate used both by Jackendoff (Section 2.3.5),
and in 4lang (Section 7.2)

CCG Combinatorial Categorical Grammar, mentioned in
Sections 2.5.7 and 2.5.9

CD Conceptual Dependencies, see Section 2.2.3

CED The Collins-COBUILD dictionary (Sinclair 1987), mentioned in
Section 8.2

CG Conceptual Graphs, see Section 2.2.5

CPD Canonical Polyadic Decomposition, see Section 6.3

CS Conceptual Structures, see Section 2.3.5

DAG Directed Acyclic Graph, mentioned in Section 7.3

DAT Dative, verbal role, see Chapter 5

DO Direct Object

DST Dialogue State Tracking, see Section 4.2.10

EFNILEX A computational lexicographic project of the European
Federation of National Institutions for Language

FCA Formal Concept Analysis, see Section 7.3
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FE Frame Element, see Section 2.5.2

FOR One of the argument cases used for relational nouns in 4lang,
see Chapter 5

FROM The locative case of Source, see Chapter 5

GL The Generative Lexicon, see Section 2.3.7

GLUE A multitask benchmark for English, see Chapter 1

GMB Groningen Meaning Bank, see Section 2.5.7

GMM Gaussian mixture models, see Section 6.4

GPT Graphical processing unit, a kind of harware used for deep
learning

GS Grefenstette and Sadrzadeh (2011), see Section 6.4.3

HAS The binary relation of possession in 4lang

HDBScan A hierarchical density-based clustering algorithom
(McInnes, Healy, and Astels 2017)

HLBL Static word embeddings by Mnih and G. E. Hinton (2009)

HNC The Hungarian National Corpus (Oravecz, Váradi, and Sass
2014). We use it in Sections 7.4.2, 7.5 and 8.3

HPSG Head-Driven Phrase Structure Grammar

HS Hierarchical softmax. We experiment with it in Section 7.4.2

KB Knowledge Base, see Section 2.4.2

KR Knowledge Representation, mentioned in Chapter 3

KS Kartsaklis and Sadrzadeh (2014), a benchmark dataset

LDA Latent Dirichlet Allocation, see Section 4.1.3

LDOCE The Longman Dictionary of Current English (Section 2.4.3)

LDV Longman Defining Vocabulary, see Section 3.2

LFG Lexical Functional Grammar

LM Language Model, see Section 4.2

LREC Intl Conference on Language Resources and Evaluation

LSA Latent Semantic Analysis, see Section 4.1.3

LSTM Long short-term memory, one of the major neural network
architectures (Hochreiter and Schmidhuber 1997)
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ML Machine learning

MLM Masked language modeling, see Section 4.3.2

MLP Multi-layer perceptron

MRD Machine Readable Dictionary, see Section 2.4.3

MSE Multi-sense word embedding (Section 8.1) or Mean squared
error (Section 7.5.6)

MSZNY Magyar Számítógépes Nyelvészeti Konferencia,
the Hungarian NLP conference

MT Machine Translation

NGD Normalized Google Distance, see Section 4.1.5

NLP Natural Language Processing

NMT Neural Machine Translation, see Section 4.3.4

NN Nearest Neighbor, not to be confused with Neural Networks

NP-hard A computational complexity class

NP Noun phrase (a concept in structuralist syntax)

NSM Natural Semantic Metalanguage, see Section 2.3.3

NSP Next sentence prediction,
one of the pre-training tasks for BERT, see Section 4.3.2

OBL Oblique, verbal role, see Chapter 5

OSub Open Subtitles Corpus, see Sections 7.4.3.2 and 8.1

PAT Patient, verbal role, see Chapter 5

PCA Principlal Component Analysis, see Section 4.1.1

PDT The Prague Dependency Treebank

POS Part-of-speech

POSS Possessive, one of the argument cases
used for relational nouns in 4lang, see Chapter 5

(P)PMI (Positive) Pointwise Mutual Information,
see Sections 4.1.2 and 6.2

PP Prepositional phrase

PTM Pre-trained model

REL The contentless argument relation in 4lang, see Chapter 5
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RNN Recurrent Neural Network,
one of the major neural network architectures

rNN Reverse Nearest Neighbor, see Section 8.1

RNNS2S RNN sequence-to-sequence model

SAT Boolean satisfiability problem

SD Stanford Dependencies, see Section 2.5.8

SEL Sense enumeration lexicons, see Section 2.3.7

SENNA Static word embeddings by (Collobert et al. 2011)

SGNS Skip-gram with negative sampling, see Section 4.2.5

SIF Smooth IDF (where IDF is Inverse Document Frequency)

SOTA State-of-the-art

SRL Semantic Role Labelling, see Chapters 2 and 5

SRT Semantic representats are abbreviated this way in the paper
discussed in Section 2.5.9

SVD Singular Value Decomposition, see Section 4.1.3

SVO Subject, verb, and object (Section 6.5.2),
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TLC The Teachable Language Comprehender (Quillian 1969)

TO The locative case of Goal, see Chapter 5

UCCA Universal Conceptual Cognitive Annotation,
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Innumerable roads lead to “knowledge,”
and we try to explore many of them.

— Findler (1979)

1
INTRODUCTION

Contents
1.1 4lang and its role in the thesis 2
1.2 Roadmap 2

ToDo Szécsényi: résztanulmányokban részletesebb diszkussziót
Computational representations of word meaning can be categorized

as symbolic or distributional, the main examples for the two families
being semantic networks and neural networks respectively. This the-
sis is written with a structuralist understanding as far as we define
the meaning of words based on their relations to each other, let the
relation be conceptual or the probability of co-occurrence. We gladly
reach for all kinds of models and tools and consider them to describe
the same thing: the lexical representation of words is inseparable from
their conceptual-semantic network.

In symbolic terms taken from Collins and Loftus (1975), the the full
meaning of any concept is the whole semantic network as entered from
the concept node. On the distributional hand, as we will see in Sec-
tion 7.1, for a set of male and female words, such as xking, queeny,
xactor, actressy, etc., the difference between the embedding vectors of
words in each pair represents the meaning component of gender. In our
understanding, these systematic vector differences, the so called vec-
tor offsets, correspond to semantic features or lexical relations familiar
from hyerarchical symbolic lexicons and semantic networks. The thesis
is oranized around the question how the relations used in semantic net-
works appear in (static) word embeddings. In other words, how can the
cognitive structure and the lexical relations between concepts be read
out from the models trained on co-occurrences?
The flexible relationship to methods and approaches resulted in chap-

ters in computational lexical semanticswhat that be called together an
eclectic collection. In addition to lexical relations proper, several chap-
ters deal with argument structure. A feature of the dissertation is that,
in addition to the original goals of the linear translation method be-
tween word embeddings of different languages (translation itself, Sec-
tion 7.4.2, and the quality estimation of translational pairs, Section 7.5),
we use it to measure the precision of multi-sense word embeddings as
the detectors of word ambiguity (Chapter 8). The aims of alternative
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introduction

approaches to semantics are diverse, ranging from compositionality and
the syntax-semantics interface through logical aspects of meaning, to
the relation between linguistic meaning and conceptual phenomena. In
this classification, our interest involves both the compositionality of
lexical meaning, and the syntax-semantics interface.

1.1 4lang and its role in the thesis

Before drafting the organization of this thesis, we should note that some
of our contributions are related to 4lang, a theory and formalism for
representing the semantics of natural language, which has been pub-
lished along with partial implementation in many research papers and
two books. 4lang will be introduced in detail in Chapter 3, but for the
purposes of this road-map of the thesis, let us scratch the 4lang ap-
proach to the process of defining words by each other. 4lang does not
have a pre-defined set of primitives of definition, but we use the defini-
tion graph, the graph whose nodes are words, and there is an edge dog
Ñ faithful whenever faithful is used in the definition of dog, to compute
the defining vocabulary, the set of word which suffice to define the rest.

The more important 4lang-related contributions of this thesis (Sec-
tions 3.3, 7.1 and 7.2) take derivatives of 4lang – the definition graph,
or a word embedding created from the graph – as input. Besides, the
author of this thesis had a great role in the manual creation of a set
of core definitions for 4lang, but our claims related to this part of the
work will focus on to the problem of thematic roles (Chapter 5). Nev-
ertheless, we would like to help the reader to put the 4lang theory in a
greater context as well. The papers and the books introducing the the-
oretical background of 4lang have assumed that the reader is familiar
with a great bulk of literature including early semantic networks and
artificial intelligence, cognitive semantics, and early semantic resources.
To make the thesis self-contained, we offer a detailed introduction to
this part on the literature as well (Chapter 2).

1.2 roadmap

This thesis offers computational linguistics research submitted to a the-
oretical linguistics programme, while the author has a mathematical
way of thinking mixed with psycho-linguistic motivations. The thesis
is organized in two parts: background and main contributions. Both
parts discuss symbolic representations first, followed by distributional
ones. Specifically, the background part includes a chapter on symbolic
representations (Chapter 2), 4lang (Chapter 3), and distributed word
representations (Chapter 4) each. The main contributions investigate
lexical relations in a very broad sense: besides lexical relations proper
(antonymy, causality, and hypernymy), we include thematic and syn-
tactic relations, word analogies, translation, and ambiguity.

2



1.2 roadmap

The first two foreground chapters investigate verbs and their argu-
ments. Chapter 5 investigates deep cases in 4lang, i.e. placeholders of
arguments in the meaning representations of predicates, categorized by
semanto-syntactic properties of the argument. Our discussion has been
based both on theoretical princliples, and on our experience in creating
a formulaic meaning representation of each item in the defining vocab-
ulary. Our main question is what inventory of deep cases (categories) is
needed for the formulaic definition of each word in the defining vocab-
ulary of a multilingual and radically monosemic semantic formalism.

Still on verb arguments, but moving from the symbolic treatment of
thematic roles to the distributional representation of „syntactic roles”
(i.e. grammatical functoins), Chapter 6 investigates the use of differ-
ent automatic association scores and tensor decomposition methods in
the modeling of subject-verb-oject triples. The context of this line of
research is collocation extraction.

The remaining two chapters are motivated by the question whether
relations which intuitively exist, and have been recorded by human
labor can also be detected in data-driven distributional representa-
tions, more specifically, static word embeddings (word representations
obtained with shallow neural networks).

Chapter 7 investigates several lexical relations proper along with
word analogies and translation. We start with antonymy (opposite
meaning), causality, and hypernymy (what basic category a word be-
longs to, e.g. dogs are animals).1 Which putative semantic features like
the alredy mentioned gender are captured by vector space models?
What is the geometry of causality like?

The distributional hypothesis (Z. S. Harris 1954) says that a word can
be described/represented based on how frequently it cooccurrs with ev-
ery other word. More specifically, the distributional inclusion hypothe-
sis (Weeds and Weir 2003; Chang et al. 2018) says that hypernymy can
be modeled based on that if animal is a hypernym of dog, animal will
be grammatical in every context where dog is. It is less clear whether
animal will appear in every context at least as frequently as dog does.
We test the hypothesis with the tools of sparse coding.

Sparse vectors are vectors most of whose coordinates are zero, and
non-zero coordinates ideally correspond to interpretable properties. It
varies with models whether interpretability follows from the construc-
tion of the vectors, or the interpretation needs to be inferred from
some latent structure. Even in the latter case, sparse representations
tend to be more interpretable than less restricted ones. As far as sparse
attributes (i.e. non-zero coordinates in sparse word representations) cor-
respond to contexts, if follows from the distributional inclusion hypoth-
esis discussed above that hypernymy should boil down to pointwise
comparison. Section 7.3 tests this idea in hypernymy discovery.

1 Theses three sections appeared in proceedings of conferences, and here they appear
in that same chronological order.
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Analogical question like man : woman :: king : ? (man is to woman
as king is to what?) have been one of the main evaluation paradigms
for static word embeddings. We investigate which morphological and
semantic regularities are represented by linear relations in word embed-
dings of Hungarian, a language with rich morphology and „free word
order” (i.e. the order of the main constituents of the sentence is rela-
tively free).
An important application of static word embeddings has been based

on that vector spaces of difference languages share their structure to
the extent that word translation can be formalized as a linear mapping
(in the linear algebraic sense). We test whether the methods frist pub-
lished for better-resourced languages also work in medium-resourced
languages such as Hungarian, Slovenian, and Lithuanian. Additionally,
and still within the translation context, we extend linear mapping to
triangualation, a.k.a. pivot based lexical induction: we test whether
linear mapping can provide a smoother score for triangualated word
translations as previous methods. Intuitively, smoothness means that
some kind of extra noise in the triangulation (more precisely in pivot-
counting) is eliminated by linear translation.

Our last chapter is concerned with one of the greatest problems in lex-
ical semantics: word ambiguity and, more specifically, homonymy and
polysemy. ToDo Novák: ami egyébként leginkább akkor probléma, ha
a jelentések gyakorisága jelentősen különbözik Static word embeddings,
our main tools in the last two chapters, represent each word form with
a single linear algebraic vector. This implies that a crane will be a thing
which lifts blocks of concrete at some times, and takes care of its chicks
at others. (This example is by Gábor Prószéky.)
It can be argued, especially from the engineering point of view, that

the problem has been solved by contextualized word representations
(CWRs, Section 4.3) provieded by deep language models. However, the
computational linguist still remains interested in the categorical dis-
tinction whether a word is homonymous, polysemous, or unambiguous.
Coenen et al. (2019) show that the English BERT model, the most
popular contextualized model, maps the word form die at different re-
gions of the semantic space based on whether it is the German article,
the game tool, or the verb, see Section 4.3.3. The former is an arte-
fact of the corpus creation, and the latter two are cases of homonymy.
However, Coenen et al. also show that within the verb, BERT also rep-
resents how many people die, in a scale-like fashion. This is a shade
of the meaning of the sentence where semantics traditionally draws no
distinstion within the meaning of the predicate: the differentce is solely
attributed to the argument. There is active research on extracting dis-
crete senses from CWRs, but we focus on multisense (static) word em-
beddings (MSEs), where the different senses of an ambiguous word are
represented with different vectors. Chapter 8 proposes an evaluation
method for MSEs.

4



1.2 roadmap

The table of contents at the beginning of the dissertation goes down
to sections. There is also a mini table of contents at the beginning of
each chapter, which go one step deeper, to subsections.

5





Part I

BACKGROUND

The first three chapters of the thesis give the background
in word representations.
Some of our contributions are related to 4lang, a theory
and formalism for representing the semantics of natural lan-
guage, which has been published along with partial imple-
mentation in many research papers and two books. The
more important 4lang-related contributions of this thesis
(Sections 3.3, 7.1 and 7.2) take derivatives of 4lang — the
definition graph, or a word embedding created from the
graph — as input. Besides, the author of this thesis had a
great role in the manual creation of a set of core definitions
for 4lang, but our claims related to this part of the work
will focus on to the problem of argument structure (Chap-
ter 5). Nevertheless, we would like to help the reader to put
the 4lang theory in a greater context as well. The papers
and the books introducing the theoretical background of
4lang have assumed that the reader is familiar with a great
bulk of literature including early semantic networks and ar-
tificial intelligence, cognitive semantics, and early semantic
resources.
To make the thesis self-contained, Chapter 2 offers a de-
tailed introduction to this part on the literature. Chapter 3
introduces 4lang itself. Finally, Chapter 4 investigates dis-
tributional representations.





Definition and word meaning need not have anything to do with
grammaticalization or grammatical behavior. This is a fairly

uninteresting claim about the relation between language and thought.

— Pustejovsky (1995)

2
SYMBOL IC REPRESENTATIONS

Contents
2.1 Roadmap of the chapter 10

2.1.1 Early semantic networks (2.2) 10
2.1.2 Cognitive semantics (2.3) 12
2.1.3 Early resources (2.4) 15
2.1.4 Modern lexical resources (2.5) 15

2.2 Early semantic networks 16
2.2.1 The Teachable Language Comprehender 16
2.2.2 Spreading activation 17
2.2.3 Let eleven verb-types bloom 23
2.2.4 What’s in a link? 24
2.2.5 Conceptual Graphs 26
2.2.6 The naive physics manifesto 26
2.2.7 Deep Lexical Semantics 30

2.3 Cognitive semantics 32
2.3.1 Lexical decomposition 32
2.3.2 Case Grammar 33
2.3.3 Natural Semantic Metalanguage 35
2.3.4 Force dynamics in language and cognition 37
2.3.5 Conceptual Structures 39
2.3.6 English Verb Classes and Alternations 44
2.3.7 The generative lexicon 45

2.4 Early resources 48
2.4.1 kl-one: superconcepts and local restrictions 48
2.4.2 Cyc 49
2.4.3 Computational lexicography for NLP 50

2.5 Modern lexical resources 53
2.5.1 Frame semantics 53
2.5.2 FrameNet 53
2.5.3 WordNet 54
2.5.4 VerbNet 55
2.5.5 PropBank 56
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2.5.6 ConceptNet 57
2.5.7 Abstract Meaning Representation 59
2.5.8 Enhanced English Universal Dependencies 62
2.5.9 The SOTA in Semantic Representation 64

This chapter gives the background in semantic networks, the linguis-
tic content that has to be represented, and computational resources for
lexical semantics.

ToDo Szécsényi: kevés kritikai megjegyzést fűz hozzájuk, sokszor
csak olvasónaplóként, fejezetről fejezetre bemutatja azokat

2.1 roadmap of the chapter

2.1.1 Early semantic networks (2.2)

One of the main contributions of this thesis (Chapter 3) proposes a set
of verb argument roles in the 4lang semantic network. Sections 2.2.1
and 2.2.2 give the basics of semantic networks, while Section 2.2.6 in-
troduces considerations about the so called definition graph. The three
sections in between review works that are more closely related to early
artificial intelligence than to linguistics and that have had a strong
inpact on 4lang.

the teachable language comprehender We start the
chapter with The Teachable Language Comprehender (Section 2.2.1),
arguably the most seminal work on semantic networks. It is particularly
instructive that Quillian (1969) emphasizes the recursive nature of the
network, which corresponds to the similar nature of word definition,
which becomes the focus of this thesis in Section 3.3. When writing
the manual definitions, we built on the tradition of Aristotle’s genus
and differentia specifica, which is why it appears so many times in the
introductory chapters (besides Section 2.2.1 in Sections 2.4.1 and 3.1.2).
Though I have no related claim, my way of thinking was also influ-

enced by what our group thought and implemented about pieces of
information from different sources (Nemeskey et al. 2013): the mean-
ing of the words („global”); what we know about one entity in the
given situation („active”); as well as a naive theory of a semantic field
(e.g. we respect the things which are above us). Quillian is the forefa-
ther in this area as well. This section is where attribute-value matrices
are mentioned for the first time in the dissertation (the other one is Sec-
tion 2.2.4), which we also used in Nemeskey et al. (2013). The group
also took the concept of inheritance from Quillian (Recski 2016b).

spreading activation In Chapter 5, we propose meaning defi-
nitions for the defining vocabulary of 4lang, and categorize the place
holders of the representations of the arguments within the definition

10



2.1 roadmap of the chapter

of a predicate in a thematic role fashion. In our theory, this system
of linking is comlemented with a spreading activation mechanism for
selectional preferences. Section 2.2.2 summarizes Collins and Loftus
(1975)’s detailed treatment of the latter device. Besides, I take from
this article the important sentence that „the full meaning of any con-
cept is the whole network as entered from the concept node.” Here is the
first mention of that there can be several links in a semantic network.
One of the main features of 4lang is that there are only three types
of arrows. In this area, we usually refer to Woods (1975) discussed in
Section 2.2.4.

eleven verb-types Among the deep cases proposed in Chap-
ter 5 – in addition to the basic principles that, for example, even nouns
can have multiple cases – the dative is probably the most interest-
ing. The two verb classes exemplified by give and say are usually at-
tributed to Schank (1972) as ptrans and mtrans. Gábor Prószéky,
in his referee report on Recski (2016b), wrote that Schank is particu-
larly relevant to 4lang, since both systems “put the considerations of
the conceptual world to the fore, sometimes combining elements that
are different from a linguistic point of view, and treat them uniformly”
(translation mine). Perhaps the most flourishing example of the prolif-
eration of link types in computer linguistics is Schank, who not only
differentiates the lines and the heads of the arrows with solutions that
push the boundaries of the printing technology of the time, but also
implicitly suggests that horizontal and vertical arrows are different.

what’s in a link? Woods (1975) pointed out that „Links have
been used to represent many different levels, e.g. implementation point-
ers, logical relations, semantic relations (e.g. “cases”), and arbitrary
conceptual and linguistic relations.” While in the field of syntactic anal-
ysis, 4lang a builds on the most common formalism (Section 3.7), and
thus is in line with the theoretical linguistics tradition, we do not sep-
arate pragmatics (inferences) from semantics. This important theoret-
ical question is discussed here for the first time in the dissertation.
The greatest added value of 4lang’s manual definitions, compared to
the definitions extracted from monolingual dictionaries, probably lies
in the fact that ditransitive (three-participant) verbs are represented
by binary lexical relations (predicates). Following the example of the
famous kill: cause to die, (=AGT cause [=PAT[die]]) we have put:
cause to (be) at, (=AGT cause [=PAT at =TO]). This is the topic
of one of the earliest 4lang articles (Kornai 2012).

conceptual graphs J. Sowa (1976) places our topic in the
broadest context (beyond computational linguistics proper): knowledge
representation and logic. The latter is particularly important for a

11
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dissertation on semantics submitted to a theoretical linguistics pro-
gramme.

the naive physics manifesto Hayes (1979) provides a very
detailed theory for the definition of word meaning, what predicates to
introduce and how to anchor their meaning. Moreover his examination
is based on an axiom-concept graph similar to our definition graph (Sec-
tion 1.1), what is very instructive for Section 3.3. Our research group
follows a simpler principle both the maual and dictionary-based auto-
matic (Recski 2016a, 2018; Recski, Borbély, and Bolevácz 2016; Ács,
Nemeskey, and Recski 2017) vocabulary reduction: we usually define
rar words using more frequent ones.

Besides, it is the first time – the other one is Section 2.3.4 – that the
abstract/naive locative approach is mentioned, which is an important
feature of the manual 4lang definitions. „To really capture the notion
of ’above’, you probably have to go into analogies to do with e.g. inter-
personal status: Judge’s seats are raised; Heaven is high, Hell is low; to
express submission, lower yourself, etc.” Hobbs (2008, summarized in
our Section 2.2.7) begins to implement the program outlined by Hayes
(abstract core theories of commonsense knowledge).

2.1.2 Cognitive semantics (2.3)

Section 2.3 introduces Katz and Fodor (1963)’s seminal paper on seman-
tic features along with a line of semantic research that Kornai (2010a)
describes as “the less formally stated, but often strikingly insightful
work in linguistic semantics” exemplified by the work of Wierzbicka
(1985, Section 2.3.3), Lakoff, Fauconnier, Langacker (1987), Talmy (1988,
Section 2.3.4), Jackendoff (1990, Section 2.3.5), and others “often broadly
grouped together as ‘cognitively inspired’ ”. (References to sections in
the present thesis added.) In Baroni and Lenci (2010)’s reflection, cog-
nitive science and linguistics typically represent concepts as clusters
of properties (Section 2.3.5): noun properties known as qualia roles
(Section 2.3.7), verb selectional preferences and argument alternations
(Section 2.3.6), event types, and “topical” relatedness between words,
e.g. the relation between dog and fidelity.

lexical decomposition A referee of this thesis, Tibor Szécsé-
nyi raised the possibly rhetoric question whether the (linguistic) lexi-
cal representation of words includes the conceptual/semantic network
of words. My subjective answer is that I (and the HLT group) like
to use all kinds of models and tools and consider them to describe
the same thing. This common target of description is what Katz and
Fodor (1963)’s seminal article is about in my reading. Just as Quil-
lian is the father of the formal side of semantic nets, the linguistic
information stored in them goes back to Katz and Fodor. The paper

12



2.1 roadmap of the chapter

proposes a universal set of semantic markers and distinguishers similar
to 4lang concepts. The dissertation is about whether these semantic
features also appear in static word embeddings.

case grammar By calling our thematic placeholders of arguments
deep cases, we strongly strongly commited ourselves to Fillmore (1968).
Although I only mention Gruber (1965) and Ostler (1979) in the dis-
sertation, their influence is also indisputable. This is true even if the
theory now surrounds us like air (it is part of the university curricu-
lum): semantic roles (Agt, Pat, Dat, Loc); linking, alternations with
permanent roles; semantic type (e.g. live); case frame, linguistic tests
(Vendler 1967).

natural semantic metalanguage Tibor Szécsényi’s referee
report summarizes my background chapter on symbolic systems as
„how words are related to other words, more precisely the concepts
denoted by words to the concepts denoted by other words” (emphasis
mine). Yes: although in principle we deal with concepts, our data is
about words, so the two are practically synonymous for us. This prin-
ciple is called natural semantic metalanguage (NSM), and it can be
briefly stated as „there is no (separate) metasemantics”, the symbols
(predicates/terms/etc.) are drawn from among the words of the object
language, and their meaning is the meaning of the corresponding word
itself. In particular, every semantically primitive meaning can be ex-
pressed by a word, morpheme, or fixed phrase in every language.

In 4lang, this is clearly true for unaries (e.g. person, move) and more
or less also for binaries (e.g. at, cause, -er). For Wierzbicka, the NSM
is separate for each language, while 4lang denotes concepts intended
to be language-independent with English words. In the dissertation,
we cite an example of the danger of the opposite approach from the
authors of Cyc (which is otherwise discussed in Section 2.4.2) („what a
human can read into laysEggsInWater(x)). Wierzbicka (1972) (more
precisely, my section is based on Goddard and Wierzbicka (1994)) of
course discuss(es) what consequences this has for primitives and the
syntax of definitions. What we have already seen with Schank, and is
also adopted by 4lang, arises again: words (morphemes, etc.) can have
the same meaning even if the part of speech, the scope of use, or the
polysemy pattern is different.

force dynamics in language and cognition The naive
worldview already mentioned in relation to Hayes, and which is also
intended to be captured by the manual 4lang definitions, is explained
in the most detail by Talmy (1988): there is a parallel between the way
we talk about physical and psychosocial things. Force dynamics is one
of the basic conceptual categories that languages use to structure and
organize meaning. Naive physics (in contrast to scientific physics) is
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asymmetric: motion and rest, strong and weak. Naive time and space
are segmented – again only in opposition to the scientific theory.

conceptual structures 4lang was influenced by Jackendoff
(1972, 1983)’s theory in several ways. In the all-caps cause, which
plays a key role in the elimination of ditransitives, the reader famil-
iar with semantics will discover the primitive conceptual predicate of
conceptual structures (CS), although Jackendoff needs these primitives
primarily because of the so-called ontological categories: for him, the
semantic type of the arguments of each predicate is strictly regulated
– while there are no semantic types in 4lang. before and after that
4lang reinvents also come from CS.

While in 4lang, the thematic role of an argument does not need to
be predictable from its CS position, I was greatly influenced by the
feature of CS that the thematic roles correspond to the configurations
of the conceptual tree: As Chomsky’s definitions of the subject being
the NP of the rule S Ñ NP VP, in semantics for all verbs expressing
ptrans, we see the scheme =AGT cause [=PAT at =TO], and for
mtrans verbs, we see the scheme =AGT cause [=DAT know =
pat].
Jackendoff also mentions that each semantic field has its own specific

inference patterns, which is the naive theory of the given field. CS is
also the predecessor of 4lang in the representation of argument fusion
and selection constraints as unification.

english verb classes and alternations The basic prin-
ciple of Levin (1993)’s verb classes is the formulation of distributional
semantics for verbs: We can infer the meaning of the verb from the
expression possibilities of the arguments (and adjuncts) and vice versa.
This is most closely related to Chapter 6, but it is related to all my
theses, either because of the verbs or the distributional models.

the generative lexicon My first discussion of polysemy is
in Section 2.3.1, but in connection to the motivating question of my
cross-lingual word sense induction project (Chapter 8), i.e. the types
of polysemy, the generative lexicon cannot be avoided either.
Besides, Pustejovsky (1995)’s theory goes the furtherst into the lex-

ical content: it represents four kind of structures: argument, event,
qualia, and inheritance structure. The argument structure of 4langis
discussed in Chapter 5, while Recski (2016b) writes in the most detail
about inheritance. Our event structure is very simple (before, after
and unmarked). The qualia structure (the components, the shape, the
purpose, and the creation of things) is described by the definitions
themselves – no further constraints apply to this in 4lang.
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2.1.3 Early resources (2.4)

kl-one The Aristotelian genus and differentia specifica mentioned
in connection with Quillian appear in Brachman and Levesque (1985)
as superconcepts and local restrictions.

cyc One of the eternal topics of semantics is which words can be
defined as a conjunction of properties. The fist appearance of this ques-
tion in this thesis is Section 2.4.2. Lenat and Guha (1990) use partial
event slots similar to those reinvented in 4lang: ‘before’, ‘during’ and
‘after’.

computational lexicography for nlp Many useful re-
sources have appeared in the last three decades for computational
lexicography, but Boguraev and Briscoe (1989, Chapter 1) on machine-
readable dictionaries is still instructive today: the content of the entries;
the defining vocabulary and the problems arising in practice (ambigu-
ous defining words used in a different meaning than intended, adjectives,
idioms); the grammar of the definitions. In the field of the latter, for
example, we noticed that or is often used in the definitions not be-
cause disjunction is needed to represent the meaning of many words,
but rather it serves to give both a narrower and a broader description
of the same thing.

2.1.4 Modern lexical resources (2.5)

Section 2.5 presents standard resources still in use today. The broadest
context of my work is frames (Section 2.5.1). WordNet (Section 2.5.3)
is the bread and butter in computer semantics. Our main criticism of it
is that it over-diambiguates. I gave an example of this during the pre-
sentation of Makrai (2013): the six meanings of stomach. I also used it
in connection with antonymy (Section 7.1) and causation (Section 7.2).

The good thing about verb resources is the same as that about stan-
dards: there are so many to choose from. The main difference is in the
granularity of the argument labels: FrameNet (Section 2.5.2) uses verb-
specific tags, PropBank (Section 2.5.5) in principle uses only two core
arguments consistently, and VerbNet (Section 2.5.4) has a granularity
between the two. It is important that PropBank is used by AMR (Sec-
tion 2.5.7), the computational semantic formalism with the largest com-
munity, which, like 4lang, represents linguistic meaning with rooted,
directed, edge- and node-labeled graphs, and abstracts away from syn-
tactic differences. 4lang is between VerbNet and PropBank in terms
of granularity.

In addition to granularity, the other feature to consider is language
dependence, though the universality of a tool does not necessarily de-
pend on how the developers intended it. AMR, for example, claims to
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be an English-specific framework, yet it is perhaps the most popular
universally as well.

ConceptNet (Section 2.5.6) captures general knowledge about words,
e.g. the purpose of a net is to catch fish, which constitutes most of the
maual definitions of 4lang, and what Pustejovsky would call qualia
structure. Since semantic analysis always begins with syntactic analysis,
I also consider it important to present the Enhanced English Universal
Dependencies (Section 2.5.8) dwelling at the border of the two levels of
language.

Although we touch on many issues in the overview of various seman-
tic representations, in Section 2.5.9 we give a shallower but even broader
draw of the aspects, summarizing Abend and Rappoport (2017) and
Koller, Oepen, and Sun (2019). Finally, we also touch on MRS, which is
important according to one of the referees of this thesis, Attila Novák.

2.2 early semantic networks

2.2.1 The Teachable Language Comprehender

Quillian proposed a spreading-activation theory of human semantic pro-
cessing, and tried to implement it in computer simulations of memory
search, comprehension, and priming. In the description of the mem-
ory of the seminal Teachable Language Comprehender (TLC), (Quil-
lian 1969) defines text comprehension as relating assertions made or
implied in some text to information previously stored as part of the
comprehender’s general knowledge of the world. Assertions in the text
and permanent word knowledge are represented in TLC by the same
format. TLC aims to understand general English texts without specific
(mathematical or visual) reasoning rather than working in a restricted
universe like SHRDLU (Winograd 1972). Here we describe the repre-
sentation format of assertions, but not e.g. the syntactic component
(consisting of so called form test) and the teaching protocol.

Figure 1 shows the memory unit representing client. Information is
encoded as either a unit or as a property. Units (square brackets) rep-
resent objects and events while properties (parentheses) encode pred-
ications. Both brackets and parentheses are ordered lists of pointers
(asterisks) to other units or properties. The first pointer in a unit leads
to some other unit referred to as that unit’s superset. The remaining
elements, if any, point to properties. Similarly to what we see in lex-
ical decomposition (Section 2.3.1), the superset and these properties
are analogous to the Aristotelian genus versus differentia specifica with
the development that memory units in TLC represent not only lexical
items but specific entities as what is asserted about them at some point
of text comprehension:

[A] concept is always represented in our format by point-
ing to some generic unit, its superset, of which it can be
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Figure 1: Associative links (Quillian 1968)

considered a special instance, and then pointing to proper-
ties stating how that superset must be modified in order to
constitute the concept intended.

Properties are attribute-values pairs including traditional dimensions
such as pcolor,whiteq and dependency pairs (a theory by Tesniére
(1959), formalized by Hays (1964)) such as pon,hillq or pemployed,
professionalq. The first element points to the attribute and the sec-
ond to the value. These two obligatory elements are followed optionally
by any number of pointers to other properties. The semantic content
of attribute-value pairs is exemplified using young client where correct
comprehension “must supply the fact that this client’s ‘age’ is being
judged young, which is not explicit in the text”.

The network is responsible for inheritance between concepts, the com-
putation of semantic relatedness, disambiguation, and anaphora resolu-
tion with a mechanism that gave rise to the whole theory of spreading
activation in computational linguistics, to which we turn now.

2.2.2 Spreading activation

Simply put, spreading activation is a heuristic variant of shortest path
finding and breadth-first search in edge-weighted semantic networks
with the psychological motivation of modeling semantic memory search
and priming. Spreading activation experiments in the 4lang frame-
work have been published in Nemeskey et al. (2013). This subsection
describes Collins and Loftus (1975)’s elaboration of Qullian’s theory
(shedding light on several misconceptions and offering additional as-
sumptions). Collins and Loftus wanted to give an account of psycholin-
guistic experiments of their time. In their interpretation, “the full mean-
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ing of any concept is the whole network as entered from the concept
node”, quite reminiscent of the structuralist view on word meaning.

Collins and Loftus extend Quillian’s theory of semantic memory
search and semantic priming in order to deal with a number of psy-
chological experiments. The resulting theory can also be considered
as a prescription for building human semantic processing in a com-
puter. They argue that the adequacy of a psychological theory should
no longer be measured solely by its ability to predict experimental data:
a theory should produce the behavior that it purports to explain.

2.2.2.1 Quillian’s theory of semantic memory

In their first section, Collins and Loftus try to correct a number of
the common misunderstandings of the original theory. While the the-
ory was developed as a program for a digital computer, Collins and
Loftus elaborate it in psychological terms. People’s concepts contain
indefinitely large amounts of information, less and less relevant in a
specific situation. Concepts (particular senses of words or phrases) can
be represented as a node in a network, with properties of the concept
represented as labeled relational links. Collins and Loftus specify a cou-
ple of properties of the links:

• Links usually go in both directions between two concepts.

• Links can have different criterialities, which are numbers indicat-
ing how essential each link is to the meaning of the concept. The
criterialities in two directions can be different.

• The full meaning of any concept is the whole network as entered
from the concept node.

• There are the following kinds of links:
– superordinate (is-a) and subordinate links,
– modifier links,
– disjunctive sets of links,1

– conjunctive sets of links, and
– a residual class of links, which allowed the specification of

any relationship where the relationship (usually a verb rela-
tionship) itself was a concept.

• Links could be nested or embedded to any degree of depth.

Priming affects links as well as nodes.
Spreading activation means that search in memory between concepts

involves tracing out in parallel (simulated in the computer by a breadth-
first search) along the links from the node of each concept specified by

1 4lang has no disjunction of edges.
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the input words. The words might be part of a sentence or stimuli in
an experimental task. At each node reached in this process, an acti-
vation tag is left that specifies the starting node and the immediate
predecessor. If intersection between the two nodes has been found, by
following the tags back to both starting nodes, the path that led to
the intersection can be reconstructed. The path is finally evaluated to
decide if it satisfies the constraints imposed by syntax and context.

Collins and Loftus discuss common misinterpretations concerning
Quillian’s theory. The goal of the author of this thesis is not to de-
cide these questions, just to show what specific problems arise if one
wants do apply spreading activation. The questions may be answered
on empirical grounds. There is no difficulty for Quillian’s theory to
adapt to either solution of the problems below.

• There is a stronger and a weaker version of the cognitive economy
principle: “all properties are stored only once in memory and must
be retrieved through a series of inferences for all words except
those that they most directly define”, vs “every time one learns
that X is a bird, one does not at that time store all the properties
of birds with X in memory”.

• “All links are equal.” In Quillian’s original theory, there were crite-
riality tags on links, as we described earlier. Links were assumed
to have differential accessibility (i.e. strength or travel time). The
accessibility of a property depends on how often a person thinks
about or uses a property of a concept. Whether criteriality and
accessibility are treated as the same or different is a complex is-
sue.

• Memory search (to make a categorization judgment) proceeds
from the instance to the category. In a categorization task, re-
sponse time is measured for a subject to decide whether or not a
particular instance (e.g., car) is a member of one or more cate-
gories (e.g., flower or vehicle).

• “Search rate is slower in proportion to the number of paths that
must be searched.” vs “Independent parallel search is like a race
where the speed of each runner is independent of the other run-
ners” which was a common assumption in psychology.

• Other misconceptions concern whether the network is a rigid hi-
erarchy or whether the theory predicts it will always take less
time to compare concepts that are close together in the semantic
network.
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2.2.2.2 The extended theory

In their next section, Collins and Loftus extend the theory with several
assumptions to apply it to some psychological experiments (also trans-
forming the theory from computer terms to quasi-neurological terms).

local processing assumptions

• Activation spreads out along the paths of the network in a de-
creasing gradient. The decrease is inversely proportional to the
accessibility or strength of the links.

• The longer a concept is continuously processed, the longer acti-
vation is released from the node of the concept at a fixed rate. In
this model, only one concept can be actively processed at a time.

• Activation decreases over time and/or intervening activity.
These assumptions impose a limitation on the amount of acti-
vation that can be allocated in priming more than one concept,
because the more concepts that are primed, the less each will be
primed.

• With the assumption that activation is a variable quantity, inter-
section requires a threshold for firing, and activation from differ-
ent sources adds up.

global assumptions about memory structure and pro-
cessing are generalizations of earlier arguments that the semantic
memory is organized primarily into noun categories and that there is a
dictionary (or lexical memory) separate from the conceptual network.

• The network is organized along the lines of semantic similarity.
The more properties two concepts have in common, the more links
there are between the two nodes. For example, different vehicles
or different colors will all be highly interlinked, while red things
(e.g., fire engines, cherries, sunsets, and roses) are not closely inter-
linked, despite the one property they have in common. Semantic
relatedness is a slightly different notion from semantic distance,
though the two terms are sometimes used interchangeably: dis-
tance is along the shortest path, and relatedness (or similarity) is
an aggregate of all the paths.

• The names of concepts are stored in a lexical network (or dic-
tionary) that is organized along lines of phonemic (and to some
degree orthographic) similarity. People can identify these proper-
ties about words on the “tip of their tongue”.

• People can control whether they prime the lexical network, the
semantic network, or both.
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assumptions about the semantic matching process A
semantic matching process corresponds to the categorization tasks,
which asks “IsX a Y ?”. This process occurs in many aspects of language
processing, such as matching referents, assigning cases, and answering
questions.

• In order to decide whether or not a concept matches another
concept, enough evidence must be collected to exceed either a
positive or a negative criterion.
– Evidence consists of various kinds of intersections that are

found.
– Evidence from different paths in memory sum together.
– Positive and negative evidence act to cancel each other out.
– Failure to reach either criterion before running out of rele-

vant evidence leads to a ‘don’t know’ response.
This process is essentially the Bayesian decision model, which was
common in the reaction time literature.

• If the memory search finds that there is a superordinate (or a
negative superordinate) path from X to Y , that fact alone can
push the decision over the positive (or negative) criterion. Super-
ordinate links act like highly criterial property links.

• If the memory search finds properties on whichX and Y (resp. mis)match
(i.e. common resp. distinguishing properties), this is positive (resp. neg-
ative) evidence proportional to the criteriality of the property for
Y . Positive and negative evidence can be weighted differently: a
mismatch on just one fairly criterial property can lead to a nega-
tive decision, whereas most of the highly criterial properties must
match in order to reach a positive decision.

• The Wittgenstein strategy is a variant of the property comparison
strategy: to decide whether something (for example, frisbee) is a
game, a person compares it to similar instances that are known to
be games. Here, matching properties count just as much toward
a positive decision as distinguishing properties count toward a
negative decision.

• Mutually exclusive subordinates strategy: if two concepts have
a common superordinate with mutually exclusive links into the
common superordinate, then this constitutes strong negative evi-
dence, almost comparable to a negative superordinate link. Lack-
ing specific information to the contrary, people may make a de-
fault assumption of mutual exclusivity when two concepts have a
common superordinate.

• Counterexamples also can be used as negative evidence. E.g. “All
birds are canaries” is disconfirmed by finding e.g. a robin. More
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formally: if the question is of the form “Is X a Y ?” and there is
a superordinate link from Y to X, and there exists Z that also
has X as superordinate and is mutually exclusive from Y , this is
conclusive evidence that X is not always a Y .

2.2.2.3 Defining and characteristic features

In the last section, Collins and Loftus deal with those aspects of se-
mantic processing where the model of J. M. Smith (1974) is the major
competitor to Quillian’s theory. Smith represents concepts as bundles
of semantic features of two kinds: defining and characteristic features.
Defining features are those that an instance must have to be a member
of the concept, and features can be more or less defining. Characteristic
features are those that are commonly associated with the concept, but
are not necessary for concept membership. (The latter correspond to
defaults in 4lang.)

Categorization (decisions like “Is a car a flower?”) consists of two
stages. In Stage 1, all features are investigated, both characteristic and
defining. If the match is above a positive criterion, the subject answers
“yes”; if it is below a negative criterion, the subject answers “no”; and
if it is in-between, the subject makes a second comparison, which is
based on just the defining features. If the instance has all the defining
features of the category, the subject says “yes”.

The distinction between defining and characteristic features has an
inherent difficulty, pointed out through the ages, that there is no feature
that is absolutely necessary for any category.

There is for living things a biologists’ taxonomy, which
categorizes objects using properties that are not always
those most apparent to the layman. Thus, there are arbi-
trary, technical definitions that are different from the lay-
man’s ill-defined concepts, but this is not true in most do-
mains. There is no technical definition of a game, a vehicle,
or a country that is generally accepted.

Collins and Loftus argue that

the decision that a ‘wren‘ is not a ‘sparrow‘ would be
made because they are mutually exclusive kinds of birds.
They are both small songbirds, and it is hard to believe that
many people know what the defining features of a sparrow
are that a wren does not have. The fact that there are cases
where people must use superordinate information to make
correct categorization judgments makes it unlikely that they
do not use such information in other cases.

If categorization consists of comparing features between the instance
and the category, then it should not matter whether the instance or
category is presented first, but experimental data shows asymmetry.
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Another experiment that might show difficulties with the defining fea-
ture model is a categorization task of birds and animals on the one hand,
and mammals and animals on the other. Deciding that bird names are
in the category ‘bird’ is faster than that they are in the category ‘an-
imal,’ whereas people are slower at deciding that mammal names are
in the category ‘mammal’ than in the category ‘animal’.

A final argument against defining features is that people have incom-
plete knowledge about the world: we often do not have stored particular
superordinate links or criterial properties. Any realistic data base for
a computer system will have this same kind of incomplete knowledge.
The strongest criticism of the (J. M. Smith 1974) model is that it breaks
down when people lack knowledge about defining features. By viewing
superordinate links as highly criterial properties, Quillian’s extended
theory encompasses a revised version of the Smith model as a special
case of a more general procedure.

Levelt, Roelofs, and Meyer (1999) mention two other arguments
against decomposition to features. When a word’s semantic features
are active, then the feature sets for all of its hypernyms or superordi-
nates are active. Still, there is no evidence that speakers tend to produce
hypernyms of intended targets. The other argument is the lack of a se-
mantic complexity effect: words with more complex feature sets are not
harder to access (measured in reaction time).

2.2.3 Let eleven verb-types bloom

ToDo Szécsényi: Nem értem a 2.1.3. szakasz címét.
The most part of the preceding two sections have been about the

formalism and the search heuristic implementing spreading activation.
Now we turn to the semantic content of networks, first Conceptual
Dependency (CD, Schank (1972)).

CD has been used by many computer programs of the time that
understood English (MARGIE, the Script Applier Mechanism, and the
Plan Applier Mechanism). From a linguistic point of view, CD is a
meaning representation formalism which is inter-lingual, independent
of paraphrase, and appropriate for drawing inferences.

In CD, the process of syntactic parsing is simultaneous with that of
drawing some types of inferences. Schank (1973) distinguishes inference
from logical deductions (i.e. those in automatic theorem proving). “The
intent of inference-making is to ‘fill out’ a situation which is alluded
by an utterance [and tie] pieces of information together to determine
such things as feasibility, causality and intent of the utterance.” While
deductions are highly directed from axioms to some well-defined goal,
inferences “are generally made to see what they can see”.

CD is a deep representation: the representation of a sentence includ-
ing buy a book should include two actions of transfer (one whose object
is the book and the other whose object is the price) and the (roles
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of) participants in these actions. Default arguments (e.g. the object of
the verb drink is alcoholic) are also subsumed, though Schank notes
that the presence of this default in many languages may be an artifact
of shared culture, not that of the underlying (languages-independent)
concept. Semantic arguments are meant broadly, e.g. the representation
of hit should include the instrument. Assertions in CD graphs have a
measure of confidence attached to them.

We describe the formalism of CD in some more detail as it has been
very influential. There are conceptual categories:

• concepts of things that produce a picture (PP) of a real world
item in the mind of the hearer, usually expressed by (common or
proper) nouns,

• actions (ACTs) that are mostly expressed by verbs, and

• attributes modifying the former two (PA and AA, respectively).

The possible dependencies between concepts are specified by concep-
tual (relation) rules. Links may be modified for tense. To formulate
dependency rules, verbs are “mapped into a conceptual construction
that may use one or more [. . . ] primitive ACTs in certain specified re-
lationships plus other objects and states”. Probably the most famous
of these fourteen primitive ACTs are the three types of transfer, trans-
fer of abstract relations, e.g. ownership or control (atrans), that of
physical objects (ptrans), and that of information (mental transfer,
mtrans). These are related to the deep dative case DAT in 4lang, see
Section 5.2.2.2. In CD, there are four cases: objective, recipient,
directive, and instrumental.

Schank (1973) also discusses inferences that are independent of the
specific language. Understanding the sentence John told Mary that he
wants a book involves the inference that John wants the books for some
mtrans, and hearers of this sentence make the inference so sponta-
neously that they do not even remember whether this ACT was explic-
itly stated. An other example of the many types of inferences discussed
are those about the reasons for actions (motivations of agents). The
base for such inferences is constituted by so called belief patterns, se-
quences of causally-related ACTs and states that are shared by many
speakers within a culture.

2.2.4 What’s in a link?

The history of artificial intelligence consists of summers and winters.
A good summary is provided by the Contents of the Wikipedia page
whose sections we cite (with a little modification) in Table 1.

Hubert Dreyfus argued that human intelligence and expertise depend
primarily on unconscious instincts rather than conscious symbolic ma-
nipulation. Early approaches to artificial common-sense reasoning may
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• The birth of artificial intelligence (1952–1956)

• The golden years (1956–1974)

• The first AI winter (1974–1980)

• Boom (1980–1987): expert systems, knowledge, fifth generation computers,
and connectionism

• Bust: the second AI winter (1987–1993)

• Application in industry and specific isolated problems (1993–2001)

• Deep learning, big data and artificial general intelligence: 2000–present

Table 1: Summers and winters of artificial intelligence (AI)

seem so naive to the contemporary reader that we are not surprised that
winters (periods with disappearing enthusiasm and funding) came. The
problems were made explicit by Woods (1975) dealing with the theo-
retical underpinnings of network representations and the semantics of
the networks (nodes and links) themselves. He points out that despite
the many publications and demonstrating systems, there is no theory
of semantic networks, and existing networks are inadequate for the rep-
resentations of many linguistic phenomena. Links have been used to
represent what Brachman and Levesque (1985) call many different lev-
els, e.g. implementational pointers, logical relations, semantic relations
(e.g. “cases”), and arbitrary conceptual and linguistic relations.

In section 2, Woods discusses what semantics is, whether it can be
separated or even distinguished from syntax on the one hand and in-
ference or “thought” on the other. In his terms, linguistics renders dis-
ambiguated representations to sentences, while philosophy maps these
to truth values. Retrieval and inference are not part of semantics, nor
is pure disambiguation among syntactic parses, even if this is based on
selectional restrictions and so-called semantic features. A system needs
a separate semantic module for the justification calling it semantic.

The major characteristic of the semantic networks is the notion of
links that may model human associations. Semantic representations
need to be precise, formal, unambiguous, and logically adequate.2 Woods
discusses the problems of the existence of canonical form, the connec-
tion between attribute-value matrices and networks, relations of more
than two arguments (a problem that is one of the main motivations
of 4lang, see the elimination of “deep ditransitives” in Section 3.1.3.
Woods shows a prepositional example, x is ‘between y and z’), and
most importantly the logical type of nodes. Woods’ Section 4 discusses
two problems that are difficult for AI, restrictive relative clauses, in-
tensional entities (representations of entities without commitment to
existence or distinctness), and quantification. Solutions to these prob-

2 Logic is one of the main disciplines for meaning representation besides semantic
networks and vector-space models. In this chapter, we assume familiarity with first
order and intentional logic, and do not go into details, as this is not necessary for
the main chapters.
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Figure 2: CS graph for A cat chased a mouse John F Sowa 1992, p.80

lems in the 4lang theory are offered in Kornai (2023), though they have
not yet been implemented.

2.2.5 Conceptual Graphs

We turn to Conceptual Graphs (CG, J. Sowa (1976)), a “two-dimensional
form of logic”, that connects semantic networks discussed so far to the
broader discipline of knowledge representation and logic. An excellent
introduction is offered by John F Sowa (1992).

CG is a knowledge representation language designed as a synthesis
of semantic networks; “logic-based techniques of unification, lambda
calculus, and Peirce’s existential graphs; linguistic research based on
Tesniere’s dependency graphs and various forms of case grammar and
thematic relations; and data-flow diagrams and Petri nets, which pro-
vide a computational mechanism for relating conceptual graphs to ex-
ternal procedures and databases.” The result is an expressive system of
logic with a direct mapping between natural languages and e.g. expert
systems. By combining Peirce’s contexts with the dependency graphs,
CG provides a formalism that can represent Schank’s scripts.

As exemplified in Figure 2, CG represents concepts by rectangular
nodes and dependency relations (“conceptual” relations) by circular
ones as a typed (a.k.a. sorted) version of logic. (As we have already
seen, Schank’s graphs show conceptual relations as various kinds of
arrows instead of these labeled circles.)

2.2.6 The naive physics manifesto

Hayes (1979) proposes the construction of a formalization of a portion
of common-sense knowledge about the everyday physical world (objects,
shape, space, movement, substances, time, etc.) along with a theory of
meaning. The main characteristics of the proposed theory are

• thoroughness, i.e. coverage,

• fidelity: the theory should be reasonably detailed,

• density: the ratio of facts to concepts needs to be fairly high
(i.e. the units have to have lots of slots), and

• uniformity: a common formal framework (language, system, etc.)
so that the inferential connections between the different parts
(axioms, frames,. . . ) can be clearly seen. It is methodologically
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important to allow the use of a variety of formalisms in sub-areas,
but idiosyncratic formalisms should be systematically reducible
to the basic formalism, and be regarded as ‘semantic sugar’.

In this section, we introduce sections 3 to 6 of Hayes (1979). For
modern advances in this direction, see Hobbs (2008), which we discuss
in Section 2.2.7.

2.2.6.1 The axiom-concept graph: clusters and density

A naive physics formalization consists of many assertions and sym-
bols (i.e. tokens: relation symbols, function and constant symbols) –
or: frame headers, slot names, etc.; or: node and arc labels, etc. The
meaning of the tokens is defined by the structure of the formalization,
by the pattern of inferential connections between the assertions. The
formalization is dense, if for each token, there are many axioms in-
volving it, which pin down the meanings of the tokens. This view of
meaning differs profoundly from the view which holds that tokens in a
formalization are words in a natural language.

The axiom-concept hypergraph (ACH) consists of nodes correspond-
ing to tokens of the formalization; and arcs corresponding to axioms:
an arc links the tokens that it uses. The formalization is dense if the
ACH is highly connected. Hayes does not expect density to be uniform:
there will be more dense clusters of concepts. Identifying these clusters
is one of the most important and difficult tasks. E.g. what happens
with liquids, is part of the liquids cluster, not part of some theory of
‘what-happens-when’: causality is not a cluster. Cluster identification
is hard, since a large conceptual structure can be entered anywhere. If
it seems hard to say anything very useful about the concepts, that can
mean that one has entered the graph at a locally sparse place, rather
than in a cluster. This thesis analyses a similar graphical representation
of 4lang and its connected components in Section 3.3.

Clustering is hierarchical: e.g. the collection of concepts to do with
three-dimensional shape and orientation (‘above’, ‘below’, ‘tall’, ‘fat’,
‘wide’, ‘behind’, ‘touching’, ‘resting on’, ‘angle of slope’, ‘edge’ (of a
surface), ‘surface’ (of a volume), ‘side’, ‘vertical’, ‘top’, ‘bottom’, which
have many internal relationships) must appear significantly in concep-
tual frameworks that underlie visual perception and locomotion, de-
scribing assemblies, the theory of liquids, and that of physical actions
and events.

2.2.6.2 The a{c ratio and reductionist formalizations

The ratio of axioms to concepts (the a{c ratio) will be large for a dense
axiomatization. Any interesting axiomatization will have a{c greater
than one; but there are interesting axiomatizations in which a{c will
be very close to 1. E.g. in the Zermelo-Fraenkel set theory, c “ 2 (the
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concepts are ‘P’ and ‘set’) and a “ 8. This theory enables one to de-
fine many concepts (e.g. the integers; the rationals; the reals), and the
desired properties of these concepts (e.g. the principle of induction for
integers or the continuity of the real line) follow from the structure of
these definitions, and the axioms as theorems of the axiomatization.
The axiomatic approach to naive physics which Hayes proposes is dif-
ferent. Set theory is reductionist in the extreme: it is extraordinarily
sparse. By adding definitions to a reduced theory, a{c tends asymptot-
ically to unity. The resulting ACH has one very small cluster at the
center, surrounded by a cloud of nodes each linked radially. This reduc-
tionist graph is quite a different ‘shape’ from the connected, clustered
graph of a dense axiomatic theory. Hayes believes that there is no such
small, reductionist theory for common sense reasoning.

Many approaches in the artificial intelligence literature, make a re-
ductionist assumption or ‘semantic primitives’, exemplified by the work
of Wilks (1977) and Schank (1975). The number of primitives is about
90 in Wilks, and 14 in Schank. Schank and his students associated in-
ference molecules with the 14 primitive action-tokens, which play the
same sort of central organizing role that the set axioms do. The de-
sired properties of e.g. buying or giving follow from their definitions,
and the meaning given to the primitives by the core theory. Hayes crit-
icizes Wilks for merely presenting a list of tokens with a brief descrip-
tion, i.e. the semantic primitives being English words. A reductionist,
semantic-primitives based approach to meaning may be adequate for
information-retrieval or machine translation, but at some point we will
have to represent detailed knowledge of the world.

2.2.6.3 Meanings, model theory, and fidelity

If the meanings of tokens are not specified by definitions, then how? A
token means a concept to the extent that the formalization enables a
sufficient number of inferences to be made whose conclusions contain
the token. But Hayes assumes that a formalization has an adequate
model theory as well, i.e. tokens have extension. Hayes highlights the
widespread delusion of confusing a formal description of a model found
in the textbooks with the actual model. If axiomatization has a very
much simpler model than the intended one, then the tokens mean no
more than they mean in the simple model. This is what Hayes means by
‘fidelity’. E.g. an adequate formalization of a blocks world will be such
that any model of it must have an essentially three-dimensional struc-
ture. Fidelity is how closely the simplest model resembles the intended
one.

A related problem is that the meaning of a token depends upon
the entire formalization, a change to any part of the formalization can
change every other part. People with different formalizations in their
heads may understand the same token in different ways. Find a sub-
stance and a set of circumstances such that I would call it ‘water’ and
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you would not! It is even possible when our beliefs about water (i.e. all
the assertions which actually contain the token ‘water’) are identical.
The difference may lie in some related concept (such as viscosity, or
drinkability) which we understand differently. It may not even be pos-
sible to say exactly which tokens we differ on. One of the good reasons
for choosing naive physics to tackle first is that there seems to be a
greater measure of interpersonal agreement here.

If you change the meaning of ‘water’, the change in the meanings
of other tokens is less, the further away the token is from ‘water’. As
a working hypothesis, you may identify this distance with shortest-
path distance in the ACH hypergraph. Thanks to this distance-dilution
effect, it seems a reasonable strategy to, first, work on clusters more or
less independently. You can introduce concepts, which occur in some
other cluster, fairly freely, assuming that their meaning is reasonably
tightly specified there. E.g. in considering liquids, I needed to talk about
volumetric shape: our concept of a horizontal surface would hardly
be complete if we had never seen a large, still body of water — but
we assume of a fairly autonomous theory of shape. The ‘definitions’
view of meaning is theoretically wrong, but a good method. Finally,
Hayes talks about the body and sensory input. As any consistent first-
order axiomatization has a model with only symbols, ‘motor tokens’ —
symbols which describe bodily movements — should directly be related
to the body.

2.2.6.4 Thoroughness and closure

One way to have a high a{c ratio, it might seem, would be to keep c

small: find some small, self-contained groups of concepts which could
be formalized in total isolation to a reasonable degree of fidelity. But
in a typical situation, one quickly needs to introduce tokens, and in
order to pin down their meanings, yet more concepts. The proliferation
of tokens seems to be getting out of hand. If one thinks of exploring
the ACH, one needs a sense of direction, to stay within the current
cluster. During the formalization process, the proliferation must slow
down eventually. The ‘thoroughness’ requirement is to go on until this
slows down, when our collection of concepts has closed upon itself, so
that all the things one wants to say in the formalization can be said
using the tokens which have already been introduced. This means we
have spanned the entire graph, and need only to add new arcs, filling
out the graph until its density is sufficient to capture the meanings of
its tokens. Hayes’s program is to get a formalization which is closed
and has high fidelity (so, high density): then it must also be thorough.

To achieve greater fidelity, one will need greater thoroughness. E.g. to
really capture the notion of ‘above’, you probably have to go into
analogies to do with e.g. interpersonal status: (Judge’s seats are raised;
Heaven is high, Hell is low; to express submission, lower yourself, etc.)
Imagine a world in which the ‘status’ analogy was reversed. That is a
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possible model of naive physics, but not of common sense. A formal-
ization cannot be deep without being broad, and must be deep to be
dense: so a dense formalization must be deep and broad. The cluster
hierarchy mentioned before depends upon the fidelity, the level of de-
tail. The programme of tackling naive physics in isolation is based on
the belief that there is a level of detail at which naive physics forms a
close cluster in a rich but tractable level of detail.

2.2.7 Deep Lexical Semantics

Now we turn to Deep Lexical Semantics (Hobbs 2008), motivating it
from a more recent perspective. HellaSwag (Zellers et al. 2019) tests pre-
trained deep language models like BERT (Section 4.3) with questions
like which of the alternatives bellow finishes the short text A woman
is outside with a bucket and a dog. The dog is running around trying
to avoid a bath. She... the most appropriately.

1. rinses the bucket off with soap and blow dry the dog’s head.

2. uses a hose to keep it from getting soapy.

3. gets the dog wet, then it runs away again.

4. gets into a bath tub with the dog.

The good answer is 3. Models struggle with this task. The authors
note that while the wrong endings are on-topic, with words that relate
to the context, humans consistently judge their meanings to be either
incorrect or implausible. These problems suggest that for understand-
ing, we need something beyond the meaning of the words, and their
probability in different sentence contexts. We saw in Section 2.2.6 that
Hayes (1979) suggested the construction of a formalization of a portion
of common-sense knowledge about the everyday physical world along
with a theory of meaning. Deep Lexical Semantics (Hobbs 2008) is a
further step in this direction.

Hobbs (2008) took a basic core of about 5000 most frequent synsets
in WordNet; categorized these into sixteen broad categories, e.g. time,
space, scalar notions, composite entities, and event structure; and sketched
out the structure of some of the underlying abstract core theories of
commonsense knowledge (see Table 2). The latter includes the basic
predicates in terms of which the most common word senses need to be
defined or characterized; axioms that link the word senses to the core
theories; and a kind of “advanced lexical decomposition”, where the
“primitives” into which words are “decomposed” are elements in coher-
ently worked-out theories. Hobbs (2008) focuses on the 450 of these
synsets that are concerned with events and their structure.

Hobbs has very similar principles to Hayes (1979): We must have
underlying theories and axioms that link these to words. Concepts and
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Composite Entities perfect, empty, relative, secondary, similar, odd
Scales step, degree, level, intensify, high, major, considerable
Events constraint, secure, generate, fix, power, development
Space grade, inside, lot, top, list, direction, turn, enlarge, long
Time year, day, summer, recent, old, early, present, then, often
Cognition imagination, horror, rely, remind, matter, estimate, idea
Communication journal, poetry, announcement, gesture, charter
Persons leisure, childhood, glance, cousin, jump
Microsocial virtue, separate, friendly, married, company, name
Bio breed, oak, shell, lion, eagle, shark, snail, fur, flock
Geo storm, moon, pole, world, peak, site, sea, island
Material World smoke, shell, stick, carbon, blue, burn, dry, tough
Artifacts bell, button, van, shelf, machine, film, floor, glass, chair
Food cheese, potato, milk, bread, cake, meat, beer, bake, spoil
Macrosocial architecture, airport, headquarters, prosecution
Economic import, money, policy, poverty, profit, venture, owe

Table 2: Concepts in Hobbs (2008)

axioms include domain-dependent knowledge, of course, but 70-80% of
the words in most texts, even technical texts, are words in ordinary
English. Hobbs chooses the core theory of scales, which will provide ax-
ioms involving predicates such as ‘scale‘, ‘<‘, ‘subscale‘, ‘top‘, ‘bottom‘,
and ‘at‘. These are abstract notions that apply to partial orderings as
diverse as heights, money, and degrees of happiness.

Some lexical and world knowledge can be acquired automatically,
e.g. the correlation between “married” and “divorced”. The correspond-
ing predicate-argument structures may also be acquired, along with
which way the implication goes and with what temporal constraints.
But this is a too simple relation to axiomatize in comparison to the
“range”. In Hobbs’s view, it is feasible to manually axiomatize the mean-
ings of several thousand words, what can achieve the desired complexity
and reliability of the core theories and the linking axioms.

Section 3 describes the following core theories that are crucial in
characterizing event words:

• Eventualities and their Structure: states and events,

• Set Theory (modeled in a standard fashion),

• Composite Entities, including the predicate ‘partOf‘ and the figure-
ground relation ‘at‘,

• Scales: partial orderings, monotone functions, the construction of
composite scales, the characterization of qualitatively high and
low regions of a scale (related to distributions and functionality),
and constraints on vague scales,
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• Change of State

• Cause. Recall that Hayes (1979) explicitly warned against trying
to formalize causality, saying that what happens e.g. with liquids,
is part of the liquids cluster, not part of some theory of ‘what-
happens-when’.
In Hayes view, causality is characterized by two properties: If ev-
ery eventuality in a causal complex happens, the effect happens;
and everything in the causal complex is relevant to the effect in a
way that can be made precise. Hobbs’s approach to causality in-
cludes force-dynamic notions (Section 2.3.4) like enable, prevent,
help, obstruct, attempts, success, failure, ability, and difficulty.

• Events. Changes of state and causality compose into more com-
plex events, (conditional, iterative, cyclic, and periodic events).
This part of the theory is linked with several well-developed on-
tologies for event structure.

• a well-developed theory of time,

• a rather sparse theory of space, and

• a large number of theories explicating a commonsense theory of
cognition,

• the predicates ‘possess‘ and ‘remain‘ would be explicated in a
commonsense theory of economics.

2.3 cognitive semantics

Recall the overview of this section in Section 2.1.2.

2.3.1 Lexical decomposition

We start this section with the standard model of lexical decomposi-
tion due to Katz and Fodor (1963). The paper describes its aim as
the organization of facts contributed by diverse fields including philos-
ophy, linguistics, philology, and psychology. The first part of the paper
describes the domain, the descriptive and explanatory goals, the mecha-
nisms, and the empirical and methodological constraints upon a seman-
tic theory. They want to find a balance of strict formalism (developed
some years later in Montague Grammar) and great explanatory power
(like traditional lexicography). The input to their semantic model is a
sentence analyzed by a recursive compositional grammar, in modern
terms, a parse tree. These authors require a semantic theory be capa-
ble of recognizing (and resolving) ambiguity, paraphrase, and anomaly
(e.g. The paint is silent) but other aspects like the computation of truth
values is deferred.
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The difference between syntax and semantics is that the latter may
rely on context, mainly linguistic one (the dialog), and to a restricted
degree, extra-linguistic one (word knowledge). Their notion of word
knowledge subsumes facts like ‘buildings do not jump’, which is needed
for comprehending the sentences Joe jumped higher than the Empire
State Building and Joe jumped higher than you differently. The theory
should “interpret discourses just so far as the interpretation is deter-
mined by grammatical and semantic relations which obtain within and
among the sentences of the discourse.”

The components of the proposed semantic theory include the dictio-
nary (the same module we will call the lexicon) and one that could
be called a word-sense disambiguation method in present-day terms.
The most important part of this theory is the structure of dictionary
entries. Besides part-of-speech (POS) specification and, optionally, ex-
plicit cross-references to synonyms, dictionary entries consist of sense
characterizations like that in Figure 3. The key notion is that of the
semantic markers (in parenthesis, e.g. pHumanq) that represent rela-
tions between meanings of the same polysemous word and between
different dictionary entries. Distinguishers (in brackets) assigned to
a lexical item are intended to reflect what is idiosyncratic about its
meaning. This distinction is analogous (Kornai 2019, Chapter 5) to
the Aristotelian notion of genus (a mirror is a ‘plain surface‘) and a
differentia specifica (. . . that ‘reflects‘). The unenclosed elements are
grammatical “markers” (features). Semantics markers play a role in
disambiguation, selectional restrictions, and, in a limiting case of selec-
tional restrictions, the detection of semantic anomaly. The formalism
also allows restrictions for the arguments of the items, e.g. xpFemaleqy
in the representation of one of the senses of honest designates that the
corresponding meaning of honest applies only to arguments with the
pFemaleq marker. In the concluding section, the authors mention that
there may exist a universal inventory of semantic markers from which
the markers of each particular language are drawn, a goal 4lang shares
with this theory (besides lexical decomposition itself).

2.3.2 Case Grammar

One of the main chapters of this thesis (Chapter 5) introduces the
semantic roles used in 4lang, the concept network of the research group
the author belongs to. Our system has been heavily influenced by Case
Grammar (Fillmore 1968), which this section introduces.
Our introduction is based on Palmer, Gildea, and Xue (2010, Chapter

1), who investigate semantic roles (semantic relations and predicate-
argument structure) and the controversies surrounding them. They
start with the example that from a sentence like John threw a ball
to Mary in the park, an NLP system should identify a throwing event,
John as the Agent or Causer of the event, Mary as the Recipient, the

33



symbolic representations

bachelor

noun

(Animal)

(Male)

[young fur seal
when without a
mate during the
breeding time]

(Human)

[who has the
first or lowest

academic degree]

(Male)

[young knight
serving under
the standard of
another knight]

[who has
never married]

Figure 3: The sense-characterization of bachelor by Katz and Fodor (1963)

ball as the item being thrown, and the location of the throwing event.
The linguistic theory of mapping from the syntactic analysis of the
sentence to the underlying predicate argument structures is known as
Linking. On the syntactic side, we have alternations like John broke
the window/The window broke with the same semantic role (or concep-
tual relation) in both sentences. (In the example, it would typically be
labeled as the Patient.)
Case Grammar originated with Fillmore’s paper on “deep” cases,

i.e. semantically typed verb arguments (Fillmore 1968). The theory in-
volves types of nouns with different types of cases, e.g. the Agentive and
Dative roles are most likely to be of type animate. Argument frames
specify the number, type and obligatory/optional nature of roles asso-
ciated with a verb. Linguists developed tests for determining whether
two noun phrases have the same case. For instance, members of a con-
junction have the same case. Representing alternative role assignments
(e.g. Mother is cooking the potatoes/The potatoes are cooking/Mother
is cooking) by the same deep cases can result in a more compact lex-
icon. Even like and please can be considered semantically equivalent,
distinguished only by their preferred mappings. Within the semantic
domain, generalizations can be exploited in the form of commonalities
e.g. between the Agentive cases and the Objective cases of actions such
as hitting, breaking, and cutting.
The inventory of roles differ between flavors of the theory, only the

Agent and the Patient being relatively straightforward. The Agent is
the initiator of the action, the doer, typically acting deliberately or on
purpose. The question What did X do? can be applied, with X being
the Agent. The Patient, on the other hand, is being acted upon. It is
likely to change state as a result of the Agent’s actions. The questions
What happened to Y ? or What did X do to Y ? would apply.
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2.3.3 Natural Semantic Metalanguage

Lenat and Guha (1990) formulate one of the greatest problems remain-
ing in modern semantic networks as follows.

Programs often use names for concepts such as predi-
cates, variables, etc., that are meaningful to humans exam-
ining the code; however, only a shadow of that rich mean-
ing is accessible to the program itself. For example, there
might be some rules that conclude assertions of the form
laysEggsInWater(x), and other rules triggered off of that
predicate, but that is only a fragment of what a human can
read into laysEggsInWater

A solution to the problem of arbitrary node-labels has been offered
outside of the computational realm, by the Natural Semantic Meta-
language (NSM) approach (Wierzbicka 1972) that we introduce fol-
lowing the first two chapters in a more recent collection (Goddard and
Wierzbicka 1994), “the first attempt ever to empirically test a hypothet-
ical set of semantic and lexical universals across a number of genetically
and typologically diverse languages” with “parallel and strictly compa-
rable answers to the [questions of] a shared set of concepts, forming the
common conceptual foundation of all cultures”.
The principles of the work are specified in their Section 1.1 and

enumerated below. Goddard includes a discussion of the opinion of the
main semanticist of the century on these principles.

1. Semiotic Principle. “A sign cannot be reduced to or analyzed into
any combination of things which are not themselves signs”. God-
dard lists some examples to what meaning cannot be decomposed:
reference or denotation, truth conditions, neurophysiological data,
and usage. This principle is opposite to the goal of this thesis
that searches for connections between symbolic representations
and distributional ones.

2. Decomposition into discrete terms without (circularity and) res-
idue. Exhaustive analysis distinguishes NSM from componential
analysis which attempts to capture only systematic oppositions
or “Katz and Jackendoff, who both believe that for many words
an unanalysable residue of meaning remains” (the Distinguishers,
recall Section 2.3.1). Commitment to discrete terms distinguishes
NSM from scalar notations, the topic of Chapter 7.

3. Semantic Primitives Principle. There exists a finite set of unde-
composable meanings and semantic primitives have an elemen-
tary syntax whereby they combine to form ‘simple propositions’.
While this is a key point of the collection, 4lang does not require
the elements of the core/defining vocabulary to be primitive.
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4. NSM approach. “The proper metalanguage of semantic represen-
tation is [. . . ] a minimal subset of ordinary natural language.”
Goddard lists position in the literature regarding the problem of
the (meta-)semantics of the representational elements.

• Proposals which represent primitives by obscure technical
terms like symbols borrowed from logic (D,@) or those like
Schank’s pact, cact and tact that need explanation in or-
dinary English (e.g. ‘physical act’, ‘communication act’ and
‘transfer act’, respectively).
• Predicates in generative semantics, like cause, not, be-

come and alive whose intended meanings were not (ex-
actly) those of the English words, but were more ‘abstract’
• Katz (1987) uses semi-technical labels to identify the ‘con-
ceptual components’ of e.g. the English word chase: ‘Ac-
tivity’, ‘Physical’, ‘Movement’, ‘Fast’, ‘Direction’, ‘Toward
location of’, ‘Purpose’, ‘Catching’. It has to be made clear
what we gain by formalization as opposed to natural syntax.

5. “The NSMs derived from various languages will [. . . ] have the
same expressive power.”

6. The linguistic exponents of semantically primitive meanings in
different languages can be placed into one-to-one correspondence
(modulo differences like allolexy and POS membership), thus they
share a common set of combinatorial properties.

7. Strong Lexicalization Hypothesis. Every semantically primitive
meaning can be expressed through a word, morpheme or fixed
phrase in every language. Exponents may be homonyms with
different POSs or bound morphemes. Goddard follows Chomsky
(1965) in distinguishing formal universals concerning the princi-
ples by which sense-components are combined to yield the mean-
ings of lexemes from substantive universals concerning the iden-
tity of semantic components. The collection tests the thesis of
the most extreme form of substantive universalism that “there is
a fixed set of semantic components, which are lexicalised in all
languages”.

In the NSM approach, words (morphemes, etc.) can be identical in
meaning despite different POS, ranges of use, or patterns of polysemy.
differences in range of use does not invalidate the claim of semantic
equivalence, as far as it is caused just by lexical blocking or social and
cultural factors. the project has introduced canonical contexts to specify
the sense of polysemous words that should be used in explications, and
the contexts in which the proposed meaning is expected to be found.
Canonical context, unlike explications, can be downloaded from the
project site.
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Substantives I, you, someone, something, people
Mental predicates think, say, know, feel, want
Determiners/quantifiers this, the same, other, one, two, many, all
Actions/events do, happen
Meta-predicates no, if, can, like, because, very
Time/place when, where, after, before, under, above
Partonomy/taxonomy have parts, kind of
Evaluators/descriptors good, bad, big, small

Table 3: Primitives of Natural Semantic Metalanguage in groups.

As admitted in the last chapter, the greatest problem with the NSM
approach is polysemy as basic, everyday words are particularly likely
to be polysemous because of Zipf’s law. They require polysemy always
to be justified on language-internal grounds, and to prove that a word
is polysemous, one has to demonstrate that the putative senses call for
distinct reductive paraphrase explications or syntactic frames (and dis-
tribution). We note that patterns of polysemy show similarities among
languages (Youn et al. 2016).

Similarly to 4lang, NSM has to reconcile the existence of language-
specific morphosyntactic categories with the claim that the semantic
metalanguage is isomorphic across languages, e.g. in the natural seman-
tic metalanguage based on Latin, volo would never occur without an
explicit subject. We will discuss this problem in Chapter 5.

Section 2.2 investigates The Proposed Primitive Inventory in the
groups shown in Table 3. Albeit we are not interested in whether an
element is primitive, it is useful to discuss how the core definitions in
4lang handle the areas where these groups have proved indispensable
in NSM.

2.3.4 Force dynamics in language and cognition

Talmy (1988) draws the attention to what he calls force dynamics: lin-
guistic, psychological, and social phenomena related to physical ones,
like the exertion of force, resistance to such exertion and the overcoming
of such resistance, blockage of a force and the removal of such block-
age, etc. Talmy offers a framework that also includes letting, hindering,
helping. The theory builds upon the parallelisms between how we refer
to physical and psychosocial matters.

In English, force dynamics is present in different grammatical cat-
egories: closed-class words (conjunctions, prepositions, modals), open-
class lexical items, semantics of course (physical force psychological
and social interactions, psychosocial “pressures”), and discourse (pat-
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terns of argumentation, discourse expectations and their reversal). The
theory brings these together into systematic relationships.

Talmy attributes his method to “cognitive semantics” or “cognitive
linguistics”, which analyzes the cognitive process and its surface lin-
guistic realizations together. Force dynamics is among the fundamen-
tal notional categories that languages use to structure and organize
meaning, while they exclude other notional categories from this role.
For cognitive semantics, it is important, how the linguistic structuring
relates to perceptual modalities and reasoning, space, time, and visual
perception, or, in this case, physics and psychology. The paper goes
from conceptually basic physics dynamics to psychological and social
interactions, the grammatical category of modals, discourse factors (ar-
gumentation), and other cognitive and conceptual domains.

The simplest force dynamics model consists of the following:

• two forces, and an Agonist and an Antagonist. The salient issue
is whether the Agonist is able to manifest its force.

• The Agonist is toward action or toward inaction. The Antagonist
opposes the Agonist.

• The relative strengths of the Agonist and the Antagonist is a
third parameter.

• The result is either action or inaction.

More complex force-dynamic patterns change through time: a stronger
Antagonist can come in or go out, or the balance of forces can shift.

An additional kind of pattern is in which the Antagonist remains
away. Corresponding to each of the steady-state patterns introduced
so far, there is a secondary steady-state pattern with the Antagonist
steadily disengaged. E.g. where the Antagonist is stronger, we have the
patterns for the Antagonist letting the Agonist to move or rest.

There are alternatives of Foregrounding different subsets of the fac-
tors, e.g. making the Agonist, the Antagonist, or the result the gram-
matical subject or the object.
Examples with a weaker Antagonist: with the Agonist as the subject:

despite, although, with the Antagonist as subject: hinder, help, leave
alone.

Psychodynamics generalizes notions of physical pushing, blocking to
wanting and refraining; psychological ‘pressure’, and ‘pushing’. The self
may be divided to an Agonist and an Antagonist, where the Agonist
represents the desires, and the Agonist is supression. In language, this
is extended to physical entities without sentience such as wind, a dam,
or a rolling log. A psychological component is normally included and
understood as the factor that renders the stronger participant. The
body has an intrinsic tendency toward rest, requiring animation by the
psyche.
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Two additional factors are the phase along a temporal sequence, and
‘factivity’: the occurrence or non-occurrence of portions of the sequence
and the speaker’s knowledge about this. With the Antagonist as subject:
try involves focus at the initial phase without knowledge of its outcome,
while succeed and fail focus on a known occurrent or non-occurrent
outcome.

The force dynamics in discourse (argumentation and expectations)
is based on the metaphor of an argument space: each point can oppose
or reinforce another point, and each encounter can move the argument
state closer to or further from one of the opposing conclusions.
The last part of the paper compares conceptual models of physics

implicit in language to the real physical theory. One great difference is
the asymmetry between the privileged Agonist and the Antagonist so
natural in language-based conceptualizing, which has no counterpart
in physical theory. The real theory is based on objects’ impetus in mo-
tion, while the naive theory assumes a tendency to come to rest. In
modern physics, stationariness is not a distinct state but is simply zero
velocity. In language either the Agonist or the Antagonist has greater
relative strength, while in physics, two interacting objects must be ex-
erting equal force. The linguistic expression of causation has a tripartite
structure: a static prior state, a discrete state-transition, and a static
subsequent state. This is based on the notion of an ‘event’: a portion
conceptually partitioned out of the continuum of occurrence, which is
autonomous, without causal process during its occurrence. Blocking
and letting, resistance and overcoming, some of the most basic force-
dynamic concepts, have no principled counterpart in physics, because
these concepts depend on the ascription of entityhood to a conceptually
delimited portion of space, and the entity’s intrinsic tendency toward
motion or rest.

2.3.5 Conceptual Structures

“I think that an the overview of the ideas about the nature of argument
structures and the mechanisms that lead from semantic argument struc-
tures to syntactic arguments”, which will be investigated in Chapter 5,
“must not miss Ray Jackendoff’s proposal, which evolved in many arti-
cles and books since cca. the mid-1980s; if only because the notion of the
lexical conceptual structure to be distinguished from the semantic struc-
ture is also relied on by those who otherwise propose different mapping
mechanisms from that of Jackendoff (e.g. the Levin–Rappaport pair).
Jackendoff (1990) is a relatively early (and, thankfully, fairly easy to
understand) review of his views. You don’t have to ‘learn’ this, but get-
ting to know the basic ideas (it is enough to just go through the first
60 pages) can, in my opinion, get everyone to rethink new perspectives”
(András Komlósy, personal communication, translated from Hungarian
by thesis author).
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“Building on ideas about semantics first expounded by Gruber (1965),
Jackendoff (1972, 1983) elaborated significantly on the notion of cases
by treating them as arguments to a set of primitive conceptual pred-
icates such as go, be, stay, let, and cause.” (Palmer, Gildea, and
Xue 2010)

go can be used to describe changes of location, possession, or state,
in any situation where both a “before state” and a different “after state”
can be defined. It basically takes three arguments, the object undergo-
ing the change and the before and after locations, possessors, or states.
(4lang does not use and explicit go predicate, but it shares cause,
before, and after with CS.) Later versions introduced subtypes of
primitive predicates that add more information, e.g. the manner of a
motion. Jackendoff ’s intent was not to provide detailed representations
of all of meaning but, to focus on the mapping between syntax and se-
mantics. The remainder of this section discusses the theory based on
Jackendoff (1990).

2.3.5.1 Ontological categories or conceptual parts-of-speech

Instead of a division of formal entities into logical types like constants,
variables, predicates, and quantifiers, the theory of Conceptual Struc-
tures (CS) sorts constituents to a few major ontological categories (or
conceptual parts-of-speech) like Thing, Event, State, Action, Place,
Path, Property, and Amount.
Each major syntactic constituent maps into a conceptual constituent:

NP correspond to Thing-constituents, the PP to a Path-constituent,
and the entire sentence to an Event. The converse of this correlation
does not hold, e.g. many conceptual constituents of a sentence’s mean-
ing are completely contained within lexical items. The mapping be-
tween conceptual and syntactic categories is many-to-many but it is
subject to markedness conditions. Each conceptual constituent has an
argument structure feature, which allows for recursion of conceptual
structure and hence an infinite class of possible concepts.

2.3.5.2 Localism

A second cross-categorial property of conceptual structure goes back
to the localistic theory. The formalism for encoding concepts of spatial
location and motion can be abstracted/generalized to many other se-
mantic fields. Many verbs and prepositions appear in more semantic
fields and in intuitively related paradigms.
Many implicative properties of verbs (such as factive, implicative, and

semifactive) follow from generalized forms of inference rules developed
to account for verbs of spatial motion and location. Each semantic field
has its own particular inference patterns, e.g. in the spatial field, one
fundamental principle stipulates that an object cannot be in two dis-
joint places at once. It follows that an object that travels from one place
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to another is not still in its original position. In the field of information
transfer, this inference does not hold. A similar conceptual structure
may apply to different parts-of-speech, as exemplified by the parallelism
between iteration of actions and plural of things, or the bounded/un-
bounded distinction among verbs (event/process, telic/atelic) and the
count/mass distinction among nouns.

2.3.5.3 Preference Rule Systems

CS involves something similar to prototype theory or fuzzy set theory:
Verbs have more “fuzzy truth conditions”: climb = move up & grasp,
see = gaze & realize. An event which satisfies both conditions at once, is
more stereotypical. An example from an other part-of-speech is nouns
that denote form and function as two conditions (e.g. book). When
one lacks information about the satisfaction of the conditions, they are
invariably assumed to be satisfied as default values.

2.3.5.4 Argument Structure and Thematic Roles

the status of thematic roles CS has a notion of thematic
roles which has greatly influenced 4lang. In Jackendoff (1990, Section
2.2)’s approach, thematic roles are structural configurations in CS.

DO(John,CAUSE(HAVE(Bill,book)))

E.g. the traditional Source/Goal, “the object from/to which motion
proceeds”, can be structurally defined as the argument of the Path-
function from/to. Agent is the first argument of the Event-function
cause, and Experiencer is an argument of some function having to
do with mental states. A list of a verb’s arguments can be constructed
simply by extracting the indices from the verb’s lexical conceptual struc-
ture. The hierarchy of thematic roles is “cca. provided” by the relative
depth of embedding of the indices in conceptual structure. The CS ac-
count of thematic roles combines semantic intuitions with a rich system
governed by its own combinatorial properties. Each kind of argument
position plays a distinct role in rules of inference. Not only NPs receive
thematic roles. For instance, green is a Goal in The light changed from
red to green., and shut up is a Goal in Bill talked Harry into shutting
up., not the thematic role for a subordinate clause, as suggested in Lex-
ical Functional Grammar. Clauses can occur in various thematic roles,
just as Things can. There’s no “default” thematic role in the sense that
Objective is “default” or “neutral” in (Fillmore 1968): in CS, an NP
must correspond to a specific argument position in conceptual struc-
ture and therefore must have a specific thematic role. Even Theme or
Patient, which have been taken to be such a default role, have a specific
structural definition.
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argument fusion and selectional restrictions In CS,
and similarly in 4lang, a verb’s lexical representation can include infor-
mation about a participant which is not even syntactically expressed.
In order for a sentence to be understood, this fine CS must exist. Se-
lectional restrictions are explicit pieces of information that the verb
supplies about its arguments. Formally, they correspond to the concep-
tual structure that occurs within an indexed conceptual constituent.

CS is a unification-based system: if two conceptual structures con-
tain incompatible information, (if the offending features are sisters in
a taxonomy of mutually exclusive possibilities, such as Thing/Prop-
erty/Place/Event/etc. or solid/liquid/gas) their fusion is anomalous.
4lang does not implement such hard constraints.

E.g. drink vs butter both mean “cause something to go someplace”.
They differ semantically in what they stipulate about the Theme and
the Path. The direct object of butter is the Goal, and the Theme is
completely specified by the verb, while the direct object of drink is
the Theme, and the Path is (almost) completely specified by the verb.
It is part of the meaning of order that the recipient (or Goal) of an
order is under obligation to perform the action described by the com-
plement clause, and that of promise that the issuer (or Source) of a
promise undertakes an obligation to perform the action described by
the complement.
CS has many ways of expressing conceptual structure within argu-

ments of the verb (which is part of the verb’s meaning): positions of
indices (wich is analogous to 4lang’s deep cases, i.e. the way the verb
links its arguments to syntactic structure), selectional restriction, and
and implicit arguments.

multiple thematic roles for a single np Jackendoff
(1990, Chapter 3) investigates the q-Criterion, i.e. that each subcat-
egorized NP (plus the subject) corresponds to exactly one argument
position in conceptual structure, and that each open argument position
in conceptual structure is expressed by exactly one NP. In Jackendoff’s
view, the q-Criterion must be weakened, e.g. because of transaction
verbs such as buy, sell, exchange, and trade, where there are two giving
actions (that of the merchandise and the money), and the seller and the
buyer have two semantic roles apiece; or chase, where both Agent and
Patient move. We will see that deep cases in 4lang are less semantic:
buy has an agentive subject, while its source is unspecified for anumacy,
even if it gives money voluntarily. In contemporary computational sys-
tems, we can assume a sentence analyzed for syntactic dependency, and
the task of deep cases is to mediate between the dependency annotation
and semantic representation.

unifying lexical entries Jackendoff (1990, Chapter 4) inves-
tigates argument structure alternations that can be captured by the
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same lexical entry. 4lang goes the same path. Potential modifiers (of
place, time, and manner) are not encoded anywhere in the lexical en-
try. The problem of causatives (The box slid/Bill slid the box down the
stairs) is solved following the Unaccusative Hypothesis.

A more special example is climb with three syntactic frames: null com-
plement, direct object, or PP. CS wants to account for the difference
that only the null entails that the subject reaches the top. 4lang dis-
regards such differences, not in order to codify such a coarse level of
mental representation, but as an engineering shortcut. More productive
lexical processes, e.g. passive participles from verbs can be expressed
in terms of manipulations on the argument indices. In 4lang, passives
are already handled by the dependency parse. Jackendoff also discusses
verbs with some spatial feature in their meaning (point, surround, cover,
support) which would go beyond the limits of the present thesis.

some further conceptual functions Jackendoff (1990,
Section 5.2) investigates verbs of manner of motion like curl, writhe,
or dance. These are less interesting for our present purposes, as the
working method of 4lang is to define manually only some defining
vocabulary, which can be used to define all other words automatically.

While this topic is beyond the scope of the present thesis, we quote
some ideas by Jackendoff on conceptual clause modification. Jackendoff
offers a partial taxonomy of functions that convert a State or Event
into a restrictive modifier of another State or Event (syntactically: sub-
ordinating conjunctions that turn sentences into restrictive modifiers).

• Cause (why?) has logically two types: reason, from, a variety of
the usual from; and purpose, goal, or rationale (the intention
may be the speaker’s or attributed to the Agent), for, a variety
of to or toward.

• In accompaniment (Bill came with Harry) there is a mutual de-
pendence between Bill’s coming and Harry’s, and Bill is “fore-
grounded”. This asymmetrical relation is “more than conjunction
but less than causation”.

• Exchange, reward or punishment are voluntary acts of social cog-
nition, based on assessment in legal and economic systems, which
is worth a separate satus in cognitive semantics.

More of these subordinators are similar to spatial functions both in their
morphology and the inferences associated with them. Cross-linguistic
study is important here, of course: if the same apparently idiosyncratic
fact appears in language after language, something is being missed.
Conversely, if an apparently principled English fact is violated in other
languages, the principle must be questioned.
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some featural elaborations of spatial functions Jack-
endoff aims at a featural decomposition of verb meaning. E.g. he in-
troduces a feature opposition in spatial location, say Location versus
Contact (or ˘contact) which is present in the prepositional system,
where on and against contrast with in, next to, alongside, above, and
in the verb lexicon, where stroke, scratch rub, and brush, unlike some
other verbs, specify motion while in continuous contact with the object.
4lang, in contrast, tries to capture words with other words instead of
features.

the action tier and the analysis of causation Jack-
endoff (1990, Section 7.1) decomposes thematic roles to two dimensions:
The Action Tier distinguishes the Actor and Patient, while the thematic
tier (Theme, Source, and Goal) deals with motion and location. Thus
What happened to Pat? or What did Agt do to Pat? is orthogonal to
What moves where?.

2.3.6 English Verb Classes and Alternations

As another source of semantic knowledge, Levin (1993) points out that
the expression and interpretation of arguments is to a large extent deter-
mined by the verb’s meaning. The introduction of the book exemplifies
this with break, cut, hit, and touch. Each verb shows a distinct pattern
with respect to three alternations, the middle alternation (This bread
cuts easily.), the conative construction (cut at), and the body-part al-
ternation (Margaret cut Bill on the arm.). There are other verbs that
show the same pattern of behavior: Break Verbs: break, crack, rip, shat-
ter, snap, Cut Verbs: cut, hack, saw, scratch, slash, Touch Verbs: pat,
stroke, tickle, touch, and Hit Verbs: bash, hit, kick, pound, tap, whack.

Levin’s analysis is based on relevant meaning components. The body-
part possessor ascension alternation needs ‘contact’, while the conative
alternation: needs both ‘motion’ and ‘contact’. Touch is a pure verb of
contact, hit is a verb of contact by motion, cut is a verb of causing a
change of state by moving something into contact, and break is a pure
verb of change of state. This explains which verb participates in which
alternation.

These phenomena are manifested across languages by verbs of the
same semantic types. To the extent that languages are similar, the same
meaning components – and hence the same classes of verbs – figure in
the statement of regularities concerning the expression of arguments.
The classes have in common a range of properties, including the possible
expression and interpretation of their arguments, and the existence of
certain morphologically related forms.

The meaning component analysis is related to “semantic bootstrap-
ping” models of child language acquisition built on the assumption that
a word’s syntactic properties are predictable from its meaning. Meaning
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components identified via the study of semantic/syntactic correlation
show considerable overlap with those posited in language acquisition.

Levin investigates intricate and extensive patterns of syntactic be-
havior: the subcategorization frame of a verb, diathesis alternations,
morphological properties and extended meanings.

Part I of the book introduces diathesis alternations that are relevant
to lexical knowledge, subdivided into groups on the basis of the syn-
tactic frames involved: transitivity alternations, alternate expressions
of arguments (mostly within the verb phrase), alternations that permit
“oblique” subjects, and a variety of other types. Part II presents a large
number of semantically coherent classes of verbs3. Levin tries to strike
a balance between breadth and depth of coverage. He ignores verbs tak-
ing sentential complements except when they show interesting behavior
with NP or PP complements; verbs derived by productive morpholog-
ical processes, such as zero-derivation, prefixation (un-, de-, dis-, re-,
etc.) or suffixation (-ify, -ize, -en, etc.); and inherent lexical aspect of
verbs (aktionsart). It is left as an open research question whether a
complete hierarchical organization of English verb classes is possible
or even desirable.

2.3.7 The generative lexicon

Both traditional and most computational lexicons (the latter will be
discussed in Section 2.5) have very fine-grained sense distinctions, and
the relations between different senses are mostly not represented. Puste-
jovsky (1995) call these resources sense enumeration lexicons (SELs),
and proposes the generative lexicon (GL) as an alternative, where lex-
emes have richer structure, and the virtually infinite semantic types
a lexeme may have arise in context, by co-composition with the simi-
larly flexible representations of other words, similarly to how infinitely
many sentences are generated from a finite lexicon by recursive genera-
tive grammars in syntax. While the core of the GL is organized among
semantic types, and is thus less interesting in the context of 4lang, the
theory has many features worth studying from our more association-
based point of view as well.
GL builds on a classification of word polysemy to homonymy and

polysemy proper, or, in Weinreich (1964)’s terms, contrastive and com-

3 Put; Remove; Send and Carry; Exert Force: Push/Pull; Change of Possession; Con-
tribute; Learn; Hold and Keep; Concealment; Throw; Contact by Impact; Hit; Poke;
Contact: Touch; Cut; Combine and Attach; Separate and Disassemble; Color; Im-
age Creation; Illustrate; Creation and Transformation; Engender; Calve; Verbs with
Predicative Complements; Perception; Psych-Verbs (Psychological State); Desire;
Judgment; Assessment; Search; Social Interaction; Communication; Sounds Made
by Animals; Ingest; Involve the Body; Groom and Bodily Care; Kill; Emission; De-
stroy; Change of State; Lodge; Existence; Appearance, Disappearance, and Occur-
rence; Body-Internal Motion; Assume a Position; Motion; Avoid; Linger and Rush;
Measure; Aspectual Verbs; Weekend; Weather
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plementary ambiguity. Contrastive ambiguity (i.e. homonymy) is the co-
incidence of unrelated meanings, while complementary ambiguity (poly-
semy) refers to logically related word senses, manifestations of the same
basic meaning in different contexts, possibly different POSs. Whether
homonymic senses are historically related or accidents of orthographic
and phonological blending, is largely irrelevant for the purposes of
lexicon construction and the synchronic study of meaning. The two
types of ambiguity also differ in whether the disambiguation of co-
occurring words help each other: homonymy works so that once the
context or domain for one item has been identified, the ambiguity of
the other items is also constrained (contextual priming). This does not
hold for sense narrowing in polysemy, where one sense may be entailed
by the other sense. Pustejovsky mentions classes of (complementary)
polysemy where the senses correspond to different semantic types like
Count/Mass (lamb), Container/Containee (bottle), Gap/Frame (door,
window), Product/Producer (newspaper, Honda), Plant/Food (fig, ap-
ple), Process/Result (examination, merger), Place/People (city, New
York), and Change-state/Create (bake).

Pustejovsky (1995, Sec 3) goes further to define logical polysemy as a
complementary ambiguity where there is no change in lexical category,
and the multiple senses of the word have overlapping, dependent, or
shared meanings.

Pustejovsky lists three arguments showing the inadequacies of SELs
for semantic description and that to maintain compositionality, we
must enrich the representations of the lexical items:

• The Creative Use of Words, that words assume new senses in
novel contexts,

• The Permeability of Word Senses, that Word senses are not atomic
definitions but overlap and make reference to other senses of the
word, and

• The Expression of Multiple Syntactic Forms, that a single word
sense can have multiple syntactic realizations.

GL involves four levels of lexical representation: argument, event,
qualia, and inheritance structure.
Argument structure specifies the number and type (semantic and

syntactic) of arguments a predicate takes. This is by far the best under-
stood of the four levels in generative linguistics (e.g. Chomsky’s Theta-
Criterion, Lexical Functional Grammar (Bresnan 1978, 2001)), and ar-
gument structure is also the strongest determinant or constraint on the
acquisition of verb meaning by children. Pustejovsky distinguishes four
types of arguments (illustrated for verbs), true obligatory arguments
subject to the theta criterion; default arguments that are necessary
for the logical well-formedness of the sentence, but may be left unex-
pressed on the surface; shadow arguments, e.g. incorporated semantic
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content (the instrument of kick or butter); and (true) adjuncts that are
associated with verb classes and not with the representation individual
verbs, including temporal or spatial modifiers. The categorization of
arguments induces one of verb alternations as well: those that result in
the expression of true arguments versus which involve the expression
of optional ones.

Event structure is for the representation of information related to
Aktionsarten and event type, in the sense of Vendler (1967): event type
(state, process, and transition) and subeventual structure. Besides the
relation between an event and its subevents, GL involves overlap and
inclusion of subevents as well, and one of the subevents may be the
head of the event. In 4lang, as we already mentioned in Section 2.3.5,
there are three potential subevents, the unmarked (present) one, the
one represented under an after node, and represented under before.

Qualia structure is the set of properties or events associated with
a lexical item which best explain what that word means, such as its
constituent parts, purpose and function, mode of creation, etc. More
formally, these aspects are

• constitutive, the relation between an object and its constituent
parts (e.g. “text in a novel is characteristically a narrative or
story, while a dictionary is by definition a listing of words”), its
material, and also what this object is part of.

• formal: orientation, magnitude, shape, dimensionality, color, po-
sition;

• telic: purpose and function, how we use a thing, or the purpose
that an agent has in performing an act. Direct telic, e.g. beer is
made in order that it will be drunk, is distinguished from instru-
ments, e.g. knives are made to cut with them; and finally,

• agentive specifies how things come into being, a mode of explana-
tion that will distinguish natural kinds from artifacts (e.g. cookies,
cakes, and bread are typically baked);

see Figure 4. The model is inspired in part by Moravcsik (1975)’s in-
terpretation of Aristotle’s modes of explanation. The qualia structure
plays an important role in how we understand sentences, e.g. by know-
ing that the telic of movie is watch, we understand John enjoyed the
movie in the way that he enjoyed watching it.

The last one of the four levels, inheritance identifies how a lexical
structure is related to other structures in the type lattice.
The four levels are connected by generative devices providing for the

compositional interpretation of words in context. Though, unlike 4lang,
GL is a strongly typed model, and these devices (e.g. type coercion
and shifting, selective binding and co-composition) play the role of
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Figure 4: Qualia structure of novel.

fitting items in novel type environments, the basic idea that predicate-
argument binding can refer to subevents in the semantic representation
is a feature shared with 4lang.
While Pustejovsky criticizes the lexical semantic literature for over-

emphasizing the role of verbs, their classes and alternations, he also
devotes a chapter to this topic, more concretely causation. The point
is that members of alternations, e.g. the transitive and the intransitive
variant of a verb are generated from the same item in GL.

2.4 early resources

2.4.1 kl-one: superconcepts and local restrictions

We have already seen two computational formalizations of the Aris-
totelian genus versus differentia specifica: semantic markers and distin-
guishers in Katz and Fodor (1963)’s approach to lexical decomposition,
and supersets and properties in Quillian (1969)’s semantic memory. A
thired example is kl-one (Brachman and Levesque 1985), where con-
cepts are described by their subsuming concepts (their super-concepts),
their local internal structure expressed in roles (which describe rela-
tionships like properties or parts) and structural descriptions, which
express the interrelations among the roles.

A Concept must have more than one super-concept (if
there are no local restrictions), differ from its supercon-
cept in at least one restriction, or be primitive. A Con-
cept with no local restrictions is defined as the conjunc-
tion of its super-concepts. Superconcept serves as a proxi-
mate genus, whereas the local internal structure expresses
essential differences, as in classical classificatory definition
(Sellars 1917). The network structure formed by the sub-
sumption relationships between Concepts [is] a taxonomy.
(Emphasis added)
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2.4.2 Cyc

Most of the problems discussed in Section 2.2.4 have not been solved
to this day, and though expert systems in specific domains brought a
second summer in AI, the second winter also arrived due to brittleness
outside theses narrow domains. The drop in reputation and funding was
a sign of the need to represent commonsense knowledge, the wisdom
of a kindergarten child in a knowledge base (KB). Cyc (Lenat and
Guha 1990) is an early example of effort in this direction. In retrospect,
their success lies between the two extremes they formulated as at least
providing some insight into issues involved in ontology population with
“an indication as to whether the symbolic paradigm is flawed” and the
more optimistic one that “no one in the early twenty-first century even
considers buying a machine without common sense”. For 4lang, Cyc is
relevant especially for the status of primitives, see Section 3.2.
Lenat and Guha (1990) organize their paper along the three tasks

in building a KB: the (logical) language (CycL), the procedures for
manipulating knowledge, and populating the KB. The authors frame
understanding as including “beliefs, knowledge of others’ [. . . ] limited
awareness of what we know, various ways of representing things, [and]
knowledge of which approximations (micro-theories) are reasonable in
various contexts” In our description of Cyc we concentrate on its as-
pects with the greatest impact on 4lang, the language and the database,
rather then inference.
The two systems are already similar in their methodologies: the core

of the Cyc ontology was built manually and later they crossed to pri-
marily automatic knowledge entry via natural language understanding
in the 80s.

We developed our representation language incrementally
as we progressed with [the task of knowledge encoding].
Each time we encountered something that needed saying
but was awkward or impossible to represent, we augmented
the language to handle it. Every year or two we paused and
smoothed out the inevitable recent “patchwork.”

The language is summarized as frame-based and embedded in a more
expressive predicate calculus framework along with features like repre-
senting defaults or reification (allowing one to talk about propositions
in the KB). As for the inference machine, they abandon the AI tradi-
tion of a single, very general mechanism (e.g. resolution) for problem
solving and prefer special data structures and algorithms for problems
of varying complexity as done in traditional computer science.
The main difference between the Cyc KB and 4lang is that we con-

centrate on the core vocabulary, while this distinction is not made in
the Cyc KB where, though many of the one or two million assertions
are general rules, some are specific facts dealing with particular entities
and events (e.g. famous people and battles.)
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A great heritage of 4lang from Cyc is the use of non-monotonic
reasoning: most assertions are default beliefs and the addition of new
facts can cause them to be retracted. Cyc is also similar to present day
question answering systems in that inference is based upon a (quickly
identified) small subset of relevant sentences.

Though Cyc is strongly typed (as opposed to the type-free 4lang), it
offers us many insights. Lenat and Guha frequently use “set-theoretic
notions to talk about collections, but these collections are more akin
to what W. Quine (1969) termed natural kinds, e.g. dog or lemon, that
are usually assumed not to be completely definable as intersections of
more primitive classes. Collections are organized in a generalization-
specialization hierarchy” (Brachman and Levesque 1985).

Cyc handles time and actions analogously to space: time and events
are substances. “One could take a glob of peanut butter and separate
out all the peanut chunks, and these alone do not form a glob of peanut
butter. [. . . ] The substancehood principle applies only to pieces larger
than the granule of that substance.” ‘Walking’ is a type of temporal
substance by the same token.
As there are “orthogonal ways of breaking down a physical object,

there [are two] orthogonal ways of breaking down an action:” actors
and subEvents. There are separate categories of slots that are used in
order to relate actors to actions and subEvents to events. To put it
so simply that may seem brutal from a strongly typed point-of-view,
but excellent for 4lang purposes: actor slots are roles like performer,
victim, and instrument and sub-event slots are ‘before’, ‘during’ and
‘after’ the action. The later are the predecessors of the 4lang concepts
representing event structure with the same names (except for ‘during’
which is unmarked in 4lang), and can also be compared to the pre-
and post- procedures (conditional execution) and when- (side effects)
in kl-one(see the previous section).

2.4.3 Computational lexicography for NLP

Now we reach the dawn of corpus linguistics, and Boguraev and Briscoe
(1989, Introduction) draws the attention to lexical resources, their the-
oretical role and applications in traditional linguistics and NLP-based
systems. This book analyses The Oxford Advanced Learner’s Dictio-
nary of Current English (LDOCE), which is important for 4lang, be-
cause both our hand-written definitions and automatically extracted
representations heavily relied on it. Traditional lexicons contain tens
or hundreds of thousands of lexical items, and computational lexicog-
raphy and lexicology have developed disciplines with their own work-
shops and conferences. While NLP has established new lexical knowl-
edge bases (KBs) for a wide variety of researchers and applications,
reusing existing lexical resources offers further room for improvement.
While machine readable dictionaries (MRDs) represent a considerable
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tradition where much work has already been done, difficulties arise be-
cause these resources are produced for human use, and they may make
inconvenient assumptions, and rely on the users’ linguistic and common
sense knowledge which machines do not have.

The book has made a great influence on 4lang, as both lines of re-
search strive to make information in MRDs accessible for machine use,
and evaluate and improve computational semantics systems and linguis-
tic theories based on these resources. The decades since Boguraev and
Briscoe (1989) have proven that lexicons derived from MRDs for use
by machines are different from conventional dictionaries in how they
organize and represent information, but the same dictionary database
(DB) can be used for both automated and human use. Some reoccur-
ring themes of the book are the division between lexical semantics and
pragmatic knowledge, the border between rules and the lexicon, and
the acquisition of POS and subcategorization information with syntac-
tic features.

2.4.3.1 The nature of a dictionary entry

In Boguraev and Briscoe (1989)’s view on the lexicon vs rules division, a
general-purpose dictionary DB should be as inclusive and theoretically
uncommitted as possible. E.g either one assumes a rule of re- prefixation
or one needs to list elements like reissue, reclaim and repay.

The entries in most dictionaries distinguish ‘homographs’ of a word
form when it serves as noun, verb or some other POS. Entries start
with the form (headword, spelling, hyphenation, phonetics variants,
allomorphs, stress) and information on the distributional behaviour
(either with a simple word class tag, e.g. in The Collins English Dic-
tionary, or with elaborate subcategorization information, e.g. in The
Oxford Advanced Learner’s Dictionary of Current English, LDOCE, or
in The Collins COBUILD English Language Dictionary).

Regarding the content, dictionaries tend to provide definition(s), ex-
amples, cross references; grammar and stylistics of usage; synonyms,
antonyms, related words; a picture, etymology; and derived words, com-
pound terms, idiomatic or common phrases, expressions and colloca-
tions. LDOCE also provides semantic notions in the form of so called
subject and box codes, which specify the semantic field (e.g. politics, reli-
gion, language) and selectional restrictions (e.g. sandwich prefers an ab-
stract or human subject). The language of dictionary definitions tends
to be of a restricted form. In LDOCE, the vocabulary is restricted to ap-
proximately 2200 words used mainly in their most common sense, which
theoretically would cut down circularities (but see the next paragraph).
Unfortunately derivational morphology is applied to these words in a
rather liberal way. Representation is made difficult by the fact that
there is a continuum between the minimal semantic knowledge implied
by the use of a particular word (word sense) and the special (or expert)
knowledge relevant to its use in a context.
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2.4.3.2 Reliability and utility of MRDs

The preface to the published version of LDV claims that ‘a rigorous
set of principles was established to ensure that only the most ‘central’
meanings of [a controlled vocabulary of] 2000 words, and only easily
understood derivatives, were used’. ‘Body‘ is part of the definitional
vocabulary and has as its central (1) meaning “the whole of a person”.
However, Boguraev and Briscoe (1989) point out that parliament is
defined as “a law-making body”, utilizing the meaning of body (5) “a
number of people who do something together”. To make things worse,
about 30 non-LDV words are used in definitions, e.g. aircraft is used
267 times.

Besides the already mentioned liberal use of derivatives (‘container‘
is used for the definition of box2(1), even though only the verb contain
is considered to be primitive), circularity (container Ø box) also arises.
Another related problem is the use of phrasal verbs made up from verbs
and particles taken from the restricted vocabulary but, of course, with
a non-compositional meaning.

In an other chapter, Vossen, Meijs, and Broeder (1989) derive a syn-
tactic typology for the structures of the meaning descriptions of each
of the major parts-of-speech (POS) in a dictionary. The typology com-
bines hyponyms and adjectives, with subject field, speech register, and
sociolect codes.

2.4.3.3 Connectionism, word ambiguity, and knowledge

The final chapter (Wilks et al. 1989) investigates the relation between
connectionism and word ambiguity. The authors of the thirty-year-old
paper realize that connectionism shares properties with compositional
semantics, and they do not expect to distinguish representations for
particular word senses, but to be simply different aspects of a single
non-symbolic representation, and to correspond (if to anything) to a
selection of different weighted arcs. They advocate weighted symbolic
representations. This view applies to issues of word sense for composi-
tional semantics (discreteness of word senses vs. continuity and vague-
ness).

The position in the chapter is that the inseparability of knowledge
and language goes far, and knowledge for certain purposes should be
stored in text-like forms. The authors compare the semantic structure
of dictionaries to the underlying organization of knowledge represen-
tations, and observe similarities: computational semantics converges
with knowledge acquisition and computational lexicography. The chap-
ter investigates whether it is right to assume word ‘sense’, direct from
traditional lexicography and MRDs. (The answer is yes.) Another ques-
tion is whether a dictionary is a strong enough knowledge base. Not di-
rectly, but its content can be made explicit by additional information.
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Collecting the initial information (bootstrapping) is needed from the
dictionary itself or some external resource.

2.5 modern lexical resources

Usage seems to be inversely proportional to representational
complexity. — (Russell and Norvig 2002)

The final section of this chapter introduces modern lexical resources,
which serve as the basis of any kind of supervised NLP research. Every
experiment reported in the main part of the thesis relied on one of
them.

2.5.1 Frame semantics

Jurafsky (2014) introduces frames as a rather general representation
that expresses the background contexts or perspectives by which a
word or a case role could be defined. The name came from the pre-
transformationalist (1974) view of sentence structure as consisting of
a frame and a substitution list. Frames were also called scripts or
schemata.

In Kornai (2008, Section 5.3)’s reflection, the original intention was
to use scripts as repositories of commonsense procedural knowledge:
what to do in a restaurant, what happens during a marriage ceremony,
etc.; represent the actors fulfilling roles, e.g. that of the waiter or the
best man; and decompose the prototypical action in a series of more
elementary sub-scripts such as ‘presenting the menu’ or ‘giving the
bride away’. Kornai relates scripts to “linguistically better motivated
models”, in particular discourse representation theory, whose scope is
more modest, being concerned primarily with the introduction of new
entities (the owner, the best man). Scripts have also influenced studies
of ritual.

Turning to Jurafsky (2014)’s account of verbal case frames, Fillmore
was also inspired by lists of slots and fillers used by early information
extraction systems, but his version of this idea was more linguistic. The
motivating example was the Commercial Event frame (buy, sell, cost,
pay, charge). Frames could represent perspectives on events, e.g. sell vs
pay. Alternative senses of the same word might come from their drawing
on different frames. The perspective-taking aspect of frame semantics
influenced framing in linguistics and politics.

2.5.2 FrameNet

FrameNet (Baker, Fillmore, and Lowe 1998) combined Fillmore’s early
ideas on semantic roles with his later work on frames and his interest
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in corpus lexicography. Fillmore compiled a large set of frames, each of
which consisted of

• lists of constitutive roles or “frame elements”: sets of words that
evoke the frame,

• grammatical information expressing how each frame element is
realized, and

• semantic relations between frames and between frame elements.

2.5.3 WordNet

Probably the most popular lexical NLP resource is the (English Prince-
ton) WordNet (Miller 1995), and – as we will discuss Hungarian as well
in Section 7.4 – the Hungarian WordNet (Miháltz et al. 2008)4 has to be
mentioned as well. WordNet follows the lexicographic tradition of treat-
ing POSs separately, and words are grouped by semantic equivalence
to 117 000 synsets with a definition (“gloss”) each and in most of the
cases, sentences illustrating the use of the words in the set. WordNet
disambiguates word forms to many senses (synsets) to account for fine
distinctions in their usage. This opposes to the monosemic approach
4lang follows, see our discussion in Kornai and Makrai (2013) as well.
An aspect of WordNet which is more instructive for 4lang is its variety
of binary relations.
Palmer, Gildea, and Xue (2010, Section 1)’s introduction to linguis-

tic theories and semantic representations of roles “ends where it began,
with Charles Fillmore”. In this and the following two sections, we intro-
duce a couple of verb-related resources. Palmer, Gildea, and Xue (2010,
Section 2) describe these resources as having differing goals, and yet
being surprisingly compatible. They differ primarily in the granularity
of the semantic role labels. FrameNet labels the arguments of approve
as Grantor and Action. PropBank uses very generic labels such as Arg0,
Arg1, . . . . VerbNet, on the third hand, has several alternative syntactic
frames and a set of semantic predicates. VerbNet marks the PropBank
Arg0 as an Agent and the Arg1 as a Theme. The three resources can
be seen as complementary.
Based on Filmore’s Frame Semantics (Section 2.5.1), FrameNet (Baker,

Fillmore, and Lowe 1998) describes a particular situation or event along
with its participants. Semantic roles are called Frame Elements (FE),
and they are defined for each semantic frame. The predicate is called
Lexical Unit (LU). All LUs in a semantic frame share the same set
of FEs. FEs are fine-grained semantic role labels, e.g. the Apply-heat
Frame includes a Cook, Food, and a Heating Instrument.
A frame can also have adjectives and nouns such as nominalizations.

FEs are classified in terms of how central they are: core (conceptually

4 https://github.com/dlt-rilmta/huwn

54

https://github.com/dlt-rilmta/huwn
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necessary for the Frame, roughly similar to syntactically obligatory),
peripheral (such as time and place; roughly similar to adjuncts) or
extra-thematic (not specific to the frame and not standard adjuncts
but situating the frame with respect to a broader context).

Lexical items are grouped together without consideration of similar-
ity of syntactic behavior, resulting in rich, idiosyncratic descriptions.
E.g. buy and sell both belong to the semantic frame ‘Commerce_buy‘,
which involves a Buyer and Seller exchanging Money and Goods. Buyer
and Goods are core FEs for this frame while Seller and Money are Non-
Core FEs. Other Non-Core FEs include Duration (the length of time
the Goods are in the Buyer’s possession), Manner, Means, Place, Rate,
and Unit, the unit of measure for the Goods.

2.5.4 VerbNet

VerbNet (Kipper et al. 2008) is midway between PropBank and FrameNet
in lexical specificity, but it is more similar to PropBank with its close
ties to syntactic structure. VerbNet consists of hierarchically arranged
verb classes, extended from the Levin classes (see Section 2.3.6): Levin
has 240 classes, with 47 top level classes and 193 second and third level.
Original Levin classes constitute the first few levels in the VerbNet hier-
archy, with each class subsequently refined. VerbNet has added almost
1000 lemmas as well as 200 more classes. There is now a 4th level of
classes and several additional classes at the other three levels.

VerbNet adds to each Levin class an abstract representation of the
syntactic frames with explicit correspondences between syntactic posi-
tions and the semantic roles (e.g. break: Agent REL Patient, or Patient
REL into pieces). Argument lists consists of semantic roles (Agent, Pa-
tient, Theme, Experiencer, etc., 24 in total), and selectional restrictions
on the arguments, that are expressed using binary predicates that de-
scribe the participants during stages of the event.

VerbNet has class-specific interpretations of the semantic roles; 3,965
verb lexemes with 471 classes; links to similar entries in WordNet,
OntoNotes groupings, FrameNet, and PropBank; and coherent syntac-
tic and semantic characterization of the classes, which facilitate the
acquisition of new class members.

Each VerbNet class contains a set of syntactic frames. Constructions
such as transitive, intransitive, prepositional phrases, resultatives, and
a large set of diathesis alternations listed by Levin are represented by
the corresponding semantic roles (such as Agent, Theme, and Location),
the verb, other lexical items required for a construction or alternation,
and semantic restrictions (such as animate, human, and organization).
Syntactic Frames specify which prepositions are allowed, and the syn-
tactic nature of the constituent (NP, PP, finite and nonfinite sentential
complements).
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Semantic predicates denote the relations between participants and
events in the form of a conjunction of semantic predicates, such as mo-
tion, contact or cause, and startpeq, endpeq or duringpeq arguments
to indicate when the semantic predicate is in force.

2.5.5 PropBank

PropBank consists of an annotated corpus (to be used as training data)
and a lexicon. Semantic role labels are chosen to be quite generic and
theory neutral, Arg0, Arg1, etc. The same semantic role is kept across
syntactic variations. The lexicon lists, for each broad meaning of each
annotated verb, its Frameset, i.e. the possible arguments in the predi-
cate and their labels (its “roleset”), all possible syntactic realizations,
and a set of verb-specific guidelines for annotators. PropBank is similar
in nature to FrameNet and VerbNet although it is more coarse-grained,
and more focused on literal meaning – as opposed to metaphorical us-
ages and support verb constructions – than FrameNet.

PropBank defines semantic roles on a verb-by-verb basis:

• Arg0 is generally a prototypical Agent (Dowty 1991) while

• Arg1 is a prototypical Patient or Theme.

• There are no consistent generalizations for the higher numbered
arguments, e.g. Arg2 can be beneficiary, goal, source, extent or
cause.

• There are several more general ArgM (Argument Modifier) roles
that can apply to any verb, and which are similar to adjuncts,
e.g. LOCation, EXTent, ADVerbial, CAUse, TeMPoral, MaNneR,
and DIRection.

These generic labels make high inter-annotator agreement possible.
A roleset corresponds to a distinct usage of a verb. It is associated with
a set of syntactic frames, the Frameset.

There is a verb-specific descriptor field for each role, such as baker for
‘Arg0‘ in bake, for use during annotation and as documentation, without
any theoretical standing. The neutral, generic labels facilitate mapping
between PropBank and other more fine-grained resources such Verb-
Net and FrameNet, as well as Lexical-Conceptual Structure or Prague
Tectogrammatics.

Most role-sets have two to four numbered roles, but as much as six
can appear, in particular for certain verbs of motion. PropBank lacks
selectional restrictions, verb semantics, and inter-verb relationships.
Verb-Specific labels have their limitations. Inter-verb labels make

inferences and generalizations based on role labels possible, because
some encoded meaning is associated with each tag, which helps in train-
ing automatic semantic role labeling (SRL) systems. Researchers using
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PropBank as training data for the most part ignore the “verb-specific”
nature of the labels, and instead build a single model for each num-
bered argument. This is feasible, because Arg0/Arg1 constitute 85% of
the arguments, ArgMs are also labeled quite consistently. Arguments
Arg2-Arg5 are highly overloaded, and performance drops significantly
on them.

2.5.6 ConceptNet

As a basically word-level meaning representation framework, 4lang has
to be most relevantly compared to ConceptNet (Liu and Singh 2004).
ConceptNet is knowledge graph, i.e. it connects words and phrases with
labeled edges. It is designed to represent the general knowledge involved
in understanding language in the form of relations between words such
as ‘A net is used for catching fish’ ‘Leaves is a form of the word leaf ’
‘The word cold in English is studený in Czech’, or ‘O alimento é usado
para comer’ i.e. ‘Food is used for eating’. This piece of knowledge in
version 5.5 (Speer, Chin, and Havasi 2017) has been collected from
many sources that include expert created resources, crowd-sourcing,
and games with a purpose.

The authors combine ConceptNet with word embeddings (Section 4.2)
to get understanding that they would not acquire from distributional
semantics alone, nor from narrower resources such as WordNet or DB-
Pedia. The word embedding has been trained using a generalization
of the retrofitting method (Faruqui et al. (2015), see Section 4.2.10).
They demonstrated results on intrinsic evaluations of word relatedness,
that was a popular way of evaluating word embeddings before the in-
troduction of contextualized word representations (Section 4.3), and on
applications of word vectors, including solving SAT-style analogies.

In the remainder of this section, we describe the ConceptNet repre-
sentation based on Speer and Havasi (2012, Section 3). Assertions in
ConceptNet can be seen as edges that connect its nodes, which are
concepts (words or phrases). Assertions can be justified by other as-
sertions, knowledge sources, or processes. Predicates (i.e. edge labels)
can be interlingual relations, such as IsA or UsedFor (see Table 4); or
automatically-extracted relations that are specific to a language, such
as is known for or is on. Processes that read knowledge from free text,
will produce relations that are not aligned with multilingual relations.
In this case, the relation specifies the language and a normalized form,
e.g. A bassist performs in a jazz trio translates to a /c/en/perform_in
relation.
Negation in ConceptNet is a bit tricky. Conjunctions of assertions

come with a positive or negative score, where a negative weight means
we should conclude that the assertion is not true. The negation of such a
conjunction is not necessarily true either: It may in fact be nonsensical
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Relation Sentence pattern

IsA NP is a kind of NP.
UsedFor NP is used for VP.
HasA NP has NP.
CapableOf NP can VP.
Desires NP wants to VP.
CreatedBy You make NP by VP.
PartOf NP is part of NP.
Causes The effect of VP is NP|VP.
HasFirstSubevent The first thing you do when you VP is NP|VP.
AtLocation Somewhere NP can be is NP.
HasProperty NP is AP.
LocatedNear You are likely to find NP near NP.
DefinedAs NP is defined as NP.
SymbolOf NP represents NP.
ReceivesAction NP can be VP.
HasPrerequisite NP|VP requires NP|VP.
MotivatedByGoal You would VP because you want VP.
CausesDesire NP would make you want to VP.
MadeOf NP is made of NP.
HasSubevent One of the things you do when you VP is NP|VP.
HasLastSubevent The last thing you do when you VP is NP|VP.

Table 4: The interlingual relations in ConceptNet, with example sentence
frames in English. Table from (Speer and Havasi 2012)
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or irrelevant. To represent a true negative statement, such as Pigs can-
not fly, ConceptNet 5 uses negated relations such as /r/NotCapableOf.

2.5.7 Abstract Meaning Representation for Sembanking

Now we turn to one of the most popular meaning representation frame-
work, Abstract Meaning Representation (AMR, Banarescu et al. (2013)).
The original paper illustrates the AMR method with a syntactic ana-
logue. Syntactic treebanks have had tremendous impact on natural
language processing. Whole sentence parsing unified separate tasks
(e.g. base noun identification) and their evaluations. Now smaller tasks
are naturally solved as a by-product of whole-sentence parsing, and in
fact, they are solved better than when they used to be approached in
isolation. By contrast, a decade ago semantic annotation used to be
balkanized with separate annotations for named entities, co-reference,
semantic relations, discourse connectives, temporal entities, etc. Each
annotation had its own associated evaluation, and training data was
split across many resources. The idea behind AMR has been to unify
the semantic landscape.

The authors wrote down the meanings of thousands of English sen-
tences in simple, whole-sentence semantic structures. AMR and the
tools associated with it have the following principles:

• Rooted, directed, edge-labeled, leaf-labeled graphs, which are easy
for people to read, and for programs to traverse. This traditional
format is equivalent to feature structures, conjunctions of logical
triples, directed graphs, and PENMAN inputs. The latter is used
for human reading and writing. The root of an AMR represents
the focus of the sentence or phrase.

• AMR trees abstract away from syntactic idiosyncrasies, attempt-
ing to assign the same AMR to sentences that have the same
basic meaning, e.g. he described her as a genius, his description
of her: genius, and she was a genius, according to his description
are assigned the same tree.

• Extensive use of PropBank framesets (see Section 2.5.5). For ex-
ample, AMR represents bond investor using the frame invest-01,
even though no verbs appear in the phrase.

• Agnostic about how to analyze/generate.

• Heavily biased towards English, originally not an interlingua.

2.5.7.1 AMR Content

In neo-Davidsonian fashion, AMR introduces variables (or graph nodes)
for entities, events, properties, and states. Leaves are labeled with con-
cepts, so that (b / boy) refers to an instance (called b) of the con-
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cept ‘boy’. Relations link entities, so that (d / die-01 :location (p
/ park)) means there was a death d in the park p. When an entity
plays multiple roles in a sentence, AMR employs re-entrancy in graph
notation (nodes with multiple parents) or variable re-use in PENMAN
notation.

Concepts are either English words (boy), PropBank framesets (want-01),
or special keywords. The latter include special entity types (date-entity,
world-region, etc.), quantities (monetary-quantity, distance-quantity,
etc.), and logical conjunctions (and, etc.). There are approximately 100
relations:

• Frame arguments, following PropBank conventions. :arg0, :arg1,
. . . , :arg5

• General semantic relations: :accompanier, :age, :beneficiary, :cause,
:compared-to, :concession, :condition, :consist-of, :degree, :des-
tination, :direction, :domain, :duration, :employed-by, :example,
:extent, :frequency, :instrument, :li, :location, :manner, :medium,
:mod, :mode, :name, :part, :path, :polarity, :poss, :purpose, :source,
:subevent, :subset, :time, :topic, :value

• Relations for quantities. :scale, :quant, :unit,

• Relations for date-entities. :day, :month, :year, :weekday, :time,. . .

• Relations for lists. :op1, :op2, :op3, :op4, :op5, :op6, :op7, . . . ,
:op10

• The inverses of all relations, e.g. :arg0-of,

• Every relation has an associated reification, which is used when
we want to modify the relation itself.

AMR’s hundred relation types contrasts to 4lang’s sparse inventory
(in graphs, 4lang uses 0-, 1-, and 2-arrows, see Section 3.1.3),

but the difference between 4lang and AMR is less severe
than it may appear at first blush, since the overwhelming
majority of AMR relations like :employed-by are simply
treated as ordinary transitive predicates in 4lang . . . Considerable
technical differences remain, e.g. 4lang does not counte-
nance overt semantic passives like ‘employed by’. (Kornai
et al., manuscript)

The authors give examples of how AMR represents various linguistic
phenomena. AMR handles some level of derivational morphology. Be-
sides nominalizations that refer to a whole event or a role player in an
event, -ed adjectives frequently invoke verb framesets, e.g. acquainted
with and -able adjectives often invoke the AMR concept possible, but
not always.
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Most prepositions simply signal semantic frame elements, but they
are kept if they carry additional information. Cases when neither Prop-
Bank nor AMR has an appropriate relation, e.g. The man was sued in
the case are solved in like this:

(s / sue-01
:arg1 (m / man)
:prep-in (c / case))

named entities. Any concept in AMR can be modified with a
:name relation. There are standardized forms for 80 named-entity
types, e.g. person or country. Multiple forms of a concept are not nor-
malized (US versus United States), and nor are semantic relations in-
side a named entity analyzed. This offers a uniform treatment to titles,
appositives, and other constructions.

reification The sentence The marble was not in the jar yesterday
is represented as

(b / be-located-at-91
:arg1 (m / marble)
:arg2 (j / jar)
:polarity -)
:time (y / yesterday))

If AMR would not use the reification, we would run into trouble, e.g.

(m / marble
:location (j / jar
:polarity -)
:time (y / yesterday))

cannot be distinguished from the representation of yesterday’s marble
in the non-jar. Some reifications are standard PropBank framesets (e.g.,
cause-01 for :cause, or age-01 for :age).

2.5.7.2 Limitations of AMR

AMR does not represent inflectional morphology and universal quan-
tification, it does not distinguish between real events and hypothetical,
future, or imagined ones, e.g. in the boy wants to go, want-01 and
go01 have the same status, and noun compounds do not have a system-
atic representation, e.g. history teacher and history professor
translate to
(p / person :arg0-of (t / teach-01 :arg1 (h / history)))

and
(p / professor :mod (h / history))

respectively, because profess-01 is not an appropriate verb. It would
be reasonable in such cases to use a NomBank (Meyers+ 2004) noun
frame.
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2.5.7.3 Creating AMRs

An AMR Editor allows rapid, incremental AMR construction. To assess
inter-annotator agreement (IAA), as well as automatic AMR parsing,
AMR developed the Smatch metric and associated script that measure
the overlap between two AMRs by viewing each AMR as a conjunction
of triples. Smatch takes the variable mapping that yields the highest
F-score.

2.5.8 Enhanced English Universal Dependencies

4lang is a semantic model, and the division of labor principle sug-
gests that a semantic project should defer the task of syntactic analysis
to existing tools. Interfacing with syntax remains an important prob-
lem. Kovács, Gémes, Kornai, et al. (2022) discusses how more recent
4lang graphs are created from a Universal Dependencies (UD) repre-
sentation created by Stanza (Qi et al. 2020). This section introduces
recent development in syntactic analysis which is relevant for seman-
tics. In creating so-called enhanced++ English Universal Dependency
graphs, Schuster and Manning (2016) are motivated by that many shal-
low natural language understanding tasks use dependency trees to ex-
tract relations between content words. They revisit and extend these
dependency graph representations in light of the Universal Dependen-
cies initiative, and provide an enhanced and an enhanced++ English
UD along with a converter from basic UD trees to theese latter two
kinds of graphs, which are part of Stanford CoreNLP and the Stanford
Parser.

The authors point out that the usage of Stanford Dependencies (SD)
representation falls into two categories: syntactic and a shallow seman-
tic representations. Syntactic tasks proper, such as source-side reorder-
ing for machine translation or sentence compression, require a syntactic
tree: a sound syntactic representation is more important than the re-
lations between individual words. These trees need to be strict surface
syntax trees. For shallow semantic tasks on the other hand, such as
biomedical text mining, open domain relation extraction, or unsuper-
vised semantic parsing, the relations between content words are more
important than the overall tree structure. These tasks use collapsed
or so called CCprocessed SD representations, which may be graphs in-
stead of trees, and may contain additional and augmented relations.
E.g. in Fred started to laugh, the relation between the controlled verb
laugh and its controller, Fred is made explicit in the CCprocessed SD
representation.

The enhanced UD representation has the following features:

• Additional relations and augmented relation names

• Augmented modifiers. The collapsed SD graphs also include the
preposition in the relation name. This helps to disambiguate the
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type of the modifier. All nominal modifiers (nmod) also include
the preposition in their names. The same is true for more com-
plex PPs which are either analyzed as adverbial clause modifiers
(advcl) or as adjectival clause modifiers (acl). Conjunct relations
are augmented, e.g. conj:and

• Propagated governors and dependents to clauses with conjoined
phrases

• Subjects of controlled verbs are linked.

2.5.8.1 The enhanced++ UD representation

The enhanced++ UD representation is more interesting for natural lan-
guage understanding systems that try to extract relationships between
entities, e.g those in open domain relation extraction, or relationships
between objects in image descriptions.
Partitive noun phrases are phrases such as both of the girls, in which

both of the acts semantically as a quantificational determiner. In the
basic UD representation, however, both is the head while both girls is
headed by girls. In order to obtain a similar analysis for these phrases,
enhanced++ UD changes the structure of the basic dependency trees,
which is not allowed according to the guidelines for enhanced depen-
dency graphs. They treat the first part of the phrase as a quantifica-
tional determiner, promote the semantically salient NP to be the head
of the partitive, and analyze the quantificational determiner as a flat
multi-word expression that is headed by its first word. The quantifica-
tional determiner is attached using the special relation det:qmod. Light
noun constructions such as a panel of experts or a bunch of people are
treated similarly.
Multiword prepositions such as in front of traditionally contain a

relation between house and front, and front and hill. Here the enhance-
ment++ lies in representing the relation between house and hill.
Conjoined preposition such as I bike to and from work also pose some

challenges. Ideally there is an nmod:to as well as an nmod:from relation:
bike to work and bike from work are conjoined by and. CCprocessed
Stanford Dependencies representation introduced copy nodes which en-
hanced++ UD adapts: ‘I bike and bike to and from work, respectively’.
Conjoined prepositional phrases such as She flew to Bali or to Turkey
should encode that the two nmod:to relations are conjoined by or. For
these reasons, enhanced++ UD also analyze such clauses with copy
nodes.
Enhanced++ UD attaches both the referent of a relative pronoun

directly to its governor, and the relative pronoun to its referent with a
referent (ref) relation. E.g. the analysis of The boy who lived includes
both ++boy ref lived and ++boy nsubj lived.
Enhanced++ UD does not propagate object or nominal modifier

relations in clauses with conjoined verb phrases such as the store buys
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and sells cameras because of many cases such as she was reading or
watching a movie, where movie is not the object of reading. In contrast
to AMR (Section 2.5.7), enhanced++ UD does not distinguish between
comitative and instrumental: AMR requires SRL which is very hard.
Enhanced++ UD is limited regarding generalized quantifiers and

controlled verbs, such as Everybody wants to buy a house Everybody
nsubj:xsubj buy where the UD graph encodes approximately Everybody
wants that everybody buys a house. The graph for Everybody sleeps
or is awake approximately encodes Everybody sleeps or everybody
is awake. Another limitation regards whether a conjoined subject (Sue
and Mary are carrying a piano) should be interpreted distributively or
collectively, which depends on world knowledge and the context.

2.5.9 The State of the Art in Semantic Representation

In this filnal section of the chapter, we follow two recent papers in
overviewing semantic representation schemes. Finally, in Section 2.5.9.4,
we shortly discuss a framework with and emphasis on quantification.

Abend and Rappoport (2017) clarify the general goals of research on
semantic representation (except for vector space models), and compare
them with syntactic schemes.
The paper discusses the goals of semantic representations (SRT), the

components, (predicate-argument relations, discourse relations and log-
ical structure), the concrete SRT schemes and annotated resources, the
criteria for evaluation, and the relation to syntax. They focus on the
level above the words, i.e. meaning relationships between lexical items,
rather than the meaning of the lexical items themselves. The main dif-
ferences between SRTs are the formalism, the interface with syntax,
the ability to abstract away from formal and syntactic variation, the
level of training required for annotators, and the level of cross-linguistic
generality.
In Abend and Rappoport’s view, SRTs should be paired with a (com-

putationally efficient) method for extracting information from them
that can be directly evaluated by humans. Applications include infer-
ence, as in textual entailment or natural logic; supporting knowledge
base querying; and defining semantics through a different modality,
images, or embodied motor and perceptual schemas. (They defer senti-
ment.)

2.5.9.1 Semantic Content

As we have seen in Section 2.5.1, events (sometimes called frames,
propositions or scenes) include the predicate (main relation, frame-
evoking element), arguments (participants, core elements) and secondary
relations (modifiers, non-core elements). There are ontologies and lexi-
cons of event types (also a predicate lexicon), which categorizes seman-
tically similar events evoked by different lexical items, e.g. FrameNet,
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which defines frames as schematized story fragments evoked by a set
of conceptually similar predicates, or the Richer Event Descriptions
framework5. This notion of events should not be confused with events
as defined in Information Extraction and event coreference, such as a
political or financial event.

SRTs differ in which nominal and adjectival predicates are covered.
Recent versions of PropBank covers eventive nouns and multi-argument
adjectives. FrameNet covers all these, but also covers relational nouns
that do not evoke an event, such as “president”. SRTs may represent
arguments that appear outside sentence boundaries, or do not explicitly
appear anywhere in the text.
Core and non-core arguments are distinguished semantically rather

than distributionally. Core arguments are whose meaning is predicate-
specific and are necessary components of the described event, while
non-core arguments are predicate-general. FrameNet defines core ar-
guments as conceptually necessary components of a frame, that make
the frame unique and different from other frames; and peripheral ar-
guments, which introduce additional, independent or distinct relations,
e.g. time, place, manner, means and degree.
Semantic roles in FrameNet are shared across predicates that evoke

the same frame type, e.g. “leave” and “depart”; PropBank roles are
verb-specific, and the set was extended by subsequent projects such as
AMR; and VerbNet and subsequent projects use a closed set of abstract
semantic roles for all predicate arguments, such as agent, patient and
instrument.

Abend and Rappoport discuss temporal relations in details. This
kind of analysis may mean timestamping according to time expressions
found in the text, or by predicting their relative order in time. The main
resources are TimeML, a specification language for temporal relations;
and annotated corpora by the TempEval series of shared tasks. The
theory goes back to scripts, schematic, temporally ordered sequences
of events associated with a certain scenario, e.g. going to a restau-
rant (Section 2.5.1). Causal relations between events have applications
(including planning and entailment) and annotation schemes, also inte-
grated with TimeML-style temporal relations. The internal temporal
structure of events has been less frequently tackled, but Moens and
Steedman (1988) defined an ontology for the temporal components,
e.g. a preparatory process (e.g., “climbing a mountain”) and its culmi-
nation (“reaching its top”). Statistical work on this topic is unfortu-
nately scarce but involves aspectual classes, and tense distinctions.
Spatial Relations have their cognitive theories and applications in

geographical information systems or robotic navigation. The task of
Spatial Role Labeling with its shared task SpaceEval subsumes the
identification and classification of places, paths, directions, and motions,
and their relative configuration.

5 Citations can be found in the original Abend and Rappoport (2017).
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In the papers running example, Although Ann was leaving, she gave
the present to John., the leaving and the giving events are sometimes
related through ‘concession’, evoked by “although”. Discourse anal-
ysis is useful but overlooked for summarization, machine translation
and information extraction. Resources include the Penn Discourse Tree-
bank, which classifies the relations between discourse units using high-
level relation types like temporal, comparison and contingency;
and finer-grained ones such as justification and exception. This
resource focuses on local discourse structure. RST Discourse Treebank
puts more focus on higher-order discourse structures and deeper hier-
archical structures.

One of the opponents of this thesis, Attila Novák draws the at-
tention to Discourse Representation Theory (DRT, Kamp, Genabith,
and Reyle (2011)). Parsing to Discourse Representation Staructures,
a formal meaning representations introduced by DRT, is a complex
task, comprising other NLP tasks, such as semantic role labeling, word
sense disambiguation, co-reference resolution and named entity tagging.
From the introduction at nlpprogress6 we also learn that DRSs show
explicit scope for certain operators, which allows for a more principled
and linguistically motivated treatment of negation, modals and quan-
tification, as has been advocated in formal semantics.

A narrower but better studied field is the segmentation of scien-
tific papers into parts like background and discussion. Some schemes,
e.g. the Groningen Meaning Bank (Basile et al. 2012) and UCCA (see
Section 2.5.9.2 support cross-sentence semantic relations.
Logical structure, i.e. quantification, negation, coordination and their

associated scope are important in applications that require mapping
text into an executable language, such as a querying language or robot
instructions, and in recognizing entailment relations. We will shortly
discuss an example representations framework in Section 2.5.9.4. Ap-
proaches to inference and entailment include Recognizing Textual En-
tailment, and Natural Logic with different annotation principles and
resources.

2.5.9.2 Semantic Schemes and Resources

• As we saw in Section 2.5.7, AMR has predicate-argument rela-
tions, including semantic roles (adapted from PropBank) that
apply to a wide variety of predicates (including verbal, nominal
and adjectival predicates), modifiers, co-reference, named entities
and some time expressions, but currently no relations above the
sentence level. It is English-centric, which results in an occasional
conflation of semantic phenomena realized similarly in English,
and difficulties with invariance across translations.

6 http://nlpprogress.com/english/semantic_parsing.html#drs-parsing
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• Universal Conceptual Cognitive Annotation (UCCA, Abend and
Rappoport (2013)) is a cross-linguistically applicable scheme for
semantic annotation, building on typological theory, primarily on
Basic Linguistic Theory. It includes argument structures of var-
ious types and relations across languages, but no semantic role
information. UCCA distinguishes between primary and aspectual
verbs, e.g. happen to, and it supports annotation by non-experts.

• Universal Decompositional Semantics (UDS) provides semantic
role annotation, word senses, and aspectual classes (e.g., ˘realis)
collected through crowd-sourcing. UDS uses feature bundles e.g. +volition
and +awareness, rather than agent.

• The Prague Dependency Treebank (PDT) Tectogrammatical Layer
(PDT-TL) represents argument structure (including semantic roles),
tense, ellipsis, topic/focus, co-reference, word sense disambigua-
tion, and local discourse information.

• There are CCG-based Schemes.

• HPSG-based Schemes use feature bundles. Annotated corpora
and manually crafted grammars exist for multiple languages along
with broad-coverage Semantic Dependency Parsing shared tasks
and corpora.

• OntoNotes has multiple inter-linked layers of annotation, bor-
rowed from different schemes.

universality. Besides remarkable cross-lingual resources like Ba-
belNet, UBY (Gurevych et al. 2012), and Open Multilingual Wordnet,
SRL schemes and AMR have also been studied for their cross-linguistic
applicability. PropBank and FrameNet have been translated to multiple
languages, and there are SRT schemes that set cross-linguistic applica-
bility as main criteria, e.g. UCCA, and the LinGO Grammar Matrix,
both of which draw on typological theory.

2.5.9.3 Anchoring graph fragments to tokens

Finally, we would like to follow Koller, Oepen, and Sun (2019) in distin-
guishing three flavors by the degree of anchoring. The strongest form of
anchoring is bi-lexical dependency graphs, when graph nodes injectively
correspond to surface lexical units (tokens). In such graphs, each node is
directly linked to a specific token (but there may be semantically empty
tokens), and the nodes inherit the linear order of their corresponding
tokens. Linguistic frameworks in this flavor include CCG word–word de-
pendencies, Enju Predicate–Argument Structures, DELPH-IN MRS Bi-
Lexical Dependencies (which we will shortly discuss in Section 2.5.9.4),
and Prague Semantic Dependencies.
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The middle flavor relaxes the correspondence relations between nodes
and tokens, while still explicitly annotates the correspondence between
nodes and parts of the sentence, but nodes may align with subtoken or
multi-token sequences, e.g. (derivational) affixes or phrasal construc-
tions. Nodes may correspond to overlapping spans, enabling lexical
decomposition (e.g. that of causatives or comparatives). Representa-
tives include Universal Conceptual Cognitive Annotation and variants
of ‘reducing’ underspecified logical forms into directed graphs.

AMRs on the other extreme are unanchored, in that the correspon-
dence is not explicitly annotated. AMR deliberately backgrounds no-
tions of compositionality and derivation. The framework frequently in-
vokes lexical decomposition and represents some implicitly expressed
elements of meaning, abstracting furthest from the surface signal.

2.5.9.4 Quantification, Minimal Recursion Semantics,
and its variants

Most of the information content of the sentences is not in the struc-
ture (syntactically disambiguated, provided with quantifiers), but in
the (content) words (Kornai 2019, Sec. 1.3). This is what we try to
represent. However, Attila Novák, one of the opponents of this thesis
missed Minimal Recursion Semantics from the first version of the thesis,
so we now discuss it shortly.

The linguistic structures targeted in semantic parsing are predomi-
nantly shallow, restricted to relations between surface word tokens. An
exception is provided by Buys and Blunsom (2017), who propose a
neural encoder-decoder transition-based parser for Minimal Recursion
Semantics (MRS, Copestake et al. (2005) and Copestake et al. (2016)).
MRS also serves as the semantic representation of the English Resource
Grammar (ERG, Flickinger (2000)). Buys and Blunsom define a com-
mon framework for semantic graphs for MRS-based graph representa-
tions (more precisely Dependency MRS and Elementary Dependency
Structures, EDS) and AMR (Section 2.5.7).

MRS is a framework for computational semantics that can be used
for both parsing or generation. As Figure 5 show, instances and even-
tualities are represented with logical variables. Arguments labels are
drawn from a small, fixed set of roles. Arguments are either logical vari-
ables or handles. Handles are designated formalism-internal variables.
Handle equality constraints support scope underspecification; multiple
scope-resolved logical representations can be derived from one MRS.

MRS was designed to be integrated with feature-based grammars like
HPSG (Section 2.5.9.2) or Lexical Functional Grammar. EDS (Oepen
and Lønning 2006) is a conversion of MRS to variable-free dependency
graphs which drops scope underspecification.
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Figure 5: Semantic representation of the sentence “Everybody wants to meet
John” from Buys and Blunsom (2017). The graph is based on the
Elementary Dependency Structure (EDS) representation of Minimal
Recursion Se- mantics (MRS). The alignments are given together
with the corresponding tokens, and lemmas of sur- face predicates
and constants.
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Mi generáltunk. Legalábbis azt hittük, hogy generálunk.
‘We generated. At least we thought we generated.’

— Ferenc Kiefer on generative linguistics before Chomsky (1970).
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This chapter introduces the 4lang theory and formalism for repre-
senting the semantics of natural language, which has been developed
in the Human Language Technologies Research Group Budapest, and
published along with partial implementation in many research papers
(Kornai 2010a, 2012; Nemeskey et al. 2013; Kornai et al. 2015; Recski
et al. 2016; Kovács, Gémes, Iklódi, et al. 2022) and two books (Kornai
2019, 2023). In the previous chapter, we introduced some fundamentals
of symbolic meaning representation systems, notably Quillian (1969)’s
seminal experiments with his semantic network (Section 2.2.1). While
the 4lang theory involves many formalisms, for the purposes of the
present thesis, 4lang can be primarily viewed as a semantic network,
practically a graph, whose nodes are labeled with (names of) concepts
(similarly to AMR, see Section 2.5.7), and the edges with 0, 1, or 2,
roughly corresponding to the most basic syntactic relations.
The name 4lang refers to that the core dictionary, the object of in-

quiry in all of the 4lang related work in this thesis, has bindings in four
languages, representatives “of the major language families spoken in Eu-
rope; Germanic (English), Slavic (Polish), Romance (Latin), and Finno-
Ugric (Hungarian)”. More recently, Kornai (2023) added Japanese and
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Chinese. “The relative ease of creating these new bindings goes some
way onward ameliorating concerns of eurocentricity.”

“4lang is an algebraic (symbolic) system that puts the emphasis on
lexical definitions at the word and sub-word level, and on valency (slot-
filling) on the phrase and sentence level” (Recski et al. 2016). These
two levels are the focus of this chapter and Chapter 5 respectively.
“Historically, 4lang falls in the AI/KR tradition, following on the work
of Quillian (1969, Section 2.2.1), Schank (1975, Section 2.2.3), and more
recently Banarescu (2013, Section 2.5.7). Linguistically, it is closest to
Wierzbicka and Goddard (1972, 2002, Section 2.3.3) and to modern
theories of case grammar and linking theory (see Butt (2006) for a
summary).” (References to sections in the present thesis added.)

While this chapter belongs to the background part of the thesis, it
also reports work done by the author: In the first version of 4lang1,
the manually written definitions were mostly created by Makrai (first
described for the Hungarian NLP community in Kornai and Makrai
(2013)). The characterization of the importance of each concept in the
recursive process of word definition in Section 3.3 originally appeared
as Makrai (2013).

3.1 nodes and edges

3.1.1 Concepts: monosemy and language- and POS-independence

The backbone of 4lang consists of 1942 defined words and bound mor-
phemes. The inventory had been essentially compiled before the the-
sis author joined the group (see Section 3.2), however, the version of
the Longman dictionary that was available to us (Bullon 2003) uses
other elements, so we further expanded the vocabulary with 197 sim-
ple words (e.g. dimension, two, communicate, conform , mammal, item,
artefact), 188 proper names, the definition of which is essentially just a
reference to the corresponding element of the encyclopedia (e.g. Green-
land, Greenwich, Guy Fawkes) and 147 compounds (bell-shaped, bitter-
tasting, blue-black). The latter are uninteresting from our present per-
spective.

The definitions in 4lang were made by human labor, consulting
classical dictionaries in the most cases, especially the Longman dic-
tionary. This part of the work is unfortunatly inreproducible. Probably
the biggest novelty in writing definitions is that (unary) predicates in
4lang represent language- and POS-independent, monosemic concepts.
We discuss language-independence and monosemy in this subsection,
while POS-independence will be investigated in the next one.

Monosemy means that 4lang tries to grasp the abstract meaning of
the words, from which specific uses can be deduced. Kornai and Makrai

1 https://github.com/kornai/4lang/tree/1d19f167b9c0eace5bd874759860781be78f96ed
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(2013) cite the definition of potash from Webster’s Third (Gove 1961)
to show how words considered there to be polysemous are defined in
traditional lexicology. Potash has four meanings there. In the presenta-
tion of (Makrai 2013), we provided a similar example from the English
WordNet (Miller (1995), see Section 2.5.3) with six meanings of the
word stomach. According to the principles of 4lang, most words are
monosemic. Disambiguation is only done for pure homonyms, e.g. the
word form state corresponds to separate entries in the senses related to
‘country’ and ‘condition’. How the distinction between polysemy and
homonymy can be made on the basis of data and word embeddings
will be discussed in Chapter 8 in the frame of multi-lingual word sense
induction, the computational task of clustering word occurrences to
lexical items based on two corpora in different languages.
Rather than including in disambiguation as much information on

different uses as possible, we prefer representing each surface morpheme
with a single graph. In Ruhl (1989)’s view, the elements of the meaning
of a word in a context that is not present in the monosemic lexical
item should be deduced from the similarly abstract representations
of context words. We think that computing the meaning of usages of
words that are usually called metaphoric is the basic mechanism behind
human linguistic capabilities, and artificial understanding should work
with a similar goal, possibly with the use of non-lexical components to
handle extra-linguistic knowledge and pragmatic implicatures.
The 4lang dictionary strives to be language-independent. When defin-

ing the words, we tried to take into account a couple of languages, and
the word forms of the terms were indicated in Hungarian, English, Latin
and Polish. Since the creation of the definition formulas, colleagues have
expanded the dictionary to more languages, Ács, Pajkossy, and Kornai
(2013) to 40 languages, and Kornai (2023) to Japanese and Chinese.

Language-independence may be contrasted with the Saussurean def-
inition of a linguistic sign which is an ordered pair consisting of a
cluster of (spoken or written) forms in a specific language and an
extra-linguistic category in the mind. Whether human categorization
is dependent of the mother tongue and other languages learned by the
speaker early on is a classical topic in psycho-linguistics. Common expe-
rience shows that people can express the same content in any language,
and the greatest problem one faces in finding translational equivalents
is that an ambiguous word in some language may (not surprisingly)
translate to some other language in multiple ways, depending on con-
text.

3.1.2 Syntactic and semantic type

4lang contains a single concept where two words differ only in their
parts of speech, e.g. action nouns are the same concept as the verbal
stem, since 4lang describes the conceptual meaning,. This approach ob-
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viously deviates from Montague grammar, where syntactic types corre-
spond to semantic types. 4lang being a conceptual network implies that
representations try to factor out pure morpho-syntactic differences on
the word level.2 This avoidance of types is in contrast to lexicographic
practice, both traditional or symbolic computational, that splits usages
of words by parts-of-speech. Furthermore, unlike in Conceptual Struc-
tures (Jackendoff (1972, 1990), Section 2.3.5), our concepts are free of
semantic type as well.

The 4lang approach to the lexicon can be illustrated in relation to
the phenomenon that a great part of the English core vocabulary con-
sists of words that appear as nouns and verbs as well, with semantically
equivalent meanings: a divorceN is exactly a situation when some people
divorceV . The corresponding pairs in Hungarian are derivational ones:
remaining with the same example, the noun vál-ás is derived from the
verb vál(ik) by a compositional suffix.

Formal semantics is organized along the principle of compositional-
ity: the representation of a phrase or a sentence is computed from the
representations of the immediate constituents and the way of their com-
position. Montague Grammar formalizes the compositional requirement
by associating rewrite rules over syntactic forms to semantic rules. Ter-
minals of the semantic sub-grammar are semantic types, most notably
entities and truth-valuable states of affairs.
Compositionality also applies to 4lang graphs. Formulas in the hand-

written core vocabulary, which we discuss in Section 3.2, are parsed to
graphs in a rule-to-rule fashion, and the representations of phrases and
sentences are composed of those of the words. The main operation in
both is to draw a link from a node in the graph corresponding to the
macro-structure of the linguistic unit to the so-called head-node of the
constituent.3
The lack of semantic types can be seen as an instance of radical

lexicalism: 4lang concentrates on the meaning of words and phrases
at the expense of type consistency in the graph. Our definitions can
of course turn out to be less exact that those applying POS distinc-
tions. Another problem is when the head-node depends on the POS:
the head of cook has to be ‘person’ if the noun is meant, and ‘make’ if
the verb. Nevertheless, 4lang representations still turn out to capture
enough lexical content to be useful in application, especially in word
and sentence level similarly and entailment, see 3.7.

2 The interested reader may learn about the syntactic part of the 4lang theory, mo-
tivated by functional programming and formalized in Eilenberg Machines, in Sec-
tion 6.3.2 of Kornai (2008) and in Kornai (2019).

3 The theory may allow the link to point to a sub-graph, motivated e.g. by accusativus
cum infinitivo sentences like I see the father coming where the object of seeing can
argued to be the seeing of the father as well as the father himself, but this idea is
unrelated to the present thesis, and it is not implemented.
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3.1.3 Edges

In the 4lang meaning representation framework, the meaning of words
and greater linguistic units is formalized in pointed directed graphs
with nodes labeled by concepts and edges colored in three colors: 0, 1,
and 2. Pointedness means that one node, the head, is distinguished for
compositional purposes, as already discussed in 3.1.2.

In Section 2.2.4, we introduced Woods (1975)’s argument that a too
large inventory of edge types (colors) makes reasoning with graphs com-
putationally unfeasable. This problem is avoided in 4lang by splitting
relations to various levels. At the deepest level, there are only three
types of edges (0, 1, and 2). When there is an edge c1 i

Ñ c2 with label
i P t0, 1, 2u from concept c1 to concept c2, we will also say that c2
is on the ith partition4 of c1. Binary relations, whose appearance in
static word embeddings is the topic of Chapter 7, are represented with
nodes (typically with 1 and 2-edges leading out of them to their first
and second argument). These relations represent kinds of information
including the type of general knowledge ConceptNet (see Section 2.5.6)
represents.

Ditransitives (ternary and higher arity verbs) are eliminated by de-
composition to at most binary ones (Kornai 2012) with methods pio-
neered in generative semantics. Following Jackendoff (1972), who de-
fined kill as ‘cause to die’, with a 4lang formula,

=AGT CAUSE [=PAT[die]],

we define put as ‘cause to (be) at’, (=AGT CAUSE [=PAT AT =TO]), and
the two classes of Schank (1972) as give: ‘cause to have’, (=AGT CAUSE
[=DAT HAS =PAT]) and tell: ‘cause to know’, (=AGT CAUSE [=DAT KNOW
=PAT]). Finally, deep cases, typically verbal roles (the topic of Chap-
ter 5) are also represented by nodes with special labels, e.g. an =AGT
node in the graph representing a verb is a place-holder for the repre-
sentation of the verb’s agent.
Turning to the edge-colors, 0 denotes every relation in which a con-

cept modifies some other as a whole: we draw an abstraction over
the traditional genus/hypernym/is-a (e.g. dog 0

Ñ animal, see Sec-
tions 2.3.1, 2.4.1 and 2.4.2), (generic) unary predication (dog 0

Ñ bark),
and attribution (dog 0

Ñ faithful). The interested reader may learn
more about is-a, genus, and hypernym in Section 4.5 of Kornai (2019).
0 is used for verbs as well as nouns. Unlike Levelt, Roelofs, and Meyer
(1999), where escort IS-TO accompany, in 4lang we simply state that
escort 0

Ñ accompany.

4 Those who are familiar with gold-age meaning representation, especially Hendrix
(1975), should note that in 4lang, partition is meant much more simply that for
Hendrix, who introduced a machinery with the same name to provide an adequate
quantification mechanism for semantic network concepts. In 4lang, more concepts
on a partition of a concept (out-neighbours with a fixed edge label) are interpreted
as a conjunctive boundle of properties.
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1 and 2 represent two arguments of a function that play asymmetric
roles, e.g. the agent and patient role of a verb (e.g. cow 1

Ð make 2
Ñ

milk), or the figure and the ground in tempo-spatial relations (star 1
Ð

at 2
Ñ sky). Nodes (concepts) with an 1 or 2-labeled out-edge will be

called binary, while the rest will be called unary because these concepts
correspond to unary predicates of truth-conditional logic

two remarks related to the formalism It can be ar-
gued that in terms of predication, the direction of the 0 versus 1 and
2 edges is somewhat inconsistent: in dog 0

Ñ animal, the link goes from
the argument to the predicate, while in cow 1

Ð make 2
Ñ milk, the edges

lead from the function to the arguments. In the view of the thesis au-
thor, this discrepancy may be an accident in the development of the
system, but need not corrupt empirical results in applications. Never-
theless, András Kornai writes in personal communication that what the
argument and what the predicate is in the case of 0, and also in the case
of intransives in general, is debatable/changeable, e.g. in the first two
articles of Montague, there is boypsleepq and sleeppboyq, respectively.
One can argue for both. Refer to Recski (2016b) as well.
Another remark has been made by a referee of this thesis, Tibor

Szécsényi, related to the representation of “ergative (and other strange)”
expressions (e.g. Peter likes Mari vs. Peter is pleased by Mari)”.

The thematic role–argument correspondence is not al-
ways clear! Wouldn’t it have been enough to assume a single
unary predicate-argument relation: cow 0

Ñ (make 0
Ð milk)?

This would have been more in line with the idea of light verb
construction in syntactic theory, wity Currying in logic, and
with the type xe, xe, tyy of transitive verbs. Or, once we get
to type logic, what would the 4lang representation corre-
sponding to the type-raised, generalized quantifier transi-
tive verb type xxe, xe, tyy, xe, tyy look like? Would that make
sense? (Translation by the thesis author.)

The ergative problem was one of the motivations for the introduc-
tion of the thematic roles like =AGT, a shallower level of binary re-
lations. There are theoretical motivations for using hypergraphs like
cow 0

Ñ (make 0
Ð milk), where edges can point to edges. We already

mentioned an example in Section 3.1.2. However, disjunction, negation,
and all forms of quantification are considered secondary phenomena in
4lang (Kornai 2010b) which would make the model computationally
more complex without much benefit in terms of accuracy in human
language understanding. The emphasis of 4lang is on the lexical/con-
ceptual content rather than an elaborated type theory involving raising
and generalized quantifiers. Nevertheless, conslut Section 4.5 of Kornai
(2023) as well.

75



the 4lang semantic network

3.2 the recursive process of word definition

Symbolic representations define concepts by other concepts. Some meth-
ods take this circularity as a basic property of language, while others
break it by using primitives, words that play the same role in seman-
tics as primitive notions do in mathematics. The first approach includes
disciplines ranging from structuralist semantics to semantic networks
Chapter 2) and information retrieval (Section 3.3). In Section 2.2.6 we
reviewed Hayes (1979)’s analysis of the axiom-concept graph, and his
considerations on which direction the definition process should follow.
The primitive-based approach is exemplified in this thesis by the Natu-
ral Semantic Metalanguage (Section 2.3.3), and the Longman Defining
Vocabulary (Section 2.4.3). The 4lang approach is closer to the latter,
but it is important that we do not specify the defining vocabulary on
theoretical grounds, but we derive it from the definition graph (Sec-
tion 2.2.6) with an iterative process (see Kornai et al. (2015, Section
2.1), Ács, Nemeskey, and Recski (2017, Section 2.2), and Kornai and
Makrai (2013), the latter is in Hungarian).

The meaning of a sentence is composed of the meaning of its words,
but the word inventory is still too great to give a 4lang account of each
item. Now we describe our method for vocabulary reduction from the,
say, 80–160 thousand (disambiguated) words in a traditional dictionary
to a defining vocabulary for which we can create 4lang representations
manually, constituting the main contribution in this chapter.

It must be noted that members of the defining vocabulary are not
primitives of definition. This is in accordance with more approaches: the
structuralist notion of word sense; that “the full meaning of any concept
is the whole network as entered from the concept node” (Collins and
Loftus 1975); and what Lenat and Guha (1990) say about the lack of
primitive actions in Cyc: “actions are not merely macros introduced
for notational convenience, for use instead of more complex sequences
of primitive actions. [Our] approach is motivated by two reasons: we
wish to be able to reason at different levels of abstraction and a priori
assigning of a set of actions as primitives goes against this”.

Our methods for defining the whole vocabulay in terms of a more
restricted set (as well as previous work in this field) are discussed in
Section 2.1 of Kornai et al. (2015). ToDo Nem definiálható tökélete-
sen a sleep a yellowból. There are two basic approaches: bottom-up
methods use a defining vocabulary specified on some theoretical basis,
but our group has done top-down computations as well to discover the
defining vocabulary of both traditional dictionaries and our manually
written definitions themselves.

The first modern efforts in [the direction of a basic vocab-
ulary] are Thorndike (1921)’s Word Book, based entirely on
frequency counts (combining TF and DF measures), and
Ogden (1944)’s Basic English, based primarily on consider-
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3.2 the recursive process of word definition

ations of definability. The Swadesh (1950) list puts special
emphasis on cross-linguistic definability, as its primary goal
is to support glottochronological studies.

The idea that there is a small set of conceptual primi-
tives for building semantic representations has a long his-
tory both in linguistics and AI as well as in language teach-
ing. The more theory-oriented systems, such as Conceptual
Dependency (Schank 1972) and NSM (Wierzbicka 1985) as-
sume only a few dozen primitives, but have a disquieting
tendency to add new elements as time goes by (Andrews
2015). In contrast, the systems intended for teaching and
communication, such as Basic English (Ogden 1944) start
with at least a thousand primitives, and assume that these
need to be further supplemented by technical terms from
various domains. [. . . ] A trivial lower bound [on the num-
ber of primitives] is given by the current size of the NSM
inventory, 65 (Andrews 2015), but as long as we don’t have
the complete lexicon of at least one language defined in
NSM terms the reductivity of the system remains in doubt.
For English, a Germanic language, the first provably re-

ductive system is the Longman Defining Vocabulary (LDV),
some 2,200 items, which provide a sufficient basis for defin-
ing all entries in LDOCE (using English syntax in the defi-
nitions).

The core vocabulary of the 4lang meaning representations frame-
work is a set of about three thousand concepts with English, Hungar-
ian, Latin and Polish exponents5 and formal definitions that can be
compiled to 4lang graphs with the pymachine software package. The
original vocabulary (words with ID up to 2692) was specified in the
Hungarian Unified Ontology (MEO) Project based on theoretical con-
siderations similar to those mentioned in the previous citation. This
process is also described in the paper:

We built a seed list composed of the Longman Defining
Vocabulary (2,200 entries), the most frequent 2,000 words
according to the Google unigram count (Brants and Franz
2006) and the British National Corpus, as well as the most
frequent 2,000 words from Polish (Halácsy et al. 2004) and
Hungarian (Kornai et al. 2006). [For Latin,] we added the
classic Diederich (1939) list and Whitney (1885)’s Roots.

Turning to the top-down method, in the same Kornai et al. (2015),
we formalized the defining vocabulary in graph-theoretic terms, based

5 Ács, Pajkossy, and Kornai (2013) describe how bindings in other languages can be
created automatically.
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on the definition graph, whose nodes correspond to (disambiguated)
words, and a directed edge u Ñ v represents if v is used in the defini-
tion of u. The mathematical formulation of the defining vocabulary is
a feedback vertex set (FVS) that contains all nodes without out-edges
(these are definitional primitives) and one node from each directed cy-
cle. We found that in definition graphs there are much smaller FVSs
than there may be if the graph was random: “For example, in the En-
glish Wiktionary, 369,281 definitions can be reduced to a core set of
2,504 defining words, and in Collins English Dictionary we can find a
defining set of 6,490 words.” Gold-age versions of the Longman Dic-
tionary were created with a pre-specified defining vocabulary (LDV),
what still shows its advantages in the newer, non-LDV-based version we
have access to, as the defining vocabulary consists only of 1,061 words.6
The interested reader may read more details on the possible gains of
a smarter parsing of implicit cross references in dictionaries, handling
compositional derivations of latinate stems, disambiguation, and multi-
word expressions in the paper. The key point is that a cca. 3000-word
vocabulary that we defined with 4lang formulas in the middle of the
past decade (Section 3.6) covers the defining vocabulary of traditional
dictionaries. Further refinements of the 4lang defining vocabulary can
be found in Appendix 4.8 of Kornai (2019) and in Kornai (2023).

3.3 importance of concepts in the definition graph

Symbolic representations define concepts by other concepts, possibly
with the help of formal devices. In the previous sectoin, we introduced
the 4lang formalism and our approach to the iterative process of defin-
ing words by each other. In this section, we quantitatively describe how
important each node of the semantic network is for the definition of the
whole vocabulary. Chapter 5 will offer a set of thematic roles for the
defining vocabulary. Intuitively, the importance measure tells us which
thematic roles (e.g. the patient), lexical relations (e.g. the comparative
-er), and words (e.g. want) have to be used (in the case of primitives)
or defined with the greatest caution.

3.3.1 Introduction

In this section, which originally appeared in Hungarian as Makrai
(2013), we quantify how important each concept is in sentence com-
prehension. We do this by transforming definitions that represent the
meaning of words into a directed graph with concepts as nodes. Apply-
ing the method known in computer science as PageRank for the defini-
tion graph, the values assigned to each vertex can be interpreted as the

6 This set roughly corresponds to the words that are marked with u (for uroboros
(Ács, Pajkossy, and Kornai 2013; Kornai et al. 2015; Kornai 2019, 2023)) in the 6th
column of the 4lang file.
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importance of the corresponding concept in understanding other words
and phrases. The PageRank method was originally introduced to mea-
sure the relevance of websites. The structure of the article is as follows.
In Section 3.3.2 we present the definition graph, and in Section 3.3.3
we present the method PageRank used to calculate the weight of each
concept. Finally, we report the numerical results in Section 3.3.4.

We work at the word level, yet it is important to talk about argu-
ments of words (typically verbs and relational nouns). As it follows from
the principle of compositionality, we require that the representation of
the meaning of a structure consisting of a function and its arguments is
composed from the representations of the meaning of the function and
that of the arguments. To make this possible, the definition of functions
should indicate where the representation of each argument has to be
inserted. We do this by referring to the deep cases of the arguments
(Section 2.3.2). In this chapter, the names of deep cases abbreviate
Hungarian surface cases, e.g. NOM denotes the subject, ACC denotes the
object, DAT denotes the dative argument, and OBL denotes the oblique.
Chapter 5 develops a more theoretically grounded system (more easily
comparable to Fillmore’s idea and also grasping alternations). Recall
that 4lang accounts for the meaning of ditransitive (and higher ar-
ity) verbs in the syntax using predicates of at most two variables. See
Kornai (2012) for details.

3.3.2 The definition graph

In this section, we first show how we transformed the 4lang dictionary
into a directed graph and a corresponding matrix, which enabled us to
characterize the semantic importance of the concepts. Thereafter we
describe the graph.
The vertices of the definition graph are concepts in the dictionary,

and if, for example, the word ‘metal’ is used in the definition of ‘steel’,
then a directed edge in the graph points from the vertex corresponding
to the latter to that corresponding to the former. The graph has 2,897
vertices and 7,816 edges (i.e. there are relatively few edges between
pairs of vertices).
The mathematical concept of strongly connected components will

play an important role later. Two vertices are called strongly connected
if a path (a sequence of edges) connects them in both directions. This
relation is an equivalence relation, it classifies the vertices into classes,
which are called strongly connected components. The strongly connected
components of the 4lang graph are interesting by themselves as they
give an intuition about the graph, so we briefly present them.
As Table 5 shows, the largest strongly connected component consists

of quite mixed words (yellow, four, sleep, under, lack, month. . . ). The
next largest strongly connected components consist of cycles such as
months or days of the week. The definition of e.g. a month consists
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# nodes #
662 1 {yellow, four, sleep, under, lack, month. . . }
12 1 {January, February, . . . , December}
7 1 {Monday, Tuesday, . . . , Sunday}
5 1 {furniture, chair, table, bed, cupboard}
4 3 {queen, royal, monarch, king}, {cereal, flour,. . . },. . .
3 8 {male, sex, female}, {calm, disturb, upset},. . .
2 26 {exist, real}, {reason, cause}, {child, parent},. . .
1 2302 {part-of}, {other}, {is-a}, {number}, . . .

Table 5: Strongly connected components of the definition graph

of the information that it is a month and the previous and the next
month. The next greatest strongly connected components are related
to a concept each; e.g. kinds of furniture and the word furniture itself
form a strongly connected component, as the word furniture is included
in the definition of kinds of furniture and, some kinds of furniture are
provided in ‘furniture’ as examples. Finally, most concepts have no
out-edges (i.e. they are primitives of definition).

3.3.3 Weighting the concepts

Circularity is an old problem of lexicography: if we say that a ‘child’
is one who has a ‘parent’ and ‘parent’ is the one who has a ‘child’, we
have not said much. Modern dictionaries avoid this problem by limiting
the vocabulary of the definitions to the so called defining vocabulary.
We choose the opposite direction by characterizing the importance of
defining words based on the dictionary, as they define each other.
The mathematical method used for this can be thought of as a ran-

dom walk in the definition graph. We start the walk in a randomly
chosen concept (the probability distribution from which this start con-
cept is draw, as we will see, does not matter). During the steps of the
walk, we randomly take one of the concepts defining the current con-
cept with a uniform distribution (more precisely taking into account
the multiplicity). By the limit distribution of a random walk we mean
the probability of being in each concept (node) after a long time. This
just expresses how important a given concept is in defining all the con-
cepts, taking into account, recursively, the importance of the concepts
to be defined.
The limit distribution is unique (that is, independent of the initial dis-

tribution) if and only if the graph consists of a single strongly connected
component. We have seen that this is not the case in the 4lang graph.
PageRank is for weighting of the vertices of graphs consisting of more
strongly connected components. Intuitively, during the walk behind
PageRank, with probability slightly less than 1 you still go to one of
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the vertices directly accessible (uniform distribution with multiplicity),
but you can go to any of the nodes. For transition probabilities, this
means that if we go to node j with probability P pi, jq in the original
walk given we are currently in the vertex i, the same transition proba-
bility in the new walk will be

Pdpi, jq “
1´ d

n
` dP pi, jq

where d is the so-called damping factor (most often d “ 0.85) and n is
the number of nodes. As d goes to 1, the limit distribution approximates
that of the original matrix.

3.3.4 Results

Of course, the PageRank value depends on the damping factor d. We
first state results that are independent of different values of d, and then
we present the differences.

Figure 6: PageRank of nodes. Nodes are sorted by PageRank. The triangles
with “1/5” in between below the legend can be disregarded.

ToDo Szécsényi: A 70. oldalon található ábrán a négy leggyakoribb
fogalom milyen értelemben fogalom (concept) (Acc, Nom, Er, Obl)?
Hogyan jöttek ki ezek a használt értelmező szótárakból (a definíciók-
ból)?

Figures 6 and 7 show the results. A few items were given quite a great
weight and very many got very little. Figure 7 shows the Page Rank
of the 17 most important concepts on a logarithmic scale. Here, the
horizontal axis corresponds to rank by importance (d “ 0.1), and the
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Figure 7: PageRank of concepts. Concepts are sorted by PageRank. If the nth
concept has PageRank p, it is shown at x “ logn, y “ log p. Colors
correspond to different damping factors.

ToDo Szécsényi: a jelmagyarázatban 6 szín van, az ábrán viszont csak
5 vonal.

vertical logarithmic axis is the PageRank value of the corresponding
element. The two most important ones are two deep cases, in line with
the intuitive idea that understanding the arguments of a verb struc-
ture plays a significant role in understanding the structure. We would
like to highlight two more binary predicates: part-of, which may be
familiar to the reader from the meaning representation literature, and
FOR expressing the goal (the purpose of things as concieved by people).
These results suggest that in order for artificial intelligence to be able
to draw the right conclusions, it must first handle the items at the top
of the rankings well.
The PageRank of the 16 most important elements does not depend

much on the damping factor. The only exception is possession (HAS),
which appears in many definitions (19% of the definitions are involved),
but it has no definition itself. Surprisingly, HAS gets a high PageRank
for low damping (for example d “ 0.85) and low for strong damping.

The characterization of the defining vocabulary is an old problem in
lexicology. Kornai and Makrai (2013) sets the definition of the basic
vocabulary as one of the main aims of 4lang. This section can thus
be summarized as the 4lang contribution to the numerical characteri-
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zation of the defining vocabulary, i.e. a formal definition of this much
discussed set.7

3.4 analytic properties

What kind of information is included in 4lang representations? Lan-
guage philosophy and lexicography distinguish word meaning from other
kinds of knowledge, while cognitive science and NLP put the emphasis
on grounding linguistic knowledge in other capabilites of entities with
natural or artificial intelligence such as vision and memory.
Kant (1781) introduced the distinction between analytic propositions,

which are true by virtue of their meaning (All bodies occupy space.), and
synthetic propositions, that are true of their references in the real world
(All creatures with hearts have kidneys.). Within synthetic propositions,
a priori and a posteriori propositions can be distinguished based on
whether their justification relies upon experience. Logical positivists
revisited the definition of analytic proposition as a proposition that is
made true (or false) solely by the conventions of language.

W. v. Quine (1951) argued that the analytic–synthetic distinction
is untenable despite “one [being] tempted to suppose in general that
the truth of a statement is somehow analyzable into a linguistic com-
ponent and a factual component.” Wikipedia summarizes Quine’s ar-
gument so that the notion of an analytic proposition requires a notion
of synonymy (e.g. the proposition ‘Bachelors are unmarried’ is analytic
because bachelor is synonymous with something like older unmarried
man), but establishing synonymy inevitably leads to matters of fact via
semantic equivalence.
Grice and Strawson (1956) offer a pair of thought experiments to

restore the distinction. The protagoinst of the first experiment says
that My neighbor’s three-year-old child understands Russell’s Theory
of Types. The other one says My neighbor’s three-year-old child is an
adult. The intended distinction is that it is logically impossible for a
child of three to be an adult, and its naturally impossible for a child
of three to understand Russell’s Theory of Types. “In both cases we
would tend to begin by supposing that the other speaker was using
words in a figurative or unusual or restricted way; but in the face of
[their] repeated claim to be speaking literally, it would be appropriate
in the first case to say that we did not believe [them], while in the
second case [we would] say that we did not understand [them].”
For a deeper understanding of the 4lang principle that the lexicog-

rapher should record analytic properties and disregard synthetic ones,
the reader may refer Section 5.7 of Kornai (2019), which heavily builds
on the philosophical work in Putnam (1976), who “restored the honor
of the analytical/synthetic distinction”.

7 Thanks for helpful comments by Ágota Fóris, Dávid Nemeskey, Gábor Prószéky,
Tibor Vámos, and Tamás Váradi.
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3.5 the naive model and an ontology

Our system is similar to truth-conditional semantics in that it can in-
teract with models. There are more models, an internal one modeling
linguistic meaning, and external models in charge of specific in-domain
knowledge and reasoning (Nemeskey et al. 2013). In the preceding chap-
ter, we reviewed many works emphasizing the role of naive theories in
natural language semantics (Sections 2.2.6, 2.3.4 and 2.4.2). The inter-
nal model is different from that of modern sciences of the corresponding
domains. E.g. the 4lang definition of heart includes, besides the scien-
tific truth that ‘heart is an organ’ and ‘heart moves blood’ the naive
fact that ‘love is in heart’. cWe define death as the end of life, though
theology may state that life continues after death. As a third example,
‘speed’ is related to ‘move’ in 4lang, but the exact nature of this rela-
tion which is explained in physics is not part of the naive world model
neither can be expressed in 4lang.

Gruber et al. (1993) defines an ontology as a formal, explicit speci-
fication of a shared conceptualization. In such Knowledge Representa-
tional terms, the core definitions, the main protagoinsts of this chapter,
constitute the top-level ontology of the 4lang meaning representation
framework, keeping in mind that at this top level, we concentrate on
linguistic meaning, and domain-specific knowledge can represented in
external models.

3.6 formulas

The main contribution of this chapter is the representation of a cca. 3000-
word core vocabulary that, according to computations discussed in Sec-
tion 3.2, is sufficient to define all the words in a dictionary. These
core representation are written in 4lang formulas that are compiled to
4lang graphs by the pymachine software package.
4lang representations are graphs whose nodes are labeled by (mainly

alphabetical) strings, the exponents of the concept that the node rep-
resents; edges have one of the colors 0, 1, and 2; and one nodes is
distinguished as a head-node. Such graphs can be specified by listing
the nodes and the edges, but we maintain a formula representation as
well which is more reminiscent of natural language definitions found
in a dictionary. In this section, we describe the syntax of these formu-
las, i.e. the minisyntax, along with the graphs they are compiled to in
pymachine, i.e. minisemantics. The minisyntax and the minisemantics
together will be called the minigrammar. (The terminology metasyn-
tax, metasemantics, and metagrammar may be more familiar as they
are the syntax and the semantics of some metalanguage, the object lan-
guages being natural languages, but we think that meta would suggest
something impressive while minigrammar is a modest mechanism for
creating 4lang graphs in lexicographer-friendly fashion.)
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The minigrammar was first published in Kornai et al. (2015) with
the shortcoming that we did not make the head-node explicit, which
made the formalism somewhat unclear. In Figure 8 we reproduce the
grammar published there with some simplification in the system of
non-terminals and indicating the head-node in each graph. The left
column specifies how the graph representing the definiendum is built.
There is always a definiendum node denoted with m (labeled by the
definiendum). The right column shows how a graph gpXq representing
the non-terminal X in the left side of the corresponding rule can be
build from m and the graphs gpY q representing the yields of the non-
terminals Y in the right side of the rule by drawing the edges from
the head-node of some gpY1q or m to that of some gpY2q or m. The
head-node of the resulting graph is emphased by boldface.

Non-terminals of the minisyntax are D for a definition, E for an ex-
pression (subjunctive clause), Eu for a “unary expression” (subjunctive
clause with unary head), U for (the label of) a unary node, B for (the
label of) a binary node, and A for an argument of a binary node. The
terminal , separates subjunctive clauses: a definition consist one or
more clauses. Note that normal-font round parenthesises in this figure
are used in regular expressions describing sentential forms, e.g. p,Eq˚ is
the Kleene-closure of ,E, while the typewriter-font parens ( and ) are
terminals of the minisyntax for 0-edges, e.g. long(time) compiles to
time 0

Ñ long. Square brackets parenthize arguments of nodes, mostly
those of unary nodes (air[move]) and possiblly those of binary ones
(actor IN/2758 [<theater>,<film>].

Most unary predicates are lower-case strings that may include _ – see
below for special cases. Ambiguous word-forms are disambiguated by
appending the terminal / plus a numerical id to the end, e.g. light/739
is the opposite of dark(ness) while light/1381 is the opposite of heavy.
From the point of view of the minigrammar, deep cases, the place-
holders of arguments in representations of functions, are also unary la-
bels despite their linking purpose. Deep cases are type-set as e.g. =AGT
or =TO. Some unary nodes are encyclopedic references, these are pre-
fixed with the terminal @, e.g. @United_States. Binary node labels are
uppercase strings also allowing _. In this thesis, binaries are type-set
with small-caps-and-hyphens for aesthetic purposes), e.g. HAS and
PART_OF are written as has and part-of.
The first row corresponds to the top level: the definition of a concept

is a conjunction of properties. For the theoretic background, see section
3.3. of Kornai (2019) who defines ‘dog’ as ‘four-legged, animal, hairy,
barks, bites, faithful, and inferior’8. The next three lines represent bi-
nary predication. By default, the definition parser in pymachine draws
a 0-edge from empty arguments of binary nodes to the definiendum m.
This can be avoided by inserting the dummy argument ’ (gp’q “ H).

8 We give pre-theoretic meanings in ‘single quotes’, while typewriter font is kept
for 4lang formulas.
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D Ñ Ep,Eq˚ m

0
��

0

��
gpEq . . . gpEq

animal, bark dog

0
��

0

��
animal bark

E Ñ BA gpBq

1

��

2

��
m gpAq

MAKE sound MAKE

1��

2

  
horn sound

E Ñ AB gpBq

1
��

2

��
gpAq m

human HAS HAS

1��
2

��
human arm

E Ñ Ap1qBAp2q gpBq

1��
2

��
gpAp1qq gpAp2qq

food HAS taste HAS

1
��

2

��
food taste

E Ñ Eu

E Ñ U(E) gpEq

0

��
gpUq

long(time) time
0
��

long

Eu Ñ U[D] gpUq

0

��
gpDq

air[move] air
0

��
move

Eu Ñ U gpUq
AÑ Eu | [D] | ’ gpEuq | gpDq | H
U Ñ @?ra´ z_s`p/r0´ 9s`q? | =AGT | =PAT | =POSS | =REL | =DAT |
=TO | =FROM | =OBL | =AT | =FOR
B Ñ rA´ Z_s`p/r0´ 9s`q?

Figure 8: The original minigrammar
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Nodes with the same label get unified (see Section 2.3.5) unless there
is the key-word other on their 0-th partition.

3.7 applications, inheritance and negation

No summer’s high
No warm July

No harvest moon to light one tender August night
No autumn breeze
No falling leaves

Not even time for birds to fly to southern skies

— Stevie Wonder

We conclude this chapter with an overview of 4lang’s applications
along with related remarks on the representation of (word-level) nega-
tion and inference. Early work (Nemeskey, Recski, and Zséder 2012;
Nemeskey et al. 2013) demoed 4lang in a dialog system that answered
questions about the time table and sold tickets. 4lang has been suc-
cessfully applied to measure the similarity in English (Recski and Ács
2015; Recski et al. 2016; Recski 2016a, 2018) and Hungarian (Recski,
Borbély, and Bolevácz 2016) words and English sentences (Kovács et
al. 2020; Kovács, Gémes, Iklódi, et al. 2022). See the PhD thesis Recski
(2016b) as well. E.g. Recski et al. (2016) discuss some features in their
Section 3.2. From the configuration train 0

Ñ vehicle 0
Ð car they infer

that train and car are somewhat similar, and from park 1
Ð IN 2

Ñ town
and street 1

Ð IN 2
Ñ town that so are park and street. A key point in

inference is inheritance: If we have HAS wing for all birds, HAS wing
will also be true of all concepts for which 0

Ñ bird holds. Inheritance
is closely connected to negation. Negation is expressed in the 2016 ver-
sion of the hand-written 4lang formulas by connecting a lack node
to the 0th partition of the property which is lacking, e.g. by stating
diamond 1

Ð HAS 2
Ñ color 0

Ñ lack in the definition of diamond, we es-
cape the (contra-factual) inference of concluding diamond 1

Ð HAS 2
Ñ

color from the disjunction of diamond 0
Ñ mineral 0

Ñ substance
and substance 1

Ð HAS 2
Ñ color. A broader discussion of negation

in 4lang can be found in Chapter 4 of Kornai (2023).
In the similarity experiments, Recski, Ács, Borbély, and Bolevácz uti-

lized dependency parsing, and combined the manual definitions with
those extracted from explanatory dictionaries. They refined the sys-
tem with construction-specific rules. Both the agents (resp. patient) in
the manual definitions and the subjects (resp. object) in the depen-
dency analysis have been linked with a 1 (resp. 2) arrow. Combined
with word embeddings and WordNet, they achieved state-of-the-art on
SimLex-999 (Hill, Reichart, and Korhonen 2014a) near to the correla-
tion between a human annotator and the average of the other annota-
tors.
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Novák and Novák (2018) transform word embeddings into symbolic
token-based semic representations, Their experiments involved 4lang,
as this framework „seemed to consists of a relatively coherent minimal
set of semantic elements” (Novák, in the referee report on this thesis).
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Radim: “Was a story like nobody believed that it actually works,
and you can do this sort of algebra with the vectors directly?”

Tomáš: “Oh, algebra, yeah.”

— From a podcast with Tomáš Mikolov by Radim Řehůřek (21:20)
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distribution and vectors

Most contributions of this thesis are based on vector space language
models (VSMs). In this chapter, we introduce VSMs as two interrelated
families of word representations. The traditional method (Section 4.1.3)
takes the co-occurrence matrix as a starting point, while more recent
representations are learned as weights in shallow (Section 4.2) or deep
(Section 4.3) neural networks. While this chapter belongs to the back-
ground part of the thesis, it also reports work with the author’s contri-
bution: Our Section 4.2.11 on sub-word embeddins for rich morphology
originally appeared as Döbrössy, Makrai, Tarján, and Szaszák (2019).

The primary source of information about the meaning of a word is
how often it is used in different contexts, an idea called the distribu-
tional hypothesis by linguists going back to Z. Harris (1951), and often
quoted in the form that “You shall know a word by the company it
keeps” (Firth 1957). The Saussurean definition of syntactic category
(part-of-speech) is strikingly similar, the only difference in NLP prac-
tice appears to be how the context is defined (Sahlgren (2006), see Sec-
tion 4.1.4): syntax is based on a short directed window (e.g. adjectives
closely precede nouns) while semantic relations can be extracted from
longer but symmetric windows (dog and faithful co-occur in sentences
in any order).

One simple formalization of word distribution in a corpus is the co-
occurrence matrix whose rows correspond to words in the vocabulary,
columns to contexts, and cells contain the occurrence count of the word
corresponding to the row appearing in the context corresponding to
the column. What is meant by context depends on the application. In
Latent Semantic Analysis (LSA, Deerwester, Dumais, and Harshman
(1990), Section 4.1.3), columns of the original (unreduced) matrix cor-
respond to documents. In matrix-based vector space language models
(Turney and Pantel 2010) on the other hand, columns originally corre-
spond to words, and counts express how often the words corresponding
to the row and the column collocate in a window of some fixed length
(say 5). Both in LSA and co-occurrence based VSMs, the number of
contexts is at least in the thousands and gets reduced to some hundred
dimensions for computation efficiency.
Neural language models (Bengio et al. 2003), on the other hand, are

neural nets, trained on gigaword corpora by iterating over words in their
contexts and updating some weights of the model at each word. The
resulting VSMs represent similar words (types or tokens) with similar
vectors, and VSMs also reflect relational similarities between words like
king´ queen « man´woman (Mikolov, Yih, and Zweig 2013).
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4.1 matrix factorization for word modeling

4.1.1 Semantic differential

Vector space models of word meaning originate with psychological re-
search by Osgood, May, and Miron (1975). In Osgood, May, and Miron’s
experiments, participants were asked to scale words like freedom on op-
positional scales like sturdy-fragile, be the choice simple or abstrac-
t/metaphorical. Measurements were done in several languages with
great typological care, and projected from the huge place of these op-
positions to a three-dimensional space by principal component analysis
(PCA). The emerging inter-lingual scales called evaluation, potency,
and activity turned out to explain much of the variation in the data.
The method is called semantic differential. For details, see the last part
of Section 2.7 in Kornai (2019).

4.1.2 TF-IDF and PMI

The next step in the history of VSMs has been to gain the vectors
from text corpora or, in the context of information retrieval, where the
method got elaborated (Salton, Wong, and Yang 1975), from text doc-
uments. Classical methods start with a frequency matrix, more recent
ones adjust association weights in artificial neural networks, but the
mathematics these systems learn turn out to be variants of each other.
Turney and Pantel (2010) discuss the history of VSMs arranged by
what the rows and columns of the matrices correspond to, distinguish-
ing term–document, word–context and pair–pattern matrices. Each cell
contains the frequency of the term (or word, . . . ) corresponding to the
row in the document (or context, . . . ) corresponding to the column.

Frequencies are adjusted to balance the effect of more frequent but
less informative terms, or the variation in the length of the documents.
The standard weighting technique comes from information retrieval,
where the task is to return from a pool of documents the ones that
are the most relevant for (similar to) a given query. (The query is also
treated as a document) This weighting is tf-idf (term frequency–inverse
document frequency) scoring, but there are other methods as well.

In NLP, the information-theoretic association scores point-wise mu-
tual information (PMI, Church and Hanks (1990))

PMIpx, yq “ logP px, yq{P pxqP pyq

and positive point-wise mutual information (PPMI, Niwa and Nitta
(1994))

maxt0,PMIpx, yqu
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became standard, and Levy and Goldberg (2014c) showed (as we will
see in Section 4.2.5) that the more recent word2vec is mathematically
equivalent to a variant of PMI, shifted PMI.

Besides weighting, matrices also have to be smoothed to reduce the
amount of random noise and to fill in some of the zero elements in a
sparse matrix. Semantic differential (Section 4.1.1) applies PCA, which
computes word representations from the raw term–document matrix.
PCA requires inverting the data matrix what became feasible for thousand-
row matrices during the decades, resulting in the method of Latent
Semantic Analysis, what we turn to now.

4.1.3 Latent semantic analysis

The main pre-neural method, which has remained an important refer-
ence point in the word embedding era (Tsvetkov, Faruqui, and Dyer
2016; Antoniak and Mimno 2018), is Latent semantic analysis (LSA,
Dumais et al. (1988) and Furnas et al. (1988)) Landauer, Foltz, and
Laham (1998) introduce LSA in two ways.

On the practical side, it is a method for obtaining approximate esti-
mates of the contextual substitutability of words in text, and similari-
ties among words and text segments. On the cognitive side, it is a model
of the computational processes and representations underlying the ac-
quisition and utilization of knowledge. While we think that it rather
depends on the scientific taste of the researcher whether they motivate
their work with such acquisitional claims, the practical importance of
LSA in pre-embedding NLP is beyond debate. For a recent overview
of LSA methods in psychology, especially author modeling, automated
grading, and change over time, see Iliev, Dehghani, and Sagi (2014,
Section 1.4).

Closer to the mathematical content is the way to think of LSA as
representing the meaning of a word as an average of the meaning of all
the passages in which it appears, and dually, the meaning of a passage
as an average of the meaning of all the words it contains. The choice of
dimensionality can be of great importance. LSA can be motivated in
a way that the resulting dimensions may be analogous to the semantic
features often postulated as the basis of word meaning, but establishing
concrete relations to mentalisticly interpretable features poses daunt-
ing technical and conceptual problems. It may worth noting that LSA
arrived at the same dimensionality (300), as word embeddings did (Sec-
tion 4.2). The effective usage of LSA is a process of very sophisticated
tuning and can be viewed as kind of art. The main factors are re-
processing (stop-words, stemming), frequency matrix transformations,
the choice of dimensionality, and, the choice of similarity measure. For
an early sturdy of weight functions’ impact, see Nakov, Popova, and
Mateev (2001).
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The authors point out that transformation of co-occurrence counts to
log frequency divided by entropy and followed by dimensionality reduc-
tion is reminiscent of information retrieval methods, and the psycholo-
linguistic reality of the dimensionality reduction step is often implicit
and sometimes explicit in many neural net and spreading-activation
architectures. The similar equivalence between word embeddings and
pointwise mutual information will be discussed in Section 4.2.5.

4.1.3.1 Singular Value Decomposition

ToDo Szécsényi: A 4.1.3. fejezetnek csak egy alfejezete van, mi szükség
van rá így?

Data preprocessing transformations in LSA need to be described
more fully. LSA subjects the data in the raw word-by-context matrix
to a logpx` 1q transformation, and then each cell entry is divided by
the row entropy value. The result is an estimate of the word’s impor-
tance in the passage, the degree to which knowing that a word occurs
provides information about which passage it appeared in.

Singular value decomposition (SVD) is the general method for linear
decomposition of a matrix into independent principal components of
which factor analysis is the special case for square matrices. For the
reader who is not familiar with or interested in multivariate statistics,
we cite Landauer, Foltz, and Laham (1998)’s elevator-pitch description
of factor analysis as finding a parsimonious representation of all the
intercorrelations between a set of variables in terms of a new set of ab-
stract variables, each of which is unrelated to any other but which can
be combined to regenerate the original data. SVD does the same thing
for an arbitrarily shaped rectangular matrix, including the case when
columns stand for words, and rows for contexts. (See the formulas in
Section 4.2.8.3.) In the process, cells in the matrix originally contain
the frequency. The raw cell entries f are first transformed to lnp1` fq{e
where e is the entropy of the word over all contexts. This matrix is then
submitted to SVD and the — for example — 300 most important di-
mensions are retained (those with the highest singular values, i.e. the
ones that capture the greatest variance in the original matrix). The re-
sulting vectors of 300 real values represent each word and each context.
Similarity has been usually measured by the cosine between vectors.

Related to LSA is a generative method called Latent Dirichlet Allo-
cation (Blei, Ng, and Jordan 2003), where each document is supposed
to be composed of a mixture of topics. While the dimensions of LSA
may be regarded as abstract and meaningless, the dimensions in LDA
correspond better to latent topics that emerge from the corpus.

4.1.4 Relation to structuralist linguistics

Now we summarize Sahlgren (2006), who investigates the relation be-
tween the word-space model and structuralist linguistics.
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4.1.4.1 Rethinking the distributional hypothesis: syntagma and paradigm

The distributional hypothesis, as motivated by the works of Zellig Har-
ris, states that differences of meaning correlate with differences of distri-
bution, but he neither specifies what kind of distributional information
we should look for, nor what kind of meaning differences it mediates.

Syntagmatic relations concern positioning, as already the Greek word
suntag-matikos ‘arranged, put in order’ shows. They relate entities that
co-occur in the text. They are linear, and applies to linguistic entities
that occur in sequential combinations. They are combinatorial relations,
which means that words that enter into such relations can be combined
with each other. A syntagm is such an ordered combination of linguistic
entities: written words are syntagms of letters, sentences are syntagms
of words.
Paradigmatic relations, on the other hand, concern substitution. The

Greek word paradeigmatikos means serving as a model. Saussure him-
self never used the word paradigmatique. It was Hjelmslev who coined
the term as a substitute for Saussure’s associative meanings. Paradig-
matic relations are between entities that do not co-occur in the text.
They hold between linguistic entities that occur in the same context
but not at the same time. A paradigm is a set of such substitutable
entities, usually depicted as orthogonal axes in a grid.

Although Harris was arguably more directly influenced by the works
of Bloomfield than of Saussure, the latter’s structuralist legacy is foun-
dational for both Bloomfield’s and Harris’ theories. In Sahlgren’s view,
the Saussurian refinement of the distributional hypothesis clarifies the
semantic requirements of the word-space model and the distributional
methodology. A word-space model accumulated from co-occurrence in-
formation contains syntagmatic relations between words, while one
from information about shared neighbors contains paradigmatic rela-
tions.

4.1.4.2 The semantic continuum

Sahlgren’s point is that syntagmatic and paradigmatic relations be-
tween words should be discoverable by using co-occurrence information
and information about shared neighbors in the word-space, respectively.
A qualitative comparison between different uses of context e.g. in LSA
(Section 4.1.3) or other models should be able to divulge the difference
by empirical investigation. The author is interested in what these dif-
ferent uses of context entail, what their differences are, and how they
can be used to build word spaces.1

1 While a bit irrelevant for the purposes of the present thesis, it is interesting what
Sahlgren thinks about the use of a document as a context. Word-space algorithms
that prefer a syntagmatic use of context, such as LSA, hail from the information
retrieval community, where a document is a natural context of a word. But “docu-
ment” in the sense of a topical unit is an artificial notion that hardly exists elsewhere;
before the advent of library science, the idea that the content of a text could be ex-
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Test Which relation? (Is essential?) Context

Thesaurus both (´) large
Association syntagmatic (`) small
Synonym paradigmatic (`) narrow
Antonym paradigmatic (´) wide
POS paradigmatic (`) narrow

Table 6: Test, relations they rely on, the degree to which the relations are
essential to the test (´ and `), and the context that yields the best
results in the strict evaluation settings (Sahlgren 2006, Table 15.6).
The thesaurus task is to list words with related meanings to the
query.

Sahlgren’s thesis is split to background chapters, “setting the scene”
chapters, and foreground chapters, a structure we followed in that of the
present thesis. The latter contain experiments demonstrating the dif-
ferences between syntagmatic and paradigmatic uses of context: small
context regions yield more syntagmatic word spaces, while narrow con-
text windows yield more paradigmatic spaces, as can be seen in Table 6.
Only a few percentage of the nearest neighbors occur in both syntag-
matic and paradigmatic word spaces.

Sahlgren investigates three parameters of the characterization of paradig-
matic contexts:

• the size of the context region,

• the position of the words within the context region, and

• the direction in which the context region is extended. The only
experiment he was aware of exploiting the directional information
in a words-by-words co-occurrence matrix was Schütze (1993).

In his experiments, Sahlgren compares different weighting schemes
of the slots for the paradigmatic uses. The two extremes are constant
weighting over the window, and aggressive distance weighting according
to the formula 21´l, where l is the distance to the focus word. Possibil-
ities in between include linear distance weighting and 1{l.
In the concluding chapter, Sahlgren answers his research questions.

Is it at all possible to extract semantic knowledge by merely looking
at usage data? Clearly, yes. Does the word-space model constitute a
complete model of the full spectrum of meaning, or does it only con-
vey specific aspects of meaning? It is complete as far as is reflects a

pressed with a few index terms must have seemed strange. In the “real” world,
content is something we reason about, associate to, and compare. In the world be-
yond information-retrieval, text is a continuous flow where topics intertwine and
overlap and the notion of a “document” is at best an arbitrary choice. In a whole
document nearly every term can co-occur with every other.
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structuralist dichotomy of syntagma and paradigm. If we believe that
meaning is essentially referential, then no.

4.1.4.3 “Future” work

The future work section lists problems related to which much has been
achieved since 2006, but they still remain major problems. One is that
word spaces may have (i) a common internal structure that can be
utilized to differentiate between different types of relations within the
word space; and (ii) a discoverable “latent” dimensionality. While com-
positionality is not without controversy in the philosophy of language,
word-space models may be extended to handle phrase, clause, sentence,
paragraph, “document” and text level meaning too. The word-space
model may have the flexibility and ability to continuously evolve when
subjected to a continuous data flow.

Finally, Sahlgren remarks that the word-space model is not a psycho-
logically realistic model of human semantic processing. It is arguable
that humans also use extra-linguistic context when learning, under-
standing, and using language. The inability to reach beyond the limits
of textuality is the most disqualifying feature of the word-space model
with regards to the referential aspect of meaning.

4.1.5 A compression-based method

Cilibrasi and Vitányi (2004) present a similarity measure between words
and phrases based on information distance and Kolmogorov complexity,
using Google page counts. In the Turney and Pantel (2010) classifica-
tion, this is a term–document model. This similarity measure is the
special case of a compression-based universal similarity metric among
objects given as finite binary strings. These strings include genomes,
music pieces in MIDI format, computer programs, pictures in simple
bitmap formats, or time sequences such as heart rhythm. The universal
metric is feature-free in the sense that it does not look for particular
features, but analyzes all features simultaneously and determines the
similarity between every pair of objects according to the most dominant
shared feature. The word similarity measure is based on “the Google se-
mantics of a word or phrase”, i.e. the set of web pages returned by the
query concerned.

They normalize the introduced distance to make it relatively stable
with respect to the index size (Normalized Google Distance, NGD).
The NGD of horse and rider is 0.443. The distance is usually between 0
(identical) and 1 (unrelated), but not always (see below). If the distance
is calculated from the index of only one-half of the pages, this distance
only deviates to 0.460.

A drawback of the Google semantics is that terms with different
meaning may have the same semantics, especially opposites often have
a similar semantics. The paper offers more literature (of course, from
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before 2005) on how representative Google hits are for language. The
theoretical underpinning is based on the theory of Kolmogorov com-
plexity, in terms of coding and compression. The NGD formula

NGDpx, yq “ Gpx, yq ´minpGpxq,Gpyqq
maxpGpxq,Gpyqq

“
maxplog fpxq, log fpyqq ´ log fpx, yq

logN ´minplog fpxq, log fpyqq
is similar to many earlier formulas in this area, but not equivalent to
any of them.

It has to be noted that the returned Google counts are approximate.
The situation used to get worse if one used the boolean OR operator
between search terms, but the measure is based on the AND operator,
which is less problematic. When the paper was written, Google already
estimated the number of hits based on samples, and the number of
indexed pages already changed rapidly. To compensate for the latter ef-
fect, the authors have inserted a normalizing mechanism. Web searches
for rare two-word phrases correlated well with frequency in traditional
corpora, as well as with human judgments.

4.1.5.1 Kolmogorov complexity, information distance, compression-
based similarity

Information can be compressed to different extents. The Kolmogorov
complexity Kpxq is the length, in bits, of the ultimate compressed
version from which x can be recovered by a general decompression
program. An earlier paper considered the following information dis-
tance Epx, yq: given two strings x and y, what is the length of the
shortest binary program in the reference universal computing system
such that the program computes output y from input x, and also
output x from input y. Up to a negligible logarithmic additive term,
Epx, yq “ Kpx, yq´minKpxq,Kpyq, whereKpx, yq is the binary length
of the shortest program that produces the pair x, y and a way to tell
them apart. This distance Epx, yq is actually a metric.
E is universal for the family of computable distances, i.e. E minorizes

every admissable distance up to an additive constant, where admissible
means nonnegative, symmetric, and computable. More intuitively, this
means that the information distance determines the distance between
two strings minorizing the dominant feature in which they are similar.
This measure has to be normalized, because if small strings differ by an
information distance which is large compared to their sizes, then the
strings are very different. The normalized information distance (NID)
has values between 0 and 1, and it is universal: minorizes, up to a
vanishing additive term, every other possible normalized computable
distance. The NID is uncomputable since the Kolmogorov complexity
is uncomputable, but we can use real data compression programs to
approximate the Kolmogorov complexities Kpxq, Kpyq, Kpx, yq.
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4.1.5.2 Google distribution, Normalized Google Distance, and their
universality

In the third section the authors show that the Google distribution is
universal for all the individual web users distributions. We cannot use
the probability of the events directly to determine a prefix code, or,
rather the underlying information content implied by the probability
because events overlap and hence the summed probability exceeds 1.
But absolute probabilities allow us to define the associated prefix code-
word lengths (information contents) for both the singletons and the
doubletons. Let G denote the prefix-code word length defined from the
relative frequency of the hits.

The Google Similarity Distance has the following properties:

• The range of the NGD is basically in between 0 and 8. More
precisely, it is slightly negative if the Google counts are untrust-
worthy and state fpx, yq ą maxtfpxq, fpyqu.

• If fpxq “ fpyq “ fpx, yq ą 0, then NGDpx, yq “ 0.

• If frequency fpxq “ 0, then for every search term y we have
NGDpx, yq “ 8{8, which we take to be 1 by definition.

• NGD is always nonnegative and NGDpx,xq “ 0 for every x.

• NGD is symmetric (NGDpx, yq “ NGDpy,xq).

• The NGD does not satisfy the triangle inequality, i.e. NGD is not
a metric.

The paper includes clustering and classification experiments (against
WordNet, see Section 2.5.3) to validate the universality, robustness, and
accuracy of the proposal.

4.1.6 Mathematical processing

Now we summarize Turney and Pantel (2010, Section 4)’s discussion of
the mathematical processing for distributed word models. This will be
especially important in Chapter 6.
First the frequency matrix is built by scanning sequentially through

the corpus, and recording events and their frequencies in a hash table,
a database, or a search engine index. The frequency matrix has to be
represented in a sparse way (i.e. most items are 0).

4.1.6.1 Weighting the Elements

The weights of the elements in the matrix have to be adjusted, because
common words will have high frequencies, yet they are less informative
than rare words. Infomation retrieval uses the tf-idf (term frequency ˆ
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inverse document frequency) family of weighting functions, where an el-
ement gets a high weight when the corresponding term is frequent in the
corresponding document (i.e. tf is high), but rare in other documents
in the corpus (i.e. df is low). Document length has to be normalized.

Affixation, especially derivational affixation is problematic both from
linguistic and computation point of view. The linguistic problem is
to delineate the inventory of compositional affixes. The compositional
problem is that though different forms of the same lexeme are corre-
lated, yet we may not want to lemmatize them, because they may have
slightly different meanings. An idea that did not become standard is to
reduce the weights of derivatives when they co-occur in a document.

A key step in pre-neural machine learning was feature selection. One
of the most popular word association scores remains Pointwise Mutual
Information, which we will discuss in detail in Section 6.2.

4.1.6.2 Smoothing the Matrix

The goal of smoothing the matrix is to reduce the amount of random
noise and to fill in some of the zero elements that are due to data
sparsity. The other direction, sparsification is a hot topic today (Sanh et
al. 2019), but it goes beyond the limits of this thesis. The mathematical
method of truncated (or thin) Singular Value Decomposition (SVD)
is standardly applied to either document similarity (Latent Semantic
Indexing), or word similarity (Latent Semantic Analysis, Section 4.1.3).

SVD decomposes X into the product of three matrices UΣV ᵀ, where
U and V are in column orthonormal form (i.e. the columns are orthogo-
nal and have unit length, UᵀU “ V ᵀV “ I), and Σ is a diagonal matrix
of singular values. If X is of rank r, then Σ is also of rank r. Let Σk,
where k ă r, be the diagonal matrix formed from the top k singular
values, and let Uk and Vk be the matrices produced by selecting the cor-
responding columns from U and V . The matrix UkΣkV ᵀ

k is the matrix of
rank k that best approximates the original matrix X, in the sense that
it minimizes the approximation errors. That is, pX “ UkΣkV

ᵀ
k , which is

called the truncated SVD, minimizes | pX ´X|F over all matrices pX of
rank k, where | . . . |F denotes the Frobenius norm.

The authors list four aspects of what SVD is looking for: latent mean-
ing, noise reduction, indirect or high-order co-occurrence (when two
words appear in similar contexts), or sparsity reduction. Truncated
SVD implicitly assumes that the vectors have a Gaussian distribution
– Minimizing the Frobenius norm | pX ´X|F will minimize the noise,
if the noise has a Gaussian distribution – but this assumption is not
satisfied by word frequencies.

4.1.6.3 Comparing the Vectors

There are many different ways to measure the similarity of two vectors,
but the most popular one is clearly cosine similarity, while the most
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intuitive one remains the Euclidean distance. In classical information
retrieval, it has been commonly said that, properly normalized, the dif-
ference in retrieval performance using different measures is insignificant.
Distances include the Manhattan distance, or, from information theory,
Hellinger, Bhattacharya, and Kullback-Leibler. Dice 2xy{p|x|2 ` |y|2q
and Jaccard have set-theoretic motivation.

Lee (1999) gives the principle that measures that focused more on
overlapping coordinates and less on the importance of negative features
(i.e. coordinates where one word has a nonzero value and the other has
a zero value) appear to perform better. In her experiments, the Jaccard,
Jensen-Shannon, and L1 measures seemed to perform best.

Other researchers studied the linguistic and statistical properties of
the similar words returned by various similarity measures and found
that the measures can be grouped into three classes: high-frequency
sensitive measures, low-frequency sensitive measures, similar-frequency
sensitive methods. Given a word w0, if we use a high-frequency sensi-
tive measure to score other words wi according to their similarity with
w0, higher frequency words will tend to get higher scores than lower fre-
quency words. If we use a low-frequency sensitive measure, there will
be a bias towards lower frequency words. Similar-frequency sensitive
methods prefer a word wi that has approximately the same frequency
as w0.

4.1.6.4 Efficient comparisons

One section in Turney and Pantel (2010) discusses methods like dis-
tributed sparse matrix multiplication and Random Indexing. Random-
ized algorithms are based on the idea that high-dimensional vectors can
be randomly projected into a low-dimensional subspace with relatively
little impact on the final similarity scores. Random Indexing (RI) is
an approximation technique that computes the pairwise similarity be-
tween all rows (or vectors) of a matrix. There are index vector elements
of which are mostly zeros with a small number of randomly assigned
`1’s and ´1’s. The cosine measure between two rows r1 and r2 is then
approximated by computing the cosine between two fingerprint vectors,
fingerprint(r1) and fingerprint(r2), where fingerprint(r) is computed by
summing the index vectors of each non-unique coordinate of r.
Locality sensitive hashing (LSH, Broder, 1997) is similar technique.

LSH functions include the the Min-wise independent function, which
preserves the Jaccard similarity between vectors, and functions that
preserve the cosine similarity between vectors.
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4.2 neural word embeddings

4.2.1 Symbolic structures in connectionism

As a thesis submitted to a theoretical linguistics programme, this work
may start its account of neural word models with Rumelhart and Mc-
Clelland (1986), one of two papers from the same year in which dis-
tributed representation of words was proposed. (The other one is Hin-
ton, McClelland, and Rumelhart (1986)). Rumelhart and McClelland’s
paper belongs to the infamous past tense debate. However, we prefer
taking our ideological heritage from Smolensky (1990, Section I), what
we summarize now.

4.2.1.1 Discrete and continuous computations

Connectionist models rely on parallel numerical computation rather
than the serial symbolic computation of traditional artificial intelli-
gence (AI) models. Smolensky argues that connectionist models will
offer an opportunity to escape the brittleness of symbolic AI systems,
and develop more human-like intelligent systems, but only if we can find
ways of naturally instantiating the sources of power of symbolic compu-
tation within fully connectionist systems. The connectionist approach,
on the one hand, is an excellent opportunity for formally capturing the
subtlety, robustness, and flexibility of human cognition, and for eluci-
dating the neural underpinnings of intelligence. The symbolic approach,
on the other, has provided tremendous insights into the nature of the
problems that must be solved in intelligent systems, and of techniques
for solving these problems.

The paper is part of an effort to extend the connectionist frame-
work to naturally incorporate symbolic computation, without losing the
virtues of connectionist computation; i.e. integrate the discrete math-
ematics of symbolic computation and the continuous mathematics of
connectionist computation. Language can be represented by objects
like a phrase-structure tree, or even as a simple sequence of words. The
representation problem is characterized as finding a mapping from the
set of structured objects to a vector space.

Smolensky takes an analogy from mathematics: representing abstract
groups as collections of linear operators on a vector space. Discrete
group theory and the continuous vector space theory interact, and this
relation extends to applications like quantum physics. In physics, ele-
mentary particles involve a discrete set of particle species which exhibit
many symmetries, that are described by group theory. Yet underlying
elementary particle state spaces are continuous.

In human language processing, the discrete symbolic structures that
describe linguistic objects are actually “imbedded” in a continuous con-
nectionist system that operates on them with flexible, robust processes
that can only be approximated by discrete ones. Smolensky refer to
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structures as symbolic ones, because the principal cases of his interest
are objects like strings and trees, however, his analysis is of structured
objects in general; it applies equally well to objects like images and
speech trains. (His view is not that mental operations are always serial
symbol manipulations, but that the information processed often has
useful symbolic descriptions.)

Smolensky seeks a fully distributed representation in which each out-
put neuron participates in the representation of many different outputs.
In the tensor product representation he proposes, both the variables
and the values can be arbitrarily nonlocal, enabling (but not requiring)
representations in which every unit is part of the representation of every
linguistic constituent in the structure. The representation can be used
recursively, and connectionist representations of operations on symbolic
structures and recursive data types, can be naturally analyzed.

4.2.1.2 Why inject symbolic structure in a neural network?

The motivation for pursuing the representation of symbolic structures
in connectionist systems lies in the connectionist modeling of higher cog-
nitive processes such as language. Here the central question is: What
are computationally adequate connectionist representations of strings,
trees, and sentences? The essence of the connectionist approach, people
might say, is to expunge symbolic structures from models of the mind.
But a reasonable starting point is to take linguistic analysis of the struc-
ture of linguistic objects seriously, and to find a way of representing this
structure in a connectionist system: it is important to find adequate con-
nectionist representations of these trees or strings. The authors’ hope
is that new connectionist representations of linguistic structures will
rest on prior understanding of connectionist representations of existing
symbolic descriptions of linguistic structure. The importance of repre-
senting linguistic structures exceeds NLP: these representations are the
basis for connectionist models of conscious, serial, rule-guided behavior:
all higher thought processes.

One argument against designing a connectionist representation of
symbolic structures goes like this: Just as a child somehow learns to
internally represent sentences with no explicit instruction on how to do
so, so a connectionist system with the right learning rule will somehow
learn the appropriate internal representations; The problem of linguistic
representation is not to be solved by a connectionist theorist but rather
a connectionist network. Smolensky’s response is the following:

• In the short term, at least, our learning rules and network simu-
lators do not seem powerful enough for unstuctured learning,

• we will still need to explain how the representation is done,

• we should build bridges as soon as possible between accounts of
language; the problem is just too difficult to start all over again
from scratch,
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• to experiment now with connectionist learning of rather complex
skills (e.g. parsing, anaphoric resolution, and semantic interpre-
tation, all in complex sentences), we need connectionist represen-
tation of the input and output. We want to study the learning of
the operations without waiting for the discovery of the linguistic
representations.

• Language is more than just a domain for building models: it is
a foundation on which the entire traditional theory of computa-
tion rests. It is crucial for how the basic concepts of symbolic
computation and formal language theory relate to connectionist
computation.

4.2.2 Neural language modeling

At least before the neural revolution in NLP, the term language model-
ing was restricted to the task of “predicting the next word”, which
is equivalent to computing the probability (naturalness) of a word
sequence. Probabilities are estimated using (relative) frequencies. As
there are infinitely many possible sentences but the model is trained
on a finite sample, the main point is in generalization. A simple and
effective approach to language modeling is the family of n-gram models
(Brown et al. 1992) that make the Markov assumption, i.e. the simplify-
ing assumption that the probability of a word in a context depends only
on preceding words of some fixed number (four in most applications of
the time). Thus the probability of the Hungarian word string minden
madár társat választ (‘every bird is choosing a mate’)2 is computed as
P p^ minden madár társat választ $q “

P p minden | ^ q ¨ P p madár | minden q ¨ P p társat | madár q¨

¨ P p választ | társat q ¨ P p $ | választ q

P p madár | minden q denotes the probability of the wordmadár given
that the preceding word was minden. ^ and $ denote the beginning and
the end of the string, respectively. While n-gram models are easy to
understand and useful in application, they have the disadvantage of not
capturing morphological and semantic relations between words. This is
the problem that the neural language model (Bengio et al. 2003) solved.
Bengio et al. (2003) implement the n-gram language model relying

on shared-parameter multi-layer neural networks. Their network has
millions of parameters, and it is trained on tens of millions of examples.
Training such large-scale model is expensive but feasible, scales to large
contexts, and yields good comparative results.
The idea of fighting the so called curse of dimensionality with dis-

tributed representations is summarized by the authors as associating

2 This sentence is from the song that gave the title of the conference where Makrai
(2014) was published.
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with each word in the vocabulary a distributed word feature vector (a
real-valued vector in Rm); expressing the joint probability function of
word sequences in terms of the feature vectors of these words in the se-
quence; and learning simultaneously the word feature vectors and the
parameters of the probability function. The objective can be the log-
likelihood of the training data or a regularized criterion, e.g. by adding
a weight decay penalty i.e. like in ridge regression, the squared norm
of the parameters as a penalty.

The paper cites rich related work for the idea of using neural net-
works to model high-dimensional discrete distributions and, from the
early days of connectionism, the idea of learning a distributed represen-
tation for symbolic data. In their view, neural networks for language
modeling are not new either with work in character-level LM based
neural text compression with or without hidden units and a single or
more input words. What is more well known, generalization from train-
ing sequences have been obtained in the form of similarities between
words: clusterings of the words with words associated deterministically
or probabilistically with classes. Vector-space representation for words
has been well exploited in the context of an n-gram based statistical lan-
guage model, using LSI to dynamically identify the topic of discourse.
Finally, vector-space representation for symbols in the context of neural
networks, and especially a parameter sharing layer, has been pioneered
in text-to-speech mapping.

Bengio et al. (2003) is the kind of paper whose future work sec-
tion forecast the most important steps of the next 10-15 years, espe-
cially hierarchical softmax (Morin and Bengio 2005), the recurrent lan-
guage model (Mikolov 2010), negative sampling (Mikolov, Sutskever,
et al. 2013), “interpreting (and possibly using) the word feature rep-
resentation” (Mikolov, Yih, and Zweig 2013), and sub-word encoding
(Bojanowski et al. 2017). A section sketches an energy-based extension.

4.2.3 Unsupervised pre-training and noise-contrastive estimation

One of the key components of the NLP advances in the last decade
is parameter sharing in the form of unsupervised pre-training intro-
duced by Collobert et al. (2011), who train a single model for tasks
including part-of-speech tagging, chunking, named entity recognition,
and semantic role labeling. The system learns internal representations
based on vast amounts of mostly unlabeled training data. This repre-
sentation is then used as a basis for building a freely available tagging
system with good performance. The architecture is similar to Bengio et
al. (2003)’s language model discussed in the previous section, but it uses
noise contrastive estimation to spare the computation of the normal-
ization term needed for probabilistic modeling. A couple of years later,
noise-contrastive estimation, or simply negative sampling, became an
ingredient of the very influential skip-grams model we will see in the
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next section. Besides its great importance in the development of VSMs,
Collobert et al.’s work has also relevant in this thesis because we used
their vectors in Sections 7.1, 7.2 and 7.4.

This work is also one of the most remarkable linguistic applications
of one of the major neural architectures, convolution, which was orig-
inally invented for computer vision. The window approach described
so far performs well for most NLP tasks Collobert et al. choose, but it
fails with semantic role labeling (SRL), where the predicate may fall
outside the window. This task requires the consideration of the whole
sentence. Among the main neural networks architectures, one of the
natural choices to tackle this problem in a convolutional networks.
A convolutional network is a sequence of alternating convolutional

and pooling layers. A convolutional layer is a generalization of a win-
dow approach: given a sequence represented by columns in a matrix,
a matrix-vector operation is applied to each window of successive win-
dows in the sequence, where the weight matrix is constant across all
windows. Convolutional layers extract local features around each win-
dow, and they are often stacked to extract higher level features.
The size of the output of the convolutional layer depends on the

number of words. Local feature vectors extracted by the convolutional
layers have to be combined to obtain a global feature vector, with a
fixed size, in order to apply subsequent layers. Traditional convolutional
networks often apply a (possibly weighted) average or a max operation
over “time”. Average does not make much sense in the SRL case, as
in general most words in the sentence do not have any influence on
the semantic role of a given other word. So the authors used a max
approach. The network finally produces one score per possible tag for
the given task, as in the window approach.

4.2.4 word2vec

Deeper in its effect on the broad NLP community than in its architec-
ture, the first wave of the neural revolution has been pre-trained word
embeddings, word models learned by shallow neural networks in an unsu-
pervised way, which have become very popular since Mikolov, Sutskever,
et al. (2013), who implemented a log-bilinear model to learn continu-
ous representations of words on very large corpora efficiently. These
more accurate variants of earlier VSMs, map “similar” word to similar
vectors in a space of some hundred dimensions. Word similarity covers
syntax and semantics, and vector similarity is mostly measured by co-
sine similarity. Embeddings also reflect analogical quadruples (Mikolov,
Yih, and Zweig (2013), Section 4.2.7) like

woman´man « queen´ king
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Mikolov, Le, and Sutskever (2013) discovered that VSMs of different
languages have such similarities that a linear mapping can map the
representations of words in a source language to the representation of
their translations, see Sections 7.4, 7.5 and 8.4 for details.

Most of the main contributions of this thesis are related to the
word2vec line of research. Sections 7.1 and 7.2 investigate two lexi-
cal relations with the vector offset method of Mikolov, Yih, and Zweig
(2013), Section 7.4.1 offers a Hungarian equivalent of the analogical
test set, Section 7.4.2 to compares word embeddings based on the linear
method for dictionary induction Section 7.5 utilises the confidence score
obtained in linear translations to develop the triangulation method of
dictionary induction, and Chapter 8 puts linear translation in the con-
text of cross-lingual word sense induction by computing an upper bound
on the precision of multi-sense word embeddings as detectors of word
ambiguity.

4.2.5 Word embeddings as matrix factorization

The series of papers Levy and Goldberg (2014c), Goldberg and Levy
(2014), Levy and Goldberg (2014b), Levy, Goldberg, and Dagan (2015),
and Levy et al. (2015) unfolded the series Mikolov, Chen, et al. (2013),
Mikolov, Sutskever, et al. (2013), Mikolov, Yih, and Zweig (2013),
Mikolov, Le, and Sutskever (2013), and Le and Mikolov (2014) as
Zhuangzi unfolded Laozi. As we have already cited, Levy and Gold-
berg (2014c) showed that skip-gram with negative-sampling (SGNS) is
implicitly factorizing a word-context matrix,

w ¨ c “ PMIpw, cq ´ log k

whose cells are the pointwise mutual information (PMI) of the respec-
tive word and context pairs, shifted by a global constant. Similarly,
an embedding model based on noise-contrastive estimation (Mnih and
G. E. Hinton 2008) was shown to be implicitly factorizing a similar
matrix, where each cell is the (shifted) log conditional probability of
a word given its context. SGNS is much less sensitive to extreme and
infinite values than the pure SVD of a PPMI matrix, due to a sigmoid
function surrounding w ¨ c, and the weighting function: rare pw, cq pairs
affect the objective much less.

Levy and Goldberg (2014c) improved results on standard test sets of
the time, two word similarity tasks and one of two analogy tasks, with a
sparse Shifted PPMI word-context matrix representation of the words.
(We introduced PPMI in Section 4.1.2.) They also showed that dense
low-dimensional vectors from exact factorization with SVD provides at
least as good as SGNS’s solutions for word similarity tasks. On analogy
questions, SGNS remains superior to SVD. They conjectured that this
stems from the weighted nature of SGNS’s factorization.

106



4.2 neural word embeddings

4.2.6 Global optimization

The interest in why SGNS can capture such fine-grained semantic and
syntactic regularities using vector arithmetic inspired an other imple-
mentation, GloVe (Pennington, Socher, and Manning 2014), which, be-
sides its mathematical elegance, apparently became most frequently
applied word embedding, probably more frequently the the original set
by Mikolov et al. Our experiments in Chapters 7 and 8 are no excep-
tion. The abbreviation states for global vectors or, more precisely, glob-
ally optimized vectors. The authors claim that models, such as SGNS,
that train on separate local context windows instead of on global co-
occurrence counts, poorly utilize the statistics of the corpus. The global
approach is made possible by training only on the nonzero elements in
the word-word co-occurrence matrix.

The basis of GloVe is the logbilinear model

wᵀ
i pwk ` bi `

pbk “ logpXikq,

whereX is the co-occurrence matrix, w and pw are the focus and context
vectors for each word, and b and pb are bias vectors. The two kinds of
vectors w and pw are needed because words rarely appear in their own
context, but we do not want wᵀw, the squared norm of w, to be small.

The objective above is approximated with weighted least-squares re-
gression, where the weighting is motivated by that rare co-occurrences
are noisy and carry less information than the more frequent ones. They
introduce the weighting function fpXijq, where

fpxq “

$

&

%

px{xmaxq
α if x ă xmax

1 otherwise,

with xmax “ 100 and α “ 3{4. Word pairs with a co-occurrence below
xmax are downweighted (by a slightly concave function). It is interest-
ing that a similar fractional power scaling was found to give the best
performance in Mikolov, Chen, et al. (2013).

Levy, Goldberg, and Dagan (2015) point out that if we were to fix

bw “ logfreqpwq and

bc “ logfreqpcq,

this would be almost equivalent to factorizing the PMI matrix shifted
by logp|D|q, where |D| is the vocabulary size. However, GloVe learns
these parameters, giving an extra degree of freedom over SVD and
SGNS. (Unlike Arora et al. (2015)’s RandWalk model, which has a
linear relation between the squared norms of the word vectors and the
logarithm of the word frequencies.)
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Pennington, Socher, and Manning (2014) compare their method to
word2vec mathematically and in performance in their sections 3.1 and
4.7, respectively. The quantitative comparison is complicated by many
parameters that have a strong effect on performance. They control
for the main sources of variation, vector length, context window size,
corpus, and vocabulary size. The most important remaining variable
to control for is training time.

For GloVe, the relevant parameter is the number of training itera-
tions, while for word2vec, the obvious choice would be the number of
training epochs, but back then the code was restriced to a single epoch.
They measure training time instead by the number of negative sam-
ples, which effectively increases the number of training words seen by
the model. For the same corpus, vocabulary, window size, and train-
ing time, GloVe consistently outperforms word2vec. More interestingly
from the big-picture perspective, word2vec’s performance decreases if
the number of negative samples increases beyond about 10.

4.2.7 Word analogies, direction, and multiplication

Levy and Goldberg (2014b) generalize word analogies as searching for
a word that maximizes a linear combination of three pairwise word
similarities

arg max
b˚

psimpb˚, b´ a` a˚qq “ arg max
b˚

pcospb˚, b´ a` a˚qq

“ arg max
b˚

pcospb˚, bq ´ cospb˚, aq ` cospb˚, a˚qq

(e.g. b “ king, a “ man, a˚ “ woman, b˚ “ queen), and show that
the linear representation of lexical properties is not restricted to neu-
ral word embeddings: a similar amount of relational similarities can be
recovered from traditional distributional word representations. Calling
the original additive objective 3CosAdd, they introduce PairDirec-
tion, which requires only the direction of a˚ ´ a to be preserved by
b˚ ´ b, and the multiplicative variant 3CosMul

arg max
b˚

cospb˚, bq ¨ cospb˚, a˚q
cospb˚, aq ` ε .

ε “ 0.001 is used to prevent division by zero. Though it was not
mentioned in the paper, Mikolov, Yih, and Zweig (2013) used PairDi-
rection for solving the semantic analogies of the SemEval task, and
3CosAdd for solving the syntactic analogies.

PairDirection performs very well on multiple choice tasks, yet very
poorly on full vocabulary searches. The difference is attributed to that
PairDirection is likely to find candidates b˚ that have the same rela-
tion to b as reflected by a´ a˚ but these candidates are not necessarily
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similar to b. In the queen example, PairDirection may return femi-
nine entities, but not necessarily royal ones. The motivation for 3Cos-
Mul is to avoid the “soft-or” behavior of linear objectives, i.e. that
they allow one sufficiently large term to dominate the expression.

4.2.8 Improving PPMI-SVD with neural lessons

Levy, Goldberg, and Dagan (2015) improve traditional distributional
similarity models with lessons learned from word embeddings. We will
build in this line of research especially in Chapter 6. Their experiments
reveal that much of the performance gains of word embeddings are due
to certain system design choices and hyper-parameter optimizations.
By making the hyper-parameters explicit, the authors show how they
can be adapted and transferred into the traditional count-based ap-
proach. Changing the setting of a single hyper-parameter yields more
than switching to a better algorithm or training on a larger corpus.

For historical reasons (Baroni, Dinu, and Kruszewski 2014), they
refer to PPMI and SVD as “count-based” and to SGNS and GloVe as
“neural” or “prediction-based”. The following hyper-parameters can be
transferred from word2vec and GloVe to count-based methods:

4.2.8.1 Pre-processing Hyperparameters

Words can be weighted according to their distance from the focus word.
In traditional count-based methods, it is less common, but also ex-
plored (Sahlgren (2006), Section 4.1.4.2). GloVe uses 1, 1{2, 1{3, . . . ,
and word2vec w{w,w´ 1{w, . . . . What seem important is the dynamic
context window: word2vec implements its weighting scheme by uni-
formly sampling the actual window size between 1 and L.
Subsampling is for diluting very frequent words. Mikolov, Chen, et

al. (2013) randomly remove words that are more frequent than some
threshold t. While word2vec’s code implements a slightly different for-
mula, Levy, Goldberg, and Dagan followed the formula presented in the
original paper (equation 2). Subsampling in word2vec is dirty in the
sense that the removal of tokens is done before the corpus is processed
into word-context pairs. Levy, Goldberg, and Dagan found the impact
of dirty and clean subsampling comparable, and report dirty.
Finally, word2vec removes some rare words before creating context

windows, but Levy, Goldberg, and Dagan’s experiments showed that
the effect of this was small.

4.2.8.2 Association Metric Hyperparameters

The authors define Shifted PMI as

SPPMIpw, cq “ maxpPMIpw, cq ´ logpkq, 0q

k has two distinct functions:
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• to better estimate the distribution of negative examples: a higher
k means more data and better estimation, and

• it affects the probability of observing a positive example: a higher
k means that negative examples are more probable.

Shifted PPMI captures only the second aspect of k. They experiment
with three values of k: 1, 5, 15.

Finally, in word2vec, negative examples (contexts) are sampled ac-
cording to a smoothed unigram distribution. Smoothing alleviates PMI’s
bias towards rare words.

4.2.8.3 Post-processing Hyperparameters

When word vectors are used in some downstream task (an intrinsic test
or a real application), context vectors c are often added to focus vec-
tors w. This was originally motivated as an ensemble method. While
this addition does not apply to PPMI, it is interesting that they au-
thors provide a different interpretation of its effect: it adds first-order
similarity terms to the second-order similarity function. Second-order
similarity wx ¨ wy, cx ¨ cy measures the extent to which the two words
are replaceable based on their tendencies to appear in similar contexts,
and are the manifestation of Z. S. Harris (1954)’s distributional hypoth-
esis. First-order similarity wx ¨ cy, on the other hand, is the tendency
of one word to appear in the context of the other.
Recall that truncated Singular Value Decomposition (SVD) is a com-

mon method of dimensionality reduction, which finds the optimal rank
d factorization with respect to L2 loss. SVD has been popularized in
NLP via Latent Semantic Analysis (LSA, Deerwester, Dumais, and
Harshman (1990), Section 4.1.3). The word-context matrix M is fac-
torized as

M “ U ¨Σ ¨ V

where U and V are orthonormal and Σ is a diagonal matrix of eigen-
values. The representations are obtained as WSV D “ Ud ¨Σd for words
and CSV D “ Vd for contexts.
In the SVD-based factorization, the context matrix CSV D is orthonor-

mal while the word matrix WSV D is not. The factorization by SGNS’s
is much more “symmetric”: neitherWw2v nor Cw2v is orthonormal, and
there is no bias to either of the matrices in the training objective. Sym-
metry can be achieved in SVD by weighting the eigenvalue matrix Σd
with the exponent p, what has a significant effect on performance, and
should be tuned. The final hyper-parameter of any vector space lan-
guage model is whether rows and/or columns are normalized.

4.2.8.4 Low-dimensional embeddings and isotropy

Arora et al. (2016) emphasizes that xvw, vw 1y « PMIpw,w 1q was only
true if there were no dimension constraints, but, in practice, low-dimensional
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embedding are used. They argue that the low dimensionality of word
embeddings plays a key role. In previous papers, the model is agnostic
about the dimension of the embeddings, and the superiority of low-
dimensional embeddings is an empirical finding (starting with Deer-
wester, Dumais, and Harshman (1990)). Arora et al.’s theoretical analy-
sis makes the key assumption that the set of all word vectors (which are
latent variables of the generative model) are spatially isotropic, i.e. they
have no preferred direction in space. Having n vectors be isotropic in
d dimensions requires d ! n. This is related to the emergence of the
“relations = lines” phenomenon.

4.2.9 What’s in a similarity score?

The basic evaluation for static word embeddings has been in word sim-
ilarity, but the method has many shortcomings. Now we summarize
Avraham and Goldberg (2016) to illustrate these. Avraham and Gold-
berg redesign the annotation task to achieve higher inter-rater agree-
ment, and propose a performance measure which takes the reliability
of each annotation decision in the dataset into account.

Datasets for Word Similarity Evaluation have been standardly used
with rank correlation (Spearman’s ρ). Hill, Reichart, and Korhonen
(2015) pointed out that in some datasets, associated but dissimilar
words, e.g. xsinger, microphoney, ranked high, sometimes even above
pairs of similar words. Hill, Reichart, and Korhonen also found a clear
preference for hyponym-hypernym pairs, e.g. xcat, pety and xwinter,
seasony over cohyponyms pairs like xcat, dogy (and, less outrageously,
over antonyms pairs xwinter, summery).

Avraham and Goldberg summarize the problems as follows:

• The rating scales are vulnerable to a variety of biases. This prob-
lem was earlier addressed by asking the annotators to rank each
pair in comparison to 50 randomly selected pairs, but that re-
sulted in a daunting annotation task.

• Different relations are rated on the same scale. A difference of
1.8 similarity scores can testify to anything from no difference,
e.g. simpsmart, dumbq “ 0.55, simpwinter, summerq “ 2.38, to
true superiority of one pair, e.g. simpcab, taxiq “ 9.2, simpcab, carq “
7.42..

• Different target words are rated on the same scale. Even within
pairs in a targeted relation, there are ill-defined comparisons, e.g.:
xcat, pety vs. xwinter, seasony. Pairs which share the target are
much more natural to compare, e.g. the comparison xcat, pety
vs. xcat, animaly is natural. Penalizing a model for preferring xcat,
pety over xwinter, seasony or vice versa impairs the evaluation
reliability.
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• The evaluation measure does not consider the annotation deci-
sions’ reliability. Reliability should be determined by the agree-
ment of the annotators.

They publish two datasets of Hebrew nouns with the following fea-
tures:

• The annotation task is an explicit ranking task: each pair is di-
rectly compared with a subset of the other pairs, but, unlike in
earlier work, with only a few carefully selected pairs, following
the principles above.

• Only pairs in a single preferred relation type (hyponym-hypernym
in one dataset, and cohyponym in the other one) are presented
to the annotators, what spares the annotators the effort of con-
sidering the type of the similarity, and lets them concentrate on
the strength of the similarity.

• Any pair is compared only with pairs sharing the same target
word.

• The dataset includes a reliability indicator with a probabilistic
interpretation.

4.2.10 Retrofitting vectors to semantic lexicons

The two main topics of this thesis are semantic networks (relational
representations of lexical meaning) and neural word embeddings. The
original goal of both have been to model assotiations in the human
mind that make linguistic processing possible. Early research in com-
putational linguistics was based on manual implementation of expert
knowledge, and hand-crafted tools remain useful even today. Since the
nineties, computers have become able to learn from text corpora of
increasing size, and in recent years, artificial neural networks became
state-of-the-art in many computational applications, but their inter-
pretability remains poor. In this section, we investigate methods of
injecting knowledge from semantic networks to (static) word embed-
dings.
Work before Faruqui et al. (2015) either augmented the co-occurrence

matrix in a relation-specific way, or changed the objective of the word
vector training algorithm to include some relational knowledge. The
latter involves enhancing word2vec to include more similarity knowl-
edge or word relational knowledge and or latent semantic analysis
for antonym specific polarity induction or multi-relational knowledge.
These methods are limited to particular vector models. Faruqui et al.
introduced a graph-based learning technique. The training objective in-
cludes an additional term for new vectors to be similar to the vectors of
related word types. Relations are taken from semantic lexicons such as
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WordNet (Section 2.5.3), FrameNet (Section 2.5.2), and the Paraphrase
Database.

Besides the English GloVe, skip-gram with hierarchical softmax, and
the multi-prototype model of Huang et al. (2012, see Section 8.3), the
experiments involve Multilingual Vectors by Faruqui and Dyer (2014),
who learned vectors by first performing SVD on text in different lan-
guages, then applying canonical correlation analysis on pairs of vectors
for words that align in parallel corpora. These vectors were trained on
the WMT-2011 news corpus for English, French, German and Spanish.

The resulting representations were evaluated for their semantic and
syntactic aspects in extrinsic sentiment analysis task, Word Similar-
ity, Syntactic Relations by Mikolov, Synonym Selection (TOEFL), and
phrase and sentence level Sentiment Analysis (Socher et al. 2013).

Mrkšić et al. (2016) present a counter-fitting method that injects
both antonymy and synonymy constraints into vector space representa-
tions improving the vectors’ capability for judging semantic similarity.
The method gave new state-of-the-art performance on the SimLex-999
dataset and was demonstrated in the downstream task of dialogue state
tracking (where the task is updating the system’s distribution over user
goals as the conversation progresses and new information becomes avail-
able), resulting in robust improvements across domains.

Word representations coalesce semantic similarity and conceptual
association (Hill, Reichart, and Korhonen 2014b). Furthermore, even
methods that can distinguish similarity from association (e.g., based
on syntactic co-occurrences) will generally fail to tell synonyms from
antonyms (Mohammad, Dorr, and Hirst 2008). Distinguishing antonymy
from similarity is critical for the dialogue state tracking task (DST),
more specifically the restaurant domain, where systems should not rec-
ommend an “expensive pub in the south” when asked for a “cheap bar
in the east”. Counter-fitting, is a lightweight post-processing procedure
in the spirit of the retrofitting introduced in the previous subsubsec-
tion.

Mrkšić et al. (2017) introduce Attract-Repel which jointly injects
mono- and cross-lingual synonymy and antonymy in word embeddings,
yielding semantically specialised3 cross-lingual vector spaces. In prac-
tice, semantic transfer goes from high to lower-resource languages. Their
evaluation obtains SOTA on SimLex semantic similarity datasets in six
languages and in DST across multiple languages. Their multilingual
DST models bring further performance improvements.

Mrkšić et al. term the retrofitting approach, i.e. when vectors are
refined to satisfy constraints extracted from a lexicons such as Word-
Net, semantic specialization. Mrkšić et al. deploy the Attract-Repel
algorithm in a multilingual setting, taking semantic relations from Ba-
belNet and exploiting information from high-resource languages to im-
prove the lower-resourced ones. They train their cross-lingual vector

3 They use British spelling, and we keep it, because this is a term.
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spaces jointly, which brings benefits in the form of positive semantic
transfer.

Mrkšić et al. demonstrate their efficacy both in intrinsic and down-
stream tasks. The former includes SOTA results on the four languages
in the Multilingual SimLex-999 dataset and in lower-resource languages
Hebrew and Croatian, where Mrkšić et al. collect evaluation datasets,
and show that cross-lingual specialization significantly improves word
vector quality.

Their downstream applications are motivated by improving the lexi-
cal coverage of supervised models. Mrkšić et al. consider again DST. In-
corporating their specialised vectors into a SOTA neural network model
for DST improves performance on English dialogues. In a multilingual
spirit, Mrkšić et al. produce new Italian and German DST datasets,
where Attract-Repel-specialised vectors leads to even stronger gains,
and they train a single model that performs DST in all three languages,
in each case outperforming the monolingual model.

The retrofitting models discussed so far specialize only the vectors of
words from the constraints. Glavaš and Vulić (2018) use the external
lexico-semantic relations to train an explicit retrofitting model (ExRf),
which learns a global specialization function and specializes the vectors
of words unobserved in the training data as well. They evaluate in
intrinsic word similarity evaluation and two downstream tasks – lexical
simplification and dialog state tracking. The authors also specialize
vector spaces of new languages (i.e. unseen in the training) by coupling
ExRf with shared multilingual distributional vector spaces.

The two prominent ways for external constraints are joint specializa-
tion models, which integrating the constraints into the distributional
learning objective, and post-processing models, which fine-tune distri-
butional vectors retroactively. In general, the latter outperform the
former, and they can be applied to arbitrary distributional spaces but
vectors of all unseen words remain intact.

Glavaš and Vulić propose explicit retrofitting (ExRf), which unifies
the strengths of the two. ExRf is applicable to arbitrary embeddings,
learns an explicit global specialization function, directly learns a spe-
cialization function in a supervised setting. It is implemented as a deep
feedforward neural architecture. Glavaš and Vulić show that the pro-
posed ExRf approach yields considerable gains in word similarity evalu-
ation on standard benchmarks SimLex-999 (Hill+ 2015); SimVerb-3500
(Gerz+ 2016), and in two downstream tasks – lexical simplification and
dialog state tracking. By coupling the ExRf model with shared multi-
lingual embedding spaces, we can also specialize distributional spaces
for unseen languages.
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4.2.11 Sub-word embeddins for rich morphology

The next important step in the history of word embeddings is sub-
word level modeling (Bojanowski et al. 2017), which we now discuss
with an emphasis on rich morphology, keeping in mind that sub-word
level modeling solves other kinds of out-of-vocabulary problems, like
proper nouns, as well. For morphologically rich languages, word em-
beddings provide less consistent semantic representations due to higher
variance in word forms. Moreover, these languages often allow for less
constrained word order, which further increases variance. For the
highly agglutinative Hungarian, semantic accuracy of word embeddings
measured on word analogy tasks drops by 50-75% compared to English.
In this section – which originally appeared as Döbrössy, Makrai, Tarján,
and Szaszák (2019) – we describe experiments showing that embeddings
learn morphosyntax quite well instead.

Therefore, we explore and evaluate several sub-word unit based em-
bedding strategies – character n-grams, lemmatization provided by an
NLP-pipeline, and segments obtained in unsupervised learning (Morfessor)
– to boost semantic consistency in Hungarian word vectors. The effect
of changing embedding dimension and context window size are also
considered. Morphological analysis based lemmatization is found to be
the best strategy to improve embeddings’ semantic accuracy, whereas
representation by character n-grams is consistently counterproductive
in this regard.

4.2.11.1 Introduction

Word embeddings show amazing capabilities in capturing and represent-
ing semantic relations within natural languages, which has also been
demonstrated in analogical reasoning tasks (Mikolov, Yih, and Zweig
2013; Gladkova and Drozd 2016). They are also capable of learning
morphosyntax, showing again a consistent mapping of grammatical op-
erations, i.e. inflections (see Section 4.2.11.2). Word embeddings obtain
such semantic and syntactic capabilities by matching the words to their
observed contexts (or vice versa) when training an encoder-decoder
network. Since the size of the word vector table is the vocabulary size
times the embedding dimension, for languages with rich morphology
(especially agglutinative ones), this results in huge matrices (Takala
2016). The vocabulary needs to be increased for morphologically rich
languages to ensure a high enough coverage for the overall occurring
words. To obtain a reliable estimate of word vectors, a larger training
corpus is required so that theoretically the same convergence of the
estimation can be reached than for a non agglutinative language. Fur-
thermore, morphologically rich languages tend to express grammatical
relations through suffixes (i.e. case endings) and hence let the word
order become less constrained than in configurational languages. This
can result in higher context variability, which translates again into less
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accurate estimates (i.e. the effect of migrating words outside the con-
text window can blur representations). Broadening the context window
is not a effective counter-measure, as it will result again in higher vari-
ability of the context.

Bojanowski et al. (2017) proposes character level enhancement for
word embeddings to overcome difficulties caused by unseen or rare
words. It is demonstrated for a large set of languages that represent-
ing words with character n-grams can be a powerful way of generating
word vectors for unseen words, and this improves both the semantic
and the syntactic consistency (and accuracy) of the embeddings. How-
ever, Bojanowski et al. (2017) tests no highly agglutinative language for
their embeddings’ syntactic and semantic accuracy with and without
n-grams.

We conduct proper evaluation on an analogy set for Hungarian (Makrai
2015) designed according to the standard Mikolov, Chen, et al. (2013),
and show that the already weak baseline semantic accuracy consistently
decreases when character n-grams representations are used. On the
other hand, embeddings learn the complex Hungarian morphosyntax
quite well.4

4.2.11.2 Related work

The closest work to ours is a concurrent study (Zhu, Vulić, and Ko-
rhonen 2019) of subword models especially for morphologically rich
languages across different tasks. Unfortunately they miss Hungarian,
which left a huge gap, as they find that performance is both language-
and task-dependent. They find that unsupervised segmentation (e.g.,
BPE, Morfessor, see later in this section) is sometimes comparable to
or even outperforms supervised word segmentation.

morphology in word embeddings The morphologically in-
formed approach to compositionally gained word embedding vectors
start with Lazaridou et al. (2013) and Luong, Socher, and Manning
(2013), who train a Recursive Neural Network, which builds represen-
tations for morphologically complex words from their morfemes.

The work of Soricut and Och (2015) can be regarded as the unsuper-
vised counterpart of Mikolov, Yih, and Zweig (2013)-style analogical
questions. Soricut induces morphological relations as the systematic
difference of embedding vectors in an unsupervised manner. They eval-
uate on word-similarity.

Relying on existing morphological resources, Cotterell et al. (2016) in-
troduce a latent-variable morphological model that extrapolates vectors
for unseen words, and smoothes those of observed words over several
languages.

4
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Cao and Rei (2016) introduce a joint model for unsupervised segmen-
tation and weighted character-level composition. Cotterell et al. (2018)
compute supervised models for the same two sub-tasks of morpholog-
ical analysis, also induces a canonical form (i.e. models orthographic
changes).

Avraham and Goldberg (2017) argue that morphology-driven models
confuse two aspects of the canonical form: their base form component is
mostly responsible for semantic aspects of the similarity, while affixes,
especially inflectional ones (e.g. -s), are mostly responsible for morpho-
logical similarity. They also investigate whether models behave differ-
ently on common and rare words. They conclude that a morphological
component should be included only for tasks in which morphological
similarity cannot be handled by other means.

language modeling and characters Morphologically com-
positional language modeling proper begins with Botha and Blunsom
(2014)’s decoder in machine translation to morphologically rich lan-
guages, which is unsupervised with respect to morphological segmen-
tation. Cotterell and Schütze (2015) augment the log-bilinear language
model (LM, Mnih and G. Hinton (2007)) with a multi-task objective
for morphological tags along with the next word.
Character n-gram features proved to be powerful as the basis of Face-

book’s fastText classifier (Joulin et al. 2016). Subword units based on
byte-pair encoding have been found to be particularly useful for ma-
chine translation (Sennrich, Haddow, and Birch 2016), and even in
models based on matrix factorization (Salle and Villavicencio 2018).
Ruder (2018) collects works augmenting embeddings with subword-

level information for many applications in the form of a convolutional
neural network or a BiLSTM.
A recent line of research (see Section 4.3.2 as well) aims at under-

standing the type of linguistic knowledge encoded in sentence and word
embedding modules of neural machine translation (NMT) encoders and
decoders or even in those of deep NLP models (Peters, Neumann, Iyyer,
et al. 2018; N. A. Smith 2019), which have recently set new state-
of-the-art results in many tasks. Belinkov et al. (2017a) found that
character-based representations are much better for learning morphol-
ogy, especially for low-frequency words; and lower layers of the encoder
are better at capturing word structure, while higher layers focus more
on word meaning. Representations learned from the NMT encoder turn
out to be rich in morphological information, but those from the decoder
are significantly poorer. This motivates Dalvi et al. (2017) to inject tar-
get morphology into the NMT decoder, which improves the translation
quality. Dalvi et al. (2019) analyze individual neurons in deep NLP
models. Their linguistic correlation analysis task investigate sensitivity
for word-structure (morphology) among other linguistic properties.
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jelmondatával Ñ jelmondat <poss> <cas<ins>>

akartak Ñ akar <past> <plur>

Table 7: De-glutination (Nemeskey 2017)

hungarian In their de-glutinatve method, Borbély, Kornai, et al. (2016)
and Nemeskey (2017) split all inflectional prefixes (as well as some
derivational ones, such as <compar>ative and <superlat>ive of adjec-
tives) into separate tokens for better morphological generalization, see
Table 7.5 Nemeskey opts for supervised morphological knowledge be-
cause of linguistic interpretability. The Hungarian paper Novák and
Novák (2018) conducts a manual evaluation of Hungarian word embed-
dings. Lévai and Kornai (2019) analyze Hungarian word embedding
vectors grouped by the morphological tag of the corresponding word.
They investigate whether the coherence of these classes correlate with
the specificity or the frequency of the tag. Again, the readers interested
in the most recent advances should consult Ács et al. (2021).

4.2.11.3 Experiments

corpus, segmentation, and embeddings For training the
word vector models, we rely on the fastText (Joulin et al. 2016) tool,
which allows for representation with character n-grams, if desired. We
do not use stemming, but go instead for some more sophisticated anal-
ysis. As we explained, our primary goal is benchmarking the individual
approaches.
For a true morphological analysis, we use the magyarlánc (Zsibrita,

Vincze, and Farkas 2013) toolkit, which provides lemmatization in the
form of a stem plus a suffix series, also decomposed into individual
component morfemes. Although some disambiguation capability arises
from sentence level part-of-speech tagging, magyarlánc may end up
with several hypotheses for the morphological composition of the input
word. Fortunately this happens rarely at the lemma level. If it does,
the shortest lemma is used.
For unsupervised pseudo-morfemic analysis, we use Morfessor (Virpi-

oja et al. 2013). Morfessor has been used to provide subword unit tokens
for Automatic Speech Recognition in heavily agglutinative languages,
with improved accuracy (Enarvi et al. 2017) over word based vocabu-
laries and models. Morfessor is based on statistical machine learning. In
order to reflect that the provided subword units are not true morfemes
in the grammatical sense, they are called morfs.
The text corpus we use is a contemporary dump of Hungarian lan-

guage web pages constructed for this paper, which covers mostly online
newspapers in various fields from years 2014-2018. The corpus has over

5 The same method has been first proposed in Hungarian by Siklósi and Novák (2016).
The paper has an English version (Siklósi 2016) – unfortunately behind a pay-wall.
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Parameter Value range
Frequency cut-off 5
Min length of char ngram none or 3
Max length of char ngram none or 6
Embedding dimension 100-200
Context window 5–25
Learning rate (α) 0.05
α update interval 100
Number of epochs 15
Negative sampling loss yes
Negative samples 5
Pretraining none

Table 8: Embedding vector trainer parameters.

70 M word tokens. Text normalization is performed with a Python
script.

analogical questions Our approach is to train word embed-
dings in different scenarios and assess syntactic and semantic accuracy
based on a Hungarian analogy test (Makrai 2015) that has been con-
structed according to (Mikolov, Chen, et al. 2013). For the semantic ac-
curacy, we use country–capital and country–currency pairs. For the
syntactic accuracy, we use singular–plural for nouns, present–past
tense for verbs, and base vs comparative forms for adjectives.

fasttext settings There are three main parameters which are
controlled during the experiments: (i) whether we use character n-gram
augmentation or not; (ii) the size of the context window; and (iii) the
target dimension of the resulting embedding vectors. We preferred to
preserve all other parameters of fastText at their default value. The
most important of these parameters are summarized in Table 8.

embedding strategies

word vectors (w). This constitutes our baseline. A standard
word embedding is trained with fastText, no prior stop word filtering
is applied.

lemma vectors (l). The magyarlánc toolkit is used for morpho-
logical analysis. Lemmas are identified and used as embedded entities.
Note that whereas ambiguity on the entire morphological composition
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may arise, ambiguity affecting the lemma’s surface form is rare. If this
still occurs, the shortest form is used.

morf vectors (m). Running Morfessor yields a morf based split-
up. Morfs become the modeling unit (subword unit). As an alternative,
using the root (R) yielded by Morfessor is evaluated as well. The word
embedding is trained on the corpus with words divided into segments
(as if they were separate words). During testing in analogical questions,
query words are also spitted to segments, and their vectors are com-
puted as the sum of the segments’ vectors.

vector dimension is changed between 100 and 200. We did not
consider using higher dimensions to avoid making downstream applica-
tions heavy.

We will refer to the individual setups by specifying the unit out of
{W, L, M, R} and the dimension, e.g. L200 will refer to lemma as unit
and 200-dimensional embeddings.

4.2.11.4 Results

extending the context window As we pointed out in Sec-
tion 4.2.11.1, using wider context may help in overcoming the difficul-
ties resulting from the less constrained word order of Hungarian. A
wider context window allows for capturing words further apart, but it
may have an adverse effect as well, because the context becomes more
noisy (variable). Relative data sparsity may also be a problem when a
larger context is considered. So basically our research question related
to the context of a word is that whether the benefits of capturing fur-
ther apart words can be superior compared to the negative effect of
increasing variance w.r.t the occurring context words.

It has been reported (Lebret and Collobert 2015) that semantic ana-
logical questions benefit from larger windows, while syntactic ones do
not. On the contrary, experimenting with SVD models and different
window sizes, Gladkova and Drozd (2016) find that all categories of
analogical questions are best detected between window sizes 2–4, al-
though a handful of them yield equally good performance in larger
windows. They find no one-on-one correspondence between semantics
and larger windows. We consider unusually large contexts of up to 25
words (see Table 8).

Semantic and syntactic accuracy with 100 dimensional embeddings
are shown in Figures 9 and 10, respectively. Comparing strategies, using
the lemma (L) for embedding is yielding the highest semantic accuracy.
Regarding the context window, our hypothesis that long context win-
dows may be a better fit is confirmed. All the four strategies consistently
show increasing semantic accuracy as context window is extended to
cover 21 units. Compared to W, L embeddings yield higher semantic
accuracy by 75%. Nevertheless, syntactic accuracy tends to decrease
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Figure 9: Semantic accuracy of Hungarian 100 dimensional embeddings with
different strategies.

when extending the context window, which is a negative effect, most
likely resulting from the higher variation seen in a larger window.

character n-grams In contrast to many other languages (Bo-
janowski, Joulin, and Mikolov 2016), the highly agglutinative Hungar-
ian cannot profit from representation with character n-grams: semantic
(but also syntactic) accuracy gets lower. We suppose that this happens
because agglutination is frequent and hence word vectors become uni-
versal (i.e. they cannot specialize for the context). The less constrained
word order plays a role in this, too.

Figure 11 shows how semantic and syntactic accuracy change when
changing to character n-grams (sem+chr and syn+chr, respectively)
in the W100 case. We present again a trend with increasing context
window size on the horizontal axis to allow for easy comparison with
the previous results.

Regarding semantic accuracy, no benefit is registered when chang-
ing to character n-grams with any of the four investigated embedding
strategies.

Character n-grams becomes helpful at the syntax level in some cases,
syntactic accuracy augments for the L100, L200 and R200 scenarios.
Nevertheless, the basis is very low as for using the lemmas or Morfessor
roots, most of the morphosyntactic information is lost. Not surprisingly,
semantics improves with a large window, while morphosyntax does not.

embedding dimension Figure 12 compares the semantic accu-
racy of 100 and 200 dimensional scenarios with a context window of 21.
Increasing the embedding dimension has a positive effect on semantic
accuracy, as far as up to 50% relative increase in accuracy. Accuracy
in individual relations (whose importance has been shown by Gladkova
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Figure 10: Syntactic accuracy of Hungarian 100 dimensional embeddings with
different strategies.

capital-common-countries 66.0% (101/153)
capital-world 40.3% (2595/6441)
county-center 18.2% (12/66)
currency 6.4% (26/406)
family 16.5% (15/91)

Semantic 38.41% (2749/7157)

Table 9: Results in individual semantic relations with the best setting (mag-
yarlánc, window 21, dimension 200, no character n-grams).

and Drozd (2016)) are reported in Table 9. We can again observe that
character n-grams consistently result in decreased semantic accuracy.

Increasing embedding dimensions above 200 could be expected to
yield further improvement is semantic accuracy, but we did not address
this issue in our current work, which focuses mostly on the modeling
unit and its optimal context.

4.2.11.5 Future work

Future work may investigate whether results generalize to other em-
bedding algorithms (besides fastText, the original and the enhanced
(Mikolov et al. 2018) word2vec and the GloVe (Řehůřek and Sojka 2010)
implementations of the continuous bag of words and the skip-gram mod-
els could be tried); extend the ablation over dimensionality up to a few
hundred dimensions; and analyze other morphologically rich languages
(e.g. Finnish, Turkish, or Slavic languages). The bottleneck is that we
are restricted to languages to which the analogical questions have been
translated. As a reviewer noted, the semantic part of the Mikolov-style
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Figure 11: Semantic and syntactic accuracy of Hungarian 100 dimensional
word embeddings with character n-grams (chr) and in the original
way (nochr).

analogical questions consist of a handful of semantic relations between
named entities. It is questionable how appropriate it is to use them for
the evaluation of the embedding strategies, especially that of encod-
ing lexical semantic relations and not the world knowledge. Gladkova
and Drozd (2016) examine Mikolov, Yih, and Zweig (2013)-style ana-
logical questions systematically, finding that different systems shine at
different sub-categories of the morphological and semantic tasks. They
publish a test set which is more difficult than existing ones. Translating
this test set to morphologically rich languages would be very useful.

4.2.12 The offset is naked

The basic way of evaluating static word embeddings has been intrinsic
evaluations, namely similarities and analogies. Both methods have se-
rious shortcomings – we illustrated this for similarities in Section 4.2.9.
Now we turn to a critical reflection on what have been called the vector
offset method, relational similarity, or word analogies.

Levy et al. (2015) argue that supervised methods of hypernymy are
memorizing whether the hypernym candidate is a “prototypical hyper-
nym”, i.e. a category, irrespective of the word to be categorized. They
compare four compositions for representing px, yq (e.g. x “ cat, y “
animal) as a feature vector: besides the standard concatenation x‘ y
and difference y ´ x, they use the diagnostic “only x”, and “only y”.
The finding is that models just learn whether y is a likely “category”
word – a prototypical hypernym – and, to a lesser extent, whether x
is a likely “instance” word. This extends to other inference relations,
such as meronymy. To test the hypothesis, the authors manipulate the
test pairs by inserting mismatched pairs, e.g. (banana, animal).
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Figure 12: Semantic accuracy of Hungarian 100 and 200 dimensional embed-
dings with different strategies; context window covers 21 units.

The word embeddings they use include interpretable PPMI-based
ones, which enable them to look for prototypical hypernym contexts.
Besides dataset-specific contexts like psychosomatic -1 (word ˘ i de-
notes the context where the ith word to to right/left is word), they find
domain-independent indicators of category, e.g. any -1, every -1, and
kinds -2, and even relics of the Hearst patterns in all datasets: other
-1, such +1, including +1, etc., and their analogons, e.g. such -2.

Linzen (2016) notes that in analogical tasks

x “ a˚ ´ a` b,

if a˚ and a are very similar to each other (as scream and screaming
are likely to be) the nearest word to x may simply be the nearest
neighbor of b. If in a given set of analogies the nearest neighbor of b
tends to be b˚, the answer may be correct regardless of the consistency
of the offsets. He proposes new baselines that perform the task without
using the offset a˚ ´ a, and measures how the performance is affected
by reversing the direction of each analogy problem (which should not
affect its accuracy).

4.2.13 Theoretical critique of vector analogy

Rogers, Drozd, and Li (2017) criticize the vector analogy method on
theoretical grounds. Given the vital role that analogical reasoning plays
in human cognition, automated analogical reasoning could become a
game-changer in many fields. The method is already used in many
downstream NLP tasks, such as splitting compounds, semantic search,
and cross-language relational search. One way to explain the current
limitations is to attribute them to the imperfections of the models
and/or the corpora. With this view, in a perfect VSM, any linguistic
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relation should work. The alternative explored by Rogers, Drozd, and
Li is that there are both theoretical and mathematical issues with ana-
logical reasoning with word vectors and 3CosAdd (see Section 4.2.7).

In the authors’ view, the most fundamental term is not analogy, but
relational similarity, i.e. that pairs of words may hold similar relations.
We speak of similarity rather than identity: instances of a single relation
may still have significant variability in how characteristic they are of
that class.

“Classical” analogical reasoning follows roughly this template: ob-
jects X and Y share properties a, b, and c; therefore, they may also
share the property d. For example, both Earth and Mars orbit the Sun,
have at least one moon, revolve on axis, and are subject to gravity;
therefore, if Earth supports life, so could Mars. The NLP move from
relational similarity to analogy follows the use of the term by Turney.

Analogy was once rejected in generative linguistics as a mechanism
for language acquisition through discovery, although now it is making
a comeback. It has been criticized for ambiguity, guesswork and puzzle-
like nature.

The paper has been referred to as Mikolov cheated!, because they
point out that 3CosAdd, as initially formulated by Mikolov, Yih, and
Zweig (2013), “dishonestly” excludes a, a˚ and b from among potential
b˚s.

The authors present a series of experiments performed with the
BATS dataset, which has more relations and is more difficult than
the original Google test. BATS is balanced across derivational and in-
flectional morphology, lexicographic and encyclopedic semantics (10 re-
lations of each type). They explain lower performance on derivational
morphology questions as opposed to inflectional or encyclopedic seman-
tics: man and woman are reasonably similar distributionally, as they
combine with many of the same verbs: both men and women sit and
sleep, but the same could not be said of words derived with prefixes
that change POS.
Another, purely logical problem is exemplified by snow: white ::

sugar: ?white, where, in the dishonest setting, the correct answer is
a priori excluded. In BATS data, this factor affects several semantic
categories, including country:language, thing:color, animal:young, and
animal:shelter.
Rogers, Drozd, and Li hypothesize that the more crowded a partic-

ular region is, the more difficult it should be to hit a particular tar-
get. Estimating density as the similarity to the 5th neighbor, they get
the counter-intuitive results that denser neighborhoods actually yield
higher scores.
They consider LRCos, a method based on supervised learning from

a set of word pairs. The model learns a representation of the target
class with a supervised classifier. The question is this: what word is
the closest to king, but belongs to the “women” class? The accuracy
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of LRCos is much higher than the top-1 3CosAdd or 3CosMul, and its
“honest” version performs just as well as the “dishonest” one.

4.2.14 Frequency effects in cosine similarity

Faruqui et al. (2016) review the main problems with word similarity
evaluations, and they discuss frequency effects in cosine similarity (be-
sides the subjectivity of the task; the confusion of semantic and task-
specific similarity; the lack of standardized splits and overfitting; the
low correlation with extrinsic evaluation, e.g.. that in text classifica-
tion, parsing, or sentiment analysis; and the absence of statistical sig-
nificance).

Vectors of frequent words are longer as they are updated more often
during training (Turian, Ratinov, and Bengio 2010). In Faruqui et al.’s
view, ideally the relatively small number of frequent words should be
evenly distributed through the space, while rare words should cluster
around related, but more frequent words.

However, vector-spaces contain hubs, i.e. vectors that are close to
a large number of other vectors in the space. In word vector-spaces,
this manifests in words that have high cosine similarity with a large
number of other words (Dinu, Lazaridou, and Baroni 2015), as we will
discuss in Sections 7.5.3 and 8.4.1. Schnabel et al. (2015) further refine
this hubness problem to show a power-law relationship between the
frequency-rank r of a word (i.e. the rank of a word in vocabulary of the
corpus sorted in decreasing order of frequency) and the frequency-rank
of its neighbors: the average rank a of the 1000 nearest neighbors of a
word follows: a « 1000r0.17.

The last problem Faruqui et al. discuss is related to the main prob-
lem with word embeddings of the type investigated in this section: the
inability to account for polysemy. As we will see in Chapter 8, there
has been progress on obtaining multiple vectors per word-type to ac-
count for different word-senses, but the practical advantage of word
embeddings with more but fixed vectors to account for different senses
remained modest (Li and Jurafsky 2015), and in most applications, the
real solution is contextualized word representations provided by deep
language models, which brought a new paradigm in NLP, to which will
now turn.

4.3 attention and deep language models

The contributions of this thesis are based on static word embeddings,
i.e. the kind discussed so far, but we would like to put our investiga-
tion in the context of the advances of the past few years. Deep neural
networks defined a new state-of-the-art in many areas of NLP.
Deep neural networks and deep learning mean machine learning of a

model that consists of layers from the input layer through hidden layers
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to the output layer, and calculates higher and higher level features.
Deep learning first brought breakthroughs in speech technology (Dahl
et al. 2011) and computer vision (Krizhevsky and Sutskever 2012). The
ImageNet moment of NLP, as Ruder (2018) called it, arrived in 2018.

Pretraining entire models to learn both low and high level
features has been practiced for years by the computer vision
(CV) community. Most often, this is done by learning to
classify images on the large ImageNet dataset. ULMFiT,
ELMo, and the OpenAI transformer have now brought the
NLP community close to having an “ImageNet for language”
– that is, a task that enables models to learn higher-level
nuances of language, similarly to how ImageNet has enabled
training of CV models that learn general-purpose features
of images. (https://ruder.io/nlp-imagenet/)

Up to this point of the thesis, we have been chronological and didac-
tic. Main contribution chapters will be similar, even self-contained in
many cases. This section provides, however, just some flashes for the
reader somewhat familiar with deep learning of language. Those with
less background in machine learning may skip to the first foreground
part, to Chapter 7. Where citations are omitted, they can be found in
the corresponding paper we just summarize.

4.3.1 Pretrained deep models for NLP

Qiu et al. (2020, Section 2.4.2) summarize the history of pretrained
deep NLP models as follows: McCann et al. (2017) pre-trained a deep
LSTM encoder from an attentional sequence-to-sequence model with
machine translation objective, and used the context vectors (CoVe) out-
put by the pretrained encoder. Peters, Neumann, Iyyer, et al. (2018)
pre-trained a 2-layer LSTM encoder with a bidirectional language model
(BiLM), consisting of a forward LM and a backward LM. Contextual
representations output by the pre-trained BiLM, ELMo (Embeddings
from Language Models) brought large improvements on a broad range
of tasks. Flair (Akbik, Blythe, and Vollgraf 2018) captured word mean-
ing with contextual string embeddings pre-trained with a character-
level LM. Ramachandran, Liu, and Le (2017) significantly improved
the seq2seq models by unsupervised pre-training. The weights of both
the encoder and the decoder are initialized with pretrained weights of
two language models and then fine-tuned with labeled data.
ULMFiT (Universal Language Model Finetuning, Howard and Ruder

(2018)) fine-tuned a pre-trained LM for text classification, achieving
state-of-the-art results on six widely-used text classification datasets.
ULMFiT training consists of three phases: pre-training LM on general-
domain data; fine-tuning LM on target data; and fine-tuning on the tar-
get task. Their fine-tuning strategies include discriminative fine-tuning,
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slanted triangular learning rates, and gradual unfreezing. Since ULM-
FiT, fine-tuning has become the mainstream approach to adapt PTMs
for the downstream tasks.
Very deep PTMs have shown their powerful ability in learning univer-

sal representations, including OpenAI GPT (Generative Pre-training,
Radford et al. (2018)) and BERT (Bidirectional Encoder Representa-
tion from Transformer, Devlin et al. (2018)). Besides LM, an increasing
number of self-supervised tasks are proposed to make the PTMs cap-
turing more knowledge form large scale text.

4.3.2 BERTology

Transformer-based models are now widely used in NLP, and much work
has been done to understand their inner workings. The stream of papers
seems to be accelerating rather than slowing down. Here we summarize
the findings of Rogers, Kovaleva, and Rumshisky (2020), who synthesize
over 40 analysis studies, overview the proposed modifications and the
training regime, and offer directions for further research.

4.3.2.1 Introduction

Transformers (Vaswani et al. 2017) took NLP by storm, offering en-
hanced parallelization and better modeling of long-range dependencies.
The best model is BERT (Devlin et al. 2019), which obtained state-
of-the-art results in many benchmarks, and it has been integrated
in Google search, improving an estimated 10% of queries. However,
this family of models has little cognitive motivation, and the size of
these models limits their training and study. Rogers, Kovaleva, and
Rumshisky focus on the papers investigating the types of knowledge
learned by BERT, where this knowledge is represented, how it is learned,
and the methods proposed to improve it.

4.3.2.2 Overview of BERT architecture

BERT is a stack of Transformer encoder layers with multiple heads,
i.e. fully-connected neural networks augmented with a self-attention
mechanism. For every input token in a sequence, each head computes
key, value and query vectors, which are used to create a weighted rep-
resentation. The outputs of all heads in the same layer are combined
and run through a fully-connected layer. Each layer is wrapped with a
skip connection and layer normalization

The conventional workflow is pre-training and fine-tuning. Pretrain-
ing uses two semi-supervised tasks: masked language modeling (MLM,
prediction of randomly masked input tokens), and next sentence predic-
tion (NSP, predicting if two input sentences are adjacent to each other).
In fine-tuning for downstream applications, one or more fully-connected
layers are typically added on top of the final encoder layer.
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The representations are computed as follows: the model tokenizes
the given word into wordpieces, and then combines three embedding
layers (token, position, and segment). The special token [cls] is used
for classification predictions, and [sep] separates segments of typically
multi-sentence input. Two sizes fit all: base and large, varying in the
number of layers, their hidden size, and number of attention heads.

4.3.2.3 What knowledge does BERT have?

Analysis approaches include fill-in-the-gap probes of BERT’s MLM,
that of self-attention weights, and probing classifiers using different
BERT representations as inputs.

syntactic knowledge Representations are hierarchical rather
than linear. There is something akin to syntactic tree structure in addi-
tion to the word order information. BERT has information about parts-
of-speech, syntactic chunks and roles. Knowledge of syntax is partial,
not enough to recover the labels of distant parent nodes in the syntactic
tree. The syntactic structure is not directly encoded in self-attention
weights, but they can be transformed to reflect it. Dependency trees
have been extracted directly from self-attention weights but without
quantitative evaluation. Transformation matrices recover much of the
Stanford Dependencies formalism for PennTreebank data.
BERT representations have been approximated with Tensor Prod-

uct Decomposition Networks, concluding that dependency trees are
the best match among five decomposition schemes, but differences
are very small. BERT takes subject-predicate agreement into account
in the cloze task even with distractor clauses and meaningless sen-
tences. BERT is able to detect the presence of negative polarity items
(e.g. “ever”) and the words that allow their use (e.g. “whether”) but
not scope violations. BERT does not understand negation, and it is
insensitive to malformed input: predictions were not altered even with
shuffled word order, truncated sentences, or removed subjects and ob-
jects. Models are disturbed by nonsensical input (adversarial attacks).

semantic knowledge Fewer studies were devoted to BERT’s
knowledge of semantics. Entity types, relations, semantic roles, and
proto-roles have been detected with probing classifiers. BERT has some
knowledge for semantic roles. We have seen in Section 4.3.5 that Et-
tinger (2020) shows with an MLM probing study that the model prefers
incorrect fillers for semantic roles that are semantically related to the
correct ones to those that are unrelated, e.g. to tip a chef to to tip a
robin.

BERT struggles with representations of numbers (addition, number
decoding, floating point numbers). The problem may be with word-
piece tokenization: numbers of similar values can be divided up into
substantially different word chunks.

129



distribution and vectors

BERT is surprisingly brittle to named entity replacements: replacing
names in the coreference task changes 85% of predictions. This suggests
that the model does not form a generic idea of named entities, although
its F1 scores on NER probing tasks are high. Fine-tuning BERT on
Wikipedia entity linking “teaches” it additional entity knowledge, which
suggests that it did not absorb all the relevant entity information during
pre-training on Wikipedia.

world knowledge MLM has been adapted for knowledge in-
duction by filling in the blanks, e.g. “Cats like to chase [ ]”. Besides
a probing study of world knowledge in BERT, evidence comes from
many practitioners using BERT to extract knowledge. For some rela-
tion types, vanilla BERT is competitive with knowledge base methods.
BERT generalizes well to unseen data, but we need good template
sentences. There has been research on the automatic extraction and
augmentation of such templates.

BERT cannot reason based on its world knowledge. It can guess the
affordances and properties of many objects, but it has no information
about their interactions. E.g. it knows that people can walk into houses,
and that houses are big, but it cannot infer that houses are bigger than
people. Its performance drops with the number of necessary inference
steps. Some of BERT’s success in factoid knowledge retrieval comes
from learning stereotypical character combinations, e.g. that a person
with an Italian-sounding name is Italian.

limitations Some researchers remark that “the fact that a linguis-
tic pattern is not observed by our probing classifier does not guarantee
that it is not there, and the observation of a pattern does not tell us
how it is used.” A hot question is how complex a probe should be: If
a more complex probe recovers more information, to what extent are
we still relying on the original model? Different probing methods may
lead to complementary or even contradictory results. A given method
might also favor one model over another. E.g., RoBERTa trails BERT
with one tree extraction method, but leads with another. The choice of
linguistic formalism also matters.

We should focus on identifying what BERT actually relies on at in-
ference time. Amnesic probing aims to specifically remove certain infor-
mation, and see how it changes performance. This method has shown
that e.g. language modeling does rely on part-of-speech information.

Information-theoretic probing approaches include estimating the mu-
tual information between the learned representation and a given linguis-
tic property. Some researchers quantify the amount of effort needed to
extract some information, which is more important than the amount
of information in the representation. The mathematical formalism is
minimum description length needed to communicate both the probe
size and the amount of data required for it to do well on a task.
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Figure 13: Typical self-attention patterns (Kovaleva et al. 2019). Both axes
on every image represent BERT tokens of an input example, and
colors denote absolute attention weights (darker colors stand for
greater weights). The first three types are most likely associated
with language model pre-training, while the last two potentially
encode semantic and syntactic information.

4.3.2.4 Localizing linguistic knowledge

bert embeddings In studies of BERT, the term embedding refers
to the output of a Transformer layer (typically, the final one). Every
token contains at least some information about the context. Both con-
ventional static embeddings and BERT-style embeddings can be viewed
in terms of mutual information maximization.

Distilled contextualized embeddings better encode lexical semantic
information, i.e. they are better at traditional word-level tasks such as
word similarity. The methods to distill a contextualized representation
into a static one include aggregating the information across multiple
contexts, encoding “semantically bleached” sentences that rely almost
exclusively on the meaning of a given word (e.g. This is x y), and using
contextualized embeddings to train static embeddings. Distillation to
a static embedding is useful because interpretability methods for static
embeddings are more diverse and mature than those available for their
dynamic counterparts.
It has been studied how similar the embeddings for identical words

are in every layer, reporting that later BERT layers are more context-
specific. In the earlier Transformer layers, MLM forces the acquisition of
contextual information at the expense of the token identity, which gets
recreated in later layers. To what extent do models capture phenom-
ena like polysemy and homonymy? BERT embeddings form distinct
clusters corresponding to word senses. The model is successful at word
sense disambiguation. Representations of the same word depend on the
position of the sentence in which it occurs, likely due to the NSP ob-
jective, what is desirable from the linguistic point of view, and could
be a promising avenue for future work.
The standard way to generate sentence or text representations for

classification is to use the [cls] token, the concatenation of token rep-
resentations, or the normalized mean.

self-attention heads Several classifications of attention heads
have been proposed in different studies:
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• attending to the word itself, to previous/next words and to the
end of the sentence,

• attending to previous/next tokens, to the [cls], to the [sep], to
punctuation, or broadly over the sequence, or

• the five attention types in Figure 13: Vertical, Diagonal, Vertical
+ diagonal, Block, and Heterogeneous.

Heads with linguistic functions. The “heterogeneous” attention
pattern could be linguistically interpretable, and a number of studies
focused on identifying the functions of the heads.
There are BERT heads that attended significantly more than a ran-

dom baseline to words in certain syntactic positions. Datasets and meth-
ods used in these studies differ, but there is some consistency that some
heads attend to words in obj role more than the positional baseline. Ev-
idence for nsubj, advmod, and amod varies between studies. The overall
conclusion is also supported by a study in machine translation context.
Even complex dependencies like dobjmay be encoded by a combination
of heads, but the corresponding work is limited to qualitative analysis.
No single head has the complete syntactic tree information, but a

BERT head can directly be used for coreference classification on par
with a rule-based system, what is remarkable because coreference clas-
sification requires quite a lot of syntactic knowledge. Attention weights
are weak indicators of subject-verb agreement and reflexive anaphora.
Instead of serving as strong pointers between related tokens, they were
close to a uniform attention baseline, but there was some sensitivity
to different types of distractors coherent with psycholinguistic data we
saw in Section 4.3.5. Morphological information in BERT heads has not
been addressed, but with a sparse attention variant in the base Trans-
former, some attention heads appear to merge BPE-tokenized words.
Semantic relations, core frame-semantic relations, as well as lexico-

graphic and commonsense relations have been studied, but a head ab-
lation study showed that heads related to some of these problems were
not essential for BERT’s success on GLUE tasks.
The popularity of self-attention as interpretation is due to the idea

that “attention weights have a clear meaning: how much a particular
word will be weighted when computing the next representation for the
current word.” This has been much debated. In a multi-layer model
where attention is followed by a non-linear transformation, the patterns
in individual heads do not provide a full picture. Many current papers
are accompanied by attention visualizations, and visualization tools,
but analysis is mostly qualitative, often with cherry-picked examples,
and should not be interpreted as evidence.

Attention to special tokens. Most self-attention heads do not di-
rectly encode any nontrivial linguistic knowledge; at least after fine-
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tuning on GLUE, less than 50% of heads exhibit the “heterogeneous”
pattern. Much of the heads have the vertical pattern (attnding to [cls],
[sep], and punctuation), what is likely related to the overparametriza-
tion issue. Norms of attention-weighted input vectors yield a more in-
tuitive interpretation of self-attention reducing the attention to spe-
cial tokens, but it is still not the case that most heads that do the
“heavy lifting” are even potentially interpretable. Some work focuses
on inter-word attention and simply excludes special tokens, which is a
questionable method, as attention to special tokens actually matters at
inference time.
The functions of special tokens are not yet well understood. [cls] is

typically viewed as an aggregated sentence-level representation – al-
though all token representations also contain at least some sentence-
level information. Some researchers experiment with encoding Wiki-
pedia paragraphs with base BERT to consider specifically the attention
to special tokens, noting that heads in early layers attend more to [cls],
in middle layers to [sep], and in final layers to periods and commas. The
function of attending to special tokens might be a kind of “no-op”: a
signal to ignore the head if its pattern is not applicable to the current
case. While attention to special tokens increases, their importance for
prediction drops. After fine-tuning, both [sep] and [cls] get a lot of
attention, depending on the task.

bert layers BERT’s input is a combination of token, segment,
and positional embeddings. Lower layers have the most linear word
order information. Knowledge of linear word order decreases around
layer 4 (i.e. the middle), and that of hierarchical sentence structure
increases, as detected by the probing tasks of predicting the index of a
token, the main auxiliary verb, and the sentence subject.
There is consensus among studies with different tasks, datasets and

methodologies that syntactic information (syntactic tree depth, subject-
verb agreement, and syntactic probing) is the most prominent in the
middle BERT layers. This must be related to that the middle layers
of Transformers are overall the best-performing and the most transfer-
able across tasks. There is conflicting evidence about syntactic chunks:
Some researchers draw parallels to the order of components in a typi-
cal NLP pipeline from POS-tagging to dependency parsing to semantic
role labeling; others show that lower layers were more useful for chunk-
ing, while middle layers were more useful for parsing; yet others find
the opposite: both POS-tagging and chunking were performed best at
the middle layers, in both BERT-base and BERT-large.
The final layers of BERT are the most task-specific: In pre-training,

this means specificity to the MLM task, which would explain why the
middle layers are more transferable. In fine-tuning, it explains why the
final layers change the most.
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Semantics is spread across the entire model. While most of syntactic
information can be localized in a few layers, in semantic tasks, cer-
tain non-trivial examples get solved incorrectly at first but correctly at
higher layers, e.g. predicate-argument relations help to disambiguate
part-of-speech. This is rather to be expected: semantics permeates all
language, and linguists like Goldberg (2006) debate whether meaning-
less structures can exist at all. What does stacking much more Trans-
former layers actually achieve in BERT in terms of the spread of se-
mantic knowledge, and is that beneficial? Base and large BERTs shows
the same overall pattern of cumulative score gains, only more spread
out in the large BERT. This picture is disputed by other researchers,
who place “surface features in lower layers, syntactic features in middle
layers and semantic features in higher layers”, but only one SentEval
semantic task in the corresponding study actually topped at the last
layer, three others peaked around the middle and then degraded by the
final layers.

4.3.2.5 Training BERT

model architecture choices The most systematic study
of BERT’s architecture investigated the number of layers, heads, and
model parameters, varying one option a time, and freezing the others.
The number of heads was not as significant as the number of layers,
consistently with research that found the middle layers to be the most
transferable. Larger hidden representation size was consistently better,
but the gains varied by setting.

improvements to the training regime Regarding the batch
size, large-batch training (8k examples) improves both the language
model perplexity and downstream task performance. With a batch size
of 32k, BERT’s training time can be significantly reduced with no degra-
dation in performance.

Embedding values of the trained [cls] token are not centered around
zero, its normalization stabilizes the training, resulting in a slight per-
formance gain on text classification tasks. “Warm-start”, i.e. training
in a recursive manner, where the shallower version is trained first and
then the trained parameters are copied to deeper layers, achieves 25%
faster training speed with similar accuracy to the original BERT on
GLUE tasks.

pre-training bert The original BERT is a bidirectional Trans-
former pre-trained on two tasks: next sentence prediction (NSP) and
masked language model (MLM). Pre-training is the most expensive part
of training BERT, and it would be informative to know how much ben-
efit it provides. On some tasks, a randomly initialized and fine-tuned
BERT obtains competitive or higher results than the pre-trained BERT.
Most weights of pre-trained BERT are useful in fine-tuning, although

134



4.3 attention and deep language models

there are “better” and “worse” subnetworks. One explanation is that
pre-trained weights help the fine-tuned BERT find wider and flatter
areas with smaller generalization error, which makes the model more
robust to overfitting. Most new models’ gains are often marginal, and
estimates of model stability and significance testing are very rare.

The following topics have been investigated to improve pre-training.

How to mask? There are systematic experiments with corruption
rate and corrupted span length; diverse masks for training examples
within an epoch; masking every token in a sequence instead of a random
selection; replacing the MASK token with [unk] token, to help the
model learn a representation for unknowns that could be useful for
translation; and maximizing the amount of information available to
the model by conditioning on both masked and unmasked tokens, and
letting the model see how many tokens are missing.

What to mask? Alternatives include full words instead of word-
pieces and spans rather than single tokens (predicting how many are
missing). Masking phrases and named entities improves representation
of structured knowledge.

Alternatives to masking. Experiments have been performed for re-
placing and dropping spans; deletion, infilling, sentence permutation
and document rotation; for predicting whether a token is capitalized
and whether it occurs in other segments of the same document; training
on different permutations of word order in the input with the objective
of maximizing the probability of the original word order; and the de-
tection of tokens that were replaced by a generator network.

NSP alternatives and additional tasks. Removing NSP does not
hurt or slightly improves performance. It has been replaced with the
task of predicting both the next and the previous sentences; or identi-
fying swapped sentences. Another model includes sentence reordering
and sentence distance prediction with two new tasks on two levels. On
the token-level: it has to be predicted whether a token is capitalized
and whether it occurs in other segments of the same document; and
the segment-level tasks include sentence reordering, sentence distance
prediction, and supervised discourse relation classification. In another
approach, both NSP and token position embeddings have been replaced
by a combination of paragraph, sentence, and token index embeddings.
Utterance order prediction for multiparty dialogue has also been pro-
posed. Rogers, Kovaleva, and Rumshisky cites cross-lingual work as
well.

Approaches include combining MLM with some other tasks: simulta-
neous learning of seven tasks, including discourse relation classification
and predicting whether a segment is relevant for IR; latent knowledge
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retrieval; knowledge base completion. Continual learning means sequen-
tial pre-training on a large number of tasks, each with their own loss
which are then combined.

Pretraining data. Several studies explored the benefits of increas-
ing the corpus volume; longer training; explicit linguistic information,
both syntactic and semantic; using the label for a given sequence from
an annotated task dataset (e.g. sentiment analysis); and learning rep-
resentations for rare words separately.

The idea of explicitly supplying structured knowledge has been exper-
imented with in different ways, including entity-enhanced models (in-
cluding entity embeddings as input or adapting entity vectors to BERT
representations); an additional pre-training objective of knowledge base
completion; modifying the standard MLM task to mask named entities;
training with MLM objective over text + linearized table data; or en-
hancing RoBERTa with both linguistic and factual knowledge with
task-specific adapters.

fine-tuning bert The pre-training + fine-tuning workflow is a
crucial part of BERT. Pre-training is supposed to provide task-inde-
pendent linguistic knowledge, while the fine-tuning process would pre-
sumably teach the model to extract information from the representa-
tion.

During fine-tuning BERT, the most changes for 3 epochs occurred
in the last two layers. Those changes caused self-attention to focus on
[sep] rather than on linguistically interpretable patterns. Why does fine-
tuning increase the attention to [cls], but not to [sep]? As [sep] may
serve as “no-op” indicator, fine-tuning basically may tell BERT what
to ignore. In multilingual BERT, fine-tuning affected both the top and
the middle layers of the model.

Studies explored the possibilities of improving the fine-tuning of
BERT by taking more layers into account: combining deeper layers
with the output layer or a weighted representation of all layers; two-
stage fine-tuning with an intermediate supervised training stage; adver-
sarial token perturbations that improve the robustness of the model;
or mixout regularization, which improves the stability of BERT fine-
tuning even for a small number of training examples.

With larger and larger models even fine-tuning becomes expensive,
but this cost has been limited by adapter modules, which have been
also used for multi-task learning and cross-lingual transfer; by reusing
monolingual BERT weights for cross-lingual transfer; or by extracting
features from frozen representations.

Initialization can have a dramatic effect, which is not often reported:
performance improvements claimed in many NLP modeling papers
may be within the range of that variation. Significant variation has
been reported for BERT fine-tuned on GLUE: both weight initializa-
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tion and training data order contribute to the variation. Some authors
propose an early-stopping technique to avoid full fine-tuning for the
less-promising seeds.

4.3.2.6 How big should BERT be?

overparametrization Transformer-based models keep increas-
ing in size, e.g. T5 is over 30 times larger than the base BERT. This
raises concerns about the computational complexity of self-attention,
environmental issues, and reproducibility and access to research re-
sources in academia vs. industry. Current models do not make good
use of the parameters: all but a few Transformer heads can be pruned
without much loss in performance, most BERT heads in the same layer
show similar self-attention patterns, and most layers can be reduced to
a single head.
Depending on the task, there may be harmful BERT heads/layers.

For machine translation and GLUE tasks, both heads and layers could
be advantageously disabled. In a structural probing classifier, 5 out of 8
probing tasks show some layers (typically the final one) to cause a drop
in scores. Comparing BERT-base and BERT-large, the larger model
performs better many times, but the opposite was observed for subject-
verb agreement and sentence subject detection. Why does BERT end
up with redundant heads and layers? It is not clear given the complexity
of language, and amounts of pre-training. The reason was suggested to
be the use of attention dropouts.

compression BERT can be efficiently compressed with minimal
accuracy loss. In a knowledge distillation framework, a smaller student-
network is trained to mimic the behavior of BERT. Variants include
mimicking the activation patterns of individual portions of the teacher,
and knowledge transfer at different stages (pre-training or fine-tuning).
Another method is quantization of weights, which often requires com-
patible hardware. Other techniques include decomposing BERT’s em-
bedding matrix into smaller matrices.

pruning and model analysis Care has to be taken in linguis-
tic analysis. For example, BERT has heads that seem to encode frame-
semantic relations, but disabling them might not hurt downstream task
performance, which suggests that this knowledge is not actually used. A
study identified the functions of self-attention heads and then checked
which of them survive the pruning, finding that syntactic and positional
heads are the last ones to go. In the opposite direction is pruning on
the basis of importance scores, and interpreting the remaining “good”
subnetwork. It does not seem to be the case that only the heads that
potentially encode nontrivial linguistic patterns survive the pruning.

Models and methodology in these studies differ, so the evidence is
inconclusive. Head and layer ablation studies have limitations: they
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inherently assume that certain knowledge is contained in heads/lay-
ers despite evidence of more diffuse representations spread across the
full network, i.e. the gradual increase in accuracy on difficult semantic
parsing tasks, and the absence of heads that do parsing “in general”.
Ablating individual components may harm the weight-sharing mecha-
nism, and ablations are also problematic if information is duplicated in
the network.

4.3.2.7 Multilingual BERT

In version 1 of the paper, Rogers, Kovaleva, and Rumshisky (2020)
discussed the Multilingual BERT (mBERT), which has been trained
on Wikipedia in 104 languages (with a 110K wordpiece vocabulary).
(The reader interested in pretrained multilingual deep language models
should also refer to Doddapaneni et al. (2021).) Languages with a lot
of data were subsampled, and some were super-sampled. mBERT is
surprisingly good in zero-shot transfer on many tasks, but not in lan-
guage generation. It has been used to create high-quality cross-lingual
word alignments, with caution for open-class parts-of-speech. Adding
more languages does not seem to harm the quality of representations.
mBERT transfers knowledge across some scripts, and retrieves parallel
sentences, although it has been noted that this task could be solvable
by simple lexical matches. The representation space shows some sys-
tematicity in between-language mappings. “Translation” is possible by
shifting the representations by a sentences offset. However, mBERT
does not learn systematic transformations of structures to accommo-
date a target language with different word order, e.g. SOV instead of
SVO, or a different adjective/noun order.

mBERT is simply trained on a multilingual corpus, with no language
IDs, but it encodes language identities. Adding the IDs in pre-training
was not beneficial. It reflects at least some typological language features,
and transfer between structurally similar languages works better. This
implies that mBERT could not be considered as interlingua, because its
representation space is structured by typological features. Cross-lingual
transfer can be achieved by only retraining the input embeddings while
keeping monolingual BERT weights, i.e. even monolingual models learn
generalizable linguistic abstractions. Compared with English BERT, at
least some of the syntactic properties hold for mBERT: MLM is aware
of four types of agreement in 26 languages, and the main auxiliary of
the sentence can be detected in German and Nordic languages.

There have been conflicting results whether shared word-pieces help
mBERT. The simplest formalization of this question is whether per-
formance correlates with the amount of shared vocabulary. Proposals
for improving mBERT include fine-tuning on multilingual datasets by
freezing the bottom layers; improving word alignment in fine-tuning;
translation language modeling as an alternative pre-training objective
where words are masked in parallel sentence pairs; and combining five
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pre-training tasks (monolingual and cross-lingual MLM, translation lan-
guage modeling, cross-lingual word recovery, and paraphrase classifica-
tion). The monolingual BERT has been applied directly in cross-lingual
setting, by initializing the encoder part of the neural MT model with
monolingual BERT.

4.3.2.8 Directions for further research

BERT was shown to rely on shallow heuristics in natural language
inference, reading comprehension, argument reasoning comprehension,
and text classification. Such heuristics can even be used to reconstruct
a non-publicly-available model, suggesting a shortcut in the data. It
has been realized in the past years that the development of harder
datasets that require verbal reasoning should be as valued as modeling
work. “Amnesic probing” targets what knowledge actually gets used by
identifying features that are important for prediction in a given task.

4.3.3 The geometry of word senses

Coenen et al. (2019) discover separate semantic and syntactic sub-
spaces in BERT representations: a fine-grained geometric representa-
tion of word senses, and syntactic representations in attention matri-
ces and individual word embeddings. In this section, we summarize
the former, i.e. their finding that BERT distinguishes word senses at
a very fine level. Much of this information in encoded in a relatively
low-dimensional subspace.

The operation of BERT has the following components:

• the input to BERT is based on a sequence of tokens (words or
pieces of words),

• the output is a sequence of vectors, one for each input token, a
contextualized embedding, and

• the internals consist of two parts. Th initial embedding for each
token is created by combining a pre-trained wordpiece embedding
with position and segment information; and the initial sequence
of embeddings is run through multiple transformer layers produc-
ing a new sequence of context embeddings at each step. In each
transformer layer is a set of attention matrices, one for each at-
tention head, and each head contains a scalar value for each pair
of tokens.

Context embeddings in BERT and related models contain enough
information to perform tasks in the NLP pipeline with simple classifiers
(linear or small MLP models). Such single global linear transformations
have been termed “structural probes” (Belinkov et al. 2017b; Conneau
et al. 2018; Hewitt and Manning 2019).
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4.3.3.1 Visualization of word senses

Taking sentences from the introductions to English-language Wikipedia
articles, for individual words, they retrieved 1,000 sentences, and visu-
alized the corresponding BERT-base context embeddings using UMAP.
With the example of die, they find crisp, well-separated clusters: the
German article, ‘stop living’, and the game tool. Within ‘stop living’,
there is a kind of quantitative scale, related to the number of people
dying. They ask the questions whether it is possible to find quantitative
corroboration that word senses are well-represented; and the seeming
contradiction: whether the positions in the clusters represent syntax or
semantics.

4.3.3.2 Measurement of word sense disambiguation capability

Coenen et al. train a simple classifier on BERT’s internal representa-
tions for WSD following the procedure described by Peters, Neumann,
Iyyer, et al. (2018), i.e. a nearest-neighbor classifier, considering cen-
troids of a given word sense’s BERT-base embeddings in the training
data. They achieve a higher F1 score than the previous state-of-the-art,
with accuracy monotonically increasing through the layers. An even
higher score was obtained using the technique in next paragraph.

4.3.3.3 WSD in a 128-dimensional space

Coenen et al. hypothesize a linear transformation under which distances
between embeddings would better reflect their semantic relationships.
They trained a probe following Hewitt and Manning (2019)’s method-
ology, i.e. a matrix B P Rkˆm, testing different values form. The loss is,
roughly, defined as the difference between the average cosine similarity
between embeddings of words with different senses, and that between
embeddings of the same sense. In evaluation on WSD, untransformed
BERT embeddings achieve a state-of-the-art accuracy rate of 71.1%.
Trained probes achieve slightly improved accuracy down to m “ 128.
Regarding layers, there is only a modest improvement in accuracy for
final-layer embeddings. The method more dramatically improves the
performance of embeddings at earlier layers: there is much semantic
information in the geometry of earlier layers. The finding offers a res-
olution to the seeming contradiction mentioned above: syntax and se-
mantics reside in separate complementary subspaces.

4.3.4 Self attention entropy and ambiguous nouns

NMT has achieved new state-of-the-art performance in translating am-
biguous words. Tang, Sennrich, and Nivre (2019) is interested in which
component dominates disambiguation. They consider hidden states,
and investigate the distributions of self-attention, training a classifier
to predict whether a translation is correct given the representation of
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an ambiguous noun. They find that encoder hidden states outperform
static word embeddings significantly, which indicates that encoders ad-
equately encode relevant information for disambiguation. In contrast
to encoders, the effect of decoder differs by models. Most interestingly,
attention weights and attention entropy show that self-attention can
detect ambiguous nouns and distribute more attention to the context.

Tang, Sennrich, and Nivre train a classifier which is fed a representa-
tion of ambiguous nouns and a word sense (represented as the embed-
ding of a translation candidate). The classifier has to predict whether
the two representations match.

They compare word embeddings and encoder hidden states at differ-
ent layers both from RNNS2S (Luong, Pham, and Manning 2015) and
the Transformer (Vaswani et al. 2017). Tang, Sennrich, and Nivre find
the following.

• Encoders encode lots of relevant information for WSD into hidden
states, even in the first layer. The higher the encoder layer, the
more relevant information is encoded.

• Forward RNNs are better than backward RNNs in modeling am-
biguous nouns.

• Decoders hidden states have different effects on WSD in Trans-
former and RNNS2S.

• Self-attention focuses on the ambiguous nouns themselves in the
first layer, and keeps extracting relevant information from the
context in higher layers.

• Self-attention can recognize the ambiguous nouns and distribute
more attention to the context words compared to dealing with
nouns in general.

4.3.5 Psycholinguistic diagnostics

Ettinger (2020) introduces a suite of diagnostics drawn from psycholin-
guistic experiments, that allow us to ask targeted questions about the
information used by LMs. The results are that BERT can generally
distinguish good sentence completions from bad ones involving shared
category or role reversal, albeit with less sensitivity than humans; it
robustly retrieves noun hypernyms; but struggles with challenging in-
ferences and role-based event prediction with a clear insensitivity to
the contextual impacts of negation. She is conservative in the conclu-
sion because these sets are small, and different formulations may yield
different performance.

Her diagnostics target a range of linguistic capacities, drawn from
psycholinguistics (but she does not test whether LMs are psycholinguis-
tically plausible). The psycholinguistic origin of the test has advantages:
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it is carefully controlled to ask targeted questions about linguistic capa-
bilities, it asks the questions by examining word predictions in context,
which is natural in the LM paradgm, and it allows us to study LMs
without any need for task-specific fine-tuning. These diagnostics are
chosen specifically to reveal insensitivities in predictive models. The
problematic nature of the senteces are evidenced by patterns that they
elicit in human brain responses (N400). They go beyond the syntactic
focus seen in existing LM diagnostics, and target commonsense/prag-
matic inference, the knowledge of semantic roles and events, category
membership, and negation.

Each of Ettinger’s diagnostics is set up to support tests of word
prediction accuracy and sensitivity to distinctions between good and
bad context completions. Ettinger focus on the BERT model, but the
diagnostics are applicable for testing any LM. She publishes a new set
of targeted diagnostics for assessing linguistic capacities that shed light
on strengths and weaknesses of the popular BERT model.

4.3.5.1 Related Work

The related work section includes work on fine-grained classification
tasks to probe information in sentence embeddings, token-level and
other sub-sentence level information in contextual embeddings, specific
linguistic phenomena such as function words, the overall level of “under-
standing” (semantic similarity and entailment), and curated versions of
these tasks to test for specific linguistic capabilities. The analysis of lin-
guistic capacities of LMs has been dominated by syntactic testing.

The internal dynamics underlying how LMs cape syntactic informa-
tion has been examined in different components of the LM and at dif-
ferent timesteps within the sentence, in individual units, and regarding
semantic phenomena like negative polarity items. (This line of analy-
sis is firmly rooted in the notion of detecting structural dependencies.)
Word prediction accuracy has been applied as a test of LMs’ language
understanding with the lambda dataset, which tests a models’ ability
to predict the final word of a passage, in cases where the final sentence
alone is insufficient to do so. lambda is not controlled to isolate and
test the use of specific types of information.

The linguistic characteristics of the BERT model itself have also been
examined. Regarding the dynamics of BERT’s self-attention mecha-
nism, probing attention heads for syntactic sensitivity found that indi-
vidual heads specialize strongly for syntactic and coreference relations.
The syntactic awareness in BERT has been also examined by syntactic
probing at different layers and the examination of syntactic sensitivity
in the self-attention mechanism. A variety of linguistic tasks have been
tested at different layers. BERT has been found to exhibit very strong
performance on several of the targeted syntactic evaluations.
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4.3.5.2 Leveraging psycholinguistic studies

The fourth section in Ettinger provides background on human language
processing, and explains how she uses this kind of information to choose
the tests. Psychologists test human responses to words in context, in
order to better understand the information that our brain uses to gen-
erate predictions. Two types of predictive human responses are relevant
here.

In the cloze test, humans are given an incomplete sentence and tasked
with filling their expected word in the blank. This is the ideal human
prediction in context, not under any time pressure, so participants have
the opportunity to use all available information from the context.

The brain response N400 can be detected by measuring electrical
activity at the scalp by EEG to gauge how expected a word in a con-
text is. The electrical signal appears to be sensitive to the fit of a word
in context. It correlates with the cloze in many cases, it can be pre-
dicted by LM probabilities, and, importantly, expectations reflected in
the N400 sometimes deviate from the more fully-formed expectations
reflected in the untimed cloze response.
Ettinger draws diagnostic tests from human studies that have re-

vealed divergences between cloze and N400 profiles, i.e. when the N400
response suggests a level of insensitivity to certain information in com-
puting expectations, causing a deviation from the fully-informed cloze
predictions. These present particularly challenging prediction tasks,
tripping up models that fail to use the full set of available informa-
tion.

4.3.5.3 Datasets

Each of Ettinger’s diagnostics support three types of testing: word pre-
diction accuracy, sensitivity testing, and the qualitative analysis of pre-
diction. These diagnostics are constructed to constrain the information
relevant for making word predictions. In word prediction evaluation ac-
curacy, Ettinger use the most expected items from human cloze prob-
abilities as the gold completions. In what she calls sensitivity testing,
Ettinger compares model probabilities for good versus bad completions
— specifically, those on which the N400 showed reduced human sensi-
tivity. The question is whether LMs will show similar insensitivities.
The qualitative analysis of models’ top predictions is also informative,
because these items are constructed in a controlled manner.
In all tests, the target word to be predicted falls in the final position,

which fits the computational models, both left-to-right or bidirectional
ones, only token probabilities in context are concerned, and the method
is equally applicable to the masked LM setting of BERT and to a
standard LM. Ettinger filters out items for which the expected word is
not in BERT’s single-word vocabulary.
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The observations, which we already summarized at the beginning,
are based on the following data-sets:

cprag-102 tests sensitivity to differences within semantic category.
(The name stands for Commonsense and pragmatic inference.) In the
example He complained that after she kissed him, he couldn’t get the
red color off his face. He finally just asked her to stop wearing that
lipstick/mascara., commonsense knowledge informs us that red color
left by kisses suggests lipstick, and pragmatic reasoning allows us to
infer that the thing to stop wearing is related to the complaint.

As in lambda, the final sentence is not supporting prediction on its
own, but unlike lambda, these items have consistent structure. None of
these items contain the target word in context, to test commonsense in-
ference rather than coreference. The average Human cloze probabilities
for expected completions is .74. A psycholinguistic study found that in-
appropriate completions (e.g.,mascara, bracelet) had cloze probabilities
of virtually zero, but N400 showed some expectation for completions
that shared a semantic category with the expected completion (e.g.,
mascara, by relation to lipstick).

role-88 tests event knowledge and the sensitivity to semantic role
reversals, e.g. The restaurant owner forgot which customer/waitress the
waitress/customer had served. It requires event knowledge about typical
interactions between types of entities in the given roles. The authors
found that although each completion (e.g., served) is good for only one
of the noun orders and not the reverse, the N400 shows a similar level
of expectation for the target completions regardless of noun order. The
sensitivity test targets this distinction. Cloze probabilities show strong
sensitivity to the role reversal, with average cloze difference of 0.233
between good and bad contexts.

neg-136 tests negation along with knowledge of category member-
ship, e.g. A robin is (not) a bird/tree. N400 shows more expectation
for true completions in affirmative sentences, but it fails to adjust to
negation: There is more expectation for false continuations.
A separate psycholinguistic experiment chose affirmative and nega-

tive sentences to be more “natural”, e.g.Most smokers find that quitting
is (not) very difficult/easy., and contrasts these with affirmative and
negative sentences chosen to be less natural Vitamins and proteins are
(not) very good/bad.

4.3.6 Layers and lexical content

Wang and Kuo (2020) generate sentence representations from BERT-
based word models exploiting that different layers of BERT capture dif-
ferent linguistic properties. The task of sentence embedding, i.e. trans-
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forming a sentence to a vector, is not trivial. A common approach with
BERT-based models is to average the representations obtained from
the last layer or using the [cls] token. The authors show that both
are sub-optimal. They fuse information across layers to find better sen-
tence representation: Wang and Kuo dissect BERT-based word models
through a geometric analysis of the space in an unsupervised fashion.

Different layers of BERT learn different abstraction levels: interme-
diate layers encode the most transferable features, and higher layers
are more expressive in high-level semantic information. Information fu-
sion across layers has great potential. Wang and Kuo experiment on
patterns of the isolated word representations across layers, and find
that the evolution of isolated word representation patterns across lay-
ers highly correlate with word content: words of richer information have
higher variation in their representations. This finding helps them define
“salient” word representations and informative words for sentence em-
beddings.

Wang and Kuo compare SBERT-WK with the following 10 (param-
eterized and non-parameterized) methods: the average of GloVe word
embeddings; the average of FastText word embedding; the average of
the last layer token representations of BERT; [cls] embedding from
BERT, originally used for next sentence prediction; the SIF model
(Arora, Liang, and Ma 2017), which is a non-parameterized model, a
strong baseline in textual similarity tasks; the p-mean model that in-
corporates multiple word embedding models; Skip-Thought; InferSent
with both GloVe and FastText versions; the Universal Sentence En-
coder, which is a strong parameterized sentence embedding using mul-
tiple objectives and a transformer architecture; and Sentence-BERT,
which is a SOTA sentence embedding model with a Siamese network
over BERT. SBERT-WK improves the performance on textual simi-
larity tasks by a significant margin. Regarding supervised downstream
tasks, SBERT-WK obtains the best result in 5 of the 9 considered
tasks, and also in average. The merit of the model is in part due to its
efficiency.
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Part II

MA IN CONTRIBUTIONS

Our main contributions investigate lexical relations in a
very broad sense: besides lexical relations proper (i.e. re-
lations that hold between the meanings of words indepen-
dent of context, e.g. antonymy, causality, and hypernymy),
we include thematic and syntactic relations, word analogies,
translation, and ambiguity.
The first two chapters investigate verbs and their arguments.
Chapter 5 investigates arguments sttructure: we provied a
thematic categorization of arguments in the 4lang frame-
work. Our main question is what inventory of thematic
roles is needed for the formulaic definition of each word
in the defining vocabulary of this multilingual and radically
monosemic semantic formalism.
Still on verb arguments, but moving from the symbolic
treatment of thematic roles to the distributional representa-
tion of „syntactic roles” (i.e. grammatical functoins), Chap-
ter 6 investigates the use of different automatic association
scores and tensor decomposition methods in the context of
collocation extraction.
The last two chapters are motivated by the question whether
relations which can be captured by intuition and recorded
by human labor (as witnessed by their literature in psychol-
ogy and linguistics), can also be detected in data-driven
distributional representations, more specifically, static word
embeddings (word representations obtained with shallow
neural networks).
Chapter 7 investigates several lexical relations: antonymy
(opposite meaning), causality, hypernymy (what basic cate-
gory a word belongs to, e.g. dogs are animals), analogy, and
translation.
Our last chapter is concerned with one of the greatest prob-
lems in lexical semantics: word ambiguity and, more specif-
ically, homonymy and polysemy. Static word embeddings,
our main tools in the last two chapters, represent each word
form with a single linear algebraic vector. Chapter 8 pro-
poses an evaluation method for multisense (static) word
embeddings (MSEs), where the different senses of an am-
biguous word are represented with different vectors.





Az, ki tőlem elrabolna / Lelkemtől rabolna meg. . .
‘That who stole you from me would rob me of my soul’6

— Béni Egressy
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5.1 overview

Now, in the two middle chapters of the thesis, we investigate verbs and
their arguments: thematic roles in a symbolic approach, and grammat-
ical functions in a distributional one, respectively. This chapter, which
originally appeared as Makrai (2014) in Hungarian, investigates the ar-
gument linking system in the 2014 version of 4lang.1 Our discussion
is based both on theoretical princliples, and on our experience in creat-
ing the formulaic meaning representation of each item in the defining
vocabulary. Our main question is what inventory of thematic roles is

6
This motto from the libretto of a Hungarian opera is intended here as a Hungarian
pun, but we try to explain the joke: Both clauses contain the verbal stem rabol ‘rob’,
a pro-dropped syntactic object (an unmarked construction in Hungarian syntax),
and an ablative-marked overt argument, but there is a mismatch in the grammatical
functions (surface cases):

(pro-dropped) object ablative (‘from’)
el rabolna Object maleficient
rabolna meg maleficient Object

In the first clause, the ablative is arguably oblique and the preverb el ‘away’ is
adverb-like, while in the second clause, the ablative is quirky and the adverbial meg
is a pure perfectivizer.

1 Since then, Kornai (2023) proposed a more minimalistic approach to link-
ing in 4lang, where cross-lingual claims are basically restricted to the
agent and the patient, see Section 5.3. The last version which is com-
patible with the present thesis is https://github.com/kornai/4lang/blob/
1d19f167b9c0eace5bd874759860781be78f96ed/4lang.
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needed for the definition of each word in the defining vocabulary of a
multilingual and radically monosemic semantic formalism.

As we have already seen in Chapter 3, 4lang is a multilingual lexicon
for general human language understanding containing formal represen-
tations of word meaning in the monosemic approach to lexical seman-
tics, which means that items are language independent concepts cover-
ing different uses of the same word, uses in different sentence patters
and even in different parts-of-speech with the same meaning represen-
tation.2 Multilinguality and abstractness of items have the effect that
a simple deep case (or thematic) frame captures uses with different ar-
ity (i.e. transitive and intransitive). Deep cases denote the nodes in the
graph representing the meaning of a predicate where the representation
of the argument (single word, entity or phrase) has to be inserted.
4lang makes no clear cut between complements and adjuncts. Basi-

cally an argument is represented by a deep case whenever its needed
for building the representation of the verb. As uses of the same verb
with different arities are handled in the same item, deep cases are used
consequently in different verb patterns, and all possible arguments are
included in the representation. However, as verbs can be defined as spe-
cial cases of other verbs (biting is cutting with teeth), arguments are
inherited, so not every argument is listed directly in the definition of
some verb. Another source of implicit arguments are constructions pro-
viding verbs with outer arguments, e.g. paint a picture for somebody,
sleep an hour, fly the Atlantic. Causatives (e.g. march the soldiers)
are also attributed to constructions rather than argument structure.

Most frequent verbal deep cases are agents (denoted by AGT), patients
(PAT), and datives (DAT), aleady familiar from Section 2.3.2. Patient
plays the role of the neutral case it seems to play in many systems
(Somers 1987). Following the unaccusative hypothesis, arguments of
intransitive verbs split to agents and patients. The label “dative” is
taken from Fillmore (1968), but our understanding is narrower as we
mainly restrict dative to recipients in ditransitives (verbs of commu-
nication (e.g. tell) and transfer (e.g. give)). ToDo psychological ex-
periencer verbs, predicate arguments, has, appear/seem These verbs
correspond to Schank’s (see Section 2.2.3) transmission, mtrans and
ptrans. There are three locative cases in 4lang (TO, FROM, and AT),
the latter being used for the abstract goal of relational nouns such as
occasion and need as well. A greater group of relational nouns require
the possessive (POSS) such as absence and duty. Quirky cases can be
marked in a language dependent module.
Deep cases in 4lang are not restricted to verbs. Some grammatical

features such as plural contribute to meaning. Thechnically, the defini-
tion of these morphemes refer to the referent with REL. Representations

2 The lexicon, automatically collected word forms in 50 languages, a vector space
language model (embedding) computed from 4lang, and articles can be found at
http://hlt.sztaki.hu/resources/4lang/
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of productive derivational suffixes and adpositions also refer to the con-
ceptual element they attach to with REL.

To calculate the meaning representation of a sentence, we need to
map the predicate-argument relationships. From a theoretical linguis-
tic point of view, we have two pillars here: selection constraints and
surface cases in the broadest sense (e.g. the order of phrases, case af-
fixes and/or adpositions varying from language to language). In our
opinion, selection constraints correspond to spreading activation (Sec-
tion 2.2.2) in the dictionary, and the knowledge about surface cases
is indirectly encoded by deep cases. ToDo Hogyan kezelné az adott
igéhez tartozó lehetséges szerkezetek egyértelműsítését? From the point
of view of deep cases, it is important that 4lang is designed to connect
to each language with a language-specific module, which tells which
surface cases will realize each deep case in that language. In this chap-
ter we deal with deep cases, so we outline the activation spreading only
briefly and in a simplified way.
Recall the definition graph, the vertices of which are concepts in

the dictionary, and two of these are connected if one is included in
the definition of the other (Section 3.3), e.g. ‘milk’ is associated with
‘liquid’. If we want to know which argument of drink the word milk fills
in a sentence, we look for the shortest path (edge sequence) between
the two concepts in the graph. With some luck, this passes through the
word liquid and largely corresponds to the representation of the phrase
drink milk.

Let us now turn to how the role of each argument (with slot it fills)
can be calculated from surface cases. The meaning representation of a
term that includes a predicate with its arguments (e.g. a verb phrase)
should be calculated from the following: the representation of the mean-
ing of the predicate, that of the arguments, and the structure of all these
together. In the case of 4lang, the latter is taken care of by indicating
in the meaning representation of the predicate (typically a verb) where
the meaning representation of each argument should go. To do this, we
need to be able to distinguish the arguments of higher arity predicates
(e.g. transitive verbs). This is done with reference to the deep case of
the argument. The background for our method is the common assump-
tion (Section 2.3.2) that, at least within languages, there are regular
correspondences between the semantic role (e.g. agent) and the syn-
tactic properties of the arguments (the surface case of the argument,
which sentence alternations the verb participates in), and in several
cases these regularities shows up in more languages.
As we have already mentioned, our deep cases only serve to identify

which argument is which. In this context, it is perhaps worth emphasiz-
ing that the classification of arguments into deep cases is not primarily
a semantic classification. In computer semantics, the fact that there is
a regular difference between the meanings of the corresponding argu-
ments could often be an argument in favor of distinguishing between
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two deep cases. For example, Talmy attributes the intentional differ-
ence between the verb pairs hide/mislay, pour/spill, . . . to the exact
nature of the case of the agent.

In Allen and Teng (2018)’s view, semantic roles should have con-
sequences independent of the predicate or event. They explore three
aspects: entailment from a role independent of the type that has such
roles; integration with ontology (Roles should obey the typical entail-
ments in an ontology, e.g. inheritance of properties from parents); and
derivability (roles should be derivable from the definitions in dictionar-
ies). Theses authors admit that only the third property allows empirical
evaluation. In 4lang such differences do not justify the introduction of
a new deep case, as the meaning is fully described in the definition field
of the lexical entry.

Compared to semantic-based classification, the other extreme is where
the number of cases cannot exceed the largest number of arguments we
encounter among verbs. We do not strive for this either, as we want
to take advantage of regularities between the semantic role and the
syntactic properties.

5.2 individual relations

5.2.1 Function morphemes

How does 4lang grasp simpler dependencies? On the one hand, certain
inflections, such as the plural, have a conceptual meaning in the sense
that in the representation of the structure containing the inflectional
affix, there is an element for which the inflectional affix is responsible.
Productive derivational affixes and adpositions are similar. We need to
treat these relations (stem–inflectional affix, stem–derivational affix, ad-
positional object–adposition) uniformly already because 4lang wants
to be language-independent, and the same semantic relation is ex-
pressed differently in different languages, e.g. the meaning, which is
expressed by the possessive personal suffix in Hungarian, is expressed
by the possessive pronoun in English. Here, the place of the representa-
tion of a function morphemes in the representation of the more content
element is always represented by the keyword REL (relational, related),
which in a broader sense can be called a deep case.

5.2.2 Verbal deep cases

5.2.2.1 Argument positions, alternations, open case inventory

Turning now to the arguments of verbs, we must first clarify what
we mean by argument. Only the obligatory ones or the adjuncts as
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well?3 Are we talking about surface arguments, or the arguments for the
(deep, logical) predicate corresponding to the verb in a formal semantic
translation? In the first approximation, we follow the literature (Somers
1987) in representing those surface arguments by their deep case in the
definition of a verb that are needed to describe the meaning. Another
issue arises from the fact that, due to the abstract nature of 4lang, we
do not differentiate between the transitive use of a verb (or even that
with more surface arguments) and the intransitive use of the same verb
form. Deep cases are defined in such a way that the same predicate in
different uses gets the same case. It follows that if a verb has a transitive
use, the deep case of two participants must also be indicated. Finally,
a further nuance is that when a verb can be defined as a special case
of another verb and the arguments are inherited, it is not necessary to
explicate them in the definition, e.g. bite is defined as cut, INSTRUMENT
tooth (‘cut with tooth’), and bite inherits the arguments of cut, so these
are not listed.

In choosing deep cases, it is not our task to create harmony between
the participants of different verb roots. Thus, for example, it is not
our intention that the participants in the sentences John sells a book
to Peter and Peter buys a book from John will receive the same deep
cases for the two sentences.4 Finally, we do not include outer roles in the
verb definition, that is, the possible extensions that can be assigned to a
verb by a construction that affects entire verb classes (e.g. motion verbs)
or even all verbs, so in the following examples the putative argument
position corresponding to the bold face phrases: paint an image to
someone, sleep an hour, fly the Atlantic Ocean over.5 Causation6
is also considered such construction.

5.2.2.2 Individual cases

There are 744 verbs in 4lang. Deep cases are listed in the Table 10,
along with the number of words that they occur with. Unsurprisingly,
the most common deep case is the agent. When writing definitions, we
can decide without much difficulty which argument of a typicalToDo
The final version will discuss unaccusative and psychological experi-
encer verbs as well to reflect on qestions raised by the opponents of
the thesis transitive verb is the agent (indicated by the keyword AGT in
the dictionary). The second most common deep case in 4lang, which
we called patient (PAT), is often defined only as the “semantically un-
marked” deep case, but since the others are relatively clearly identifi-
able, this is not a problem either. According to the unaccusative hy-

3 This chapter was originally published in Hungarian, where there is a common term
for arguments and adjuncts, bővítmény ‘expansion’, arguments proper are called
vonzat ‘attractee’, and adjuncts proper are called szabad bővítmény ‘free expansion’.

4 In both cases, the English subject will be an agent, and the subject will be PAT.
5 For more on external roles, see Somers 1987, Chapter 9.
6 In Hungarian, causation is marked by a derivational suffix -(t)At.
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AGT 383
PAT 311
REL 81
POSS 52
DAT 30
TO 17
FROM 11
AT 2

Table 10: Each deep case with the number of predicates using them. As for
the granularity of the role inventory, our system is between Prop-
Bank/AMR (Sections 2.5.5 and 2.5.7) and VerbNet (Section 2.5.4).

object- ergative ergative active lexicalized subject-
marking 1 2 active marking

Peter is writing the letter. nom ag ag ag ag ag
Peter is writing. nom nom ag ag ag ag
Peter is walking. nom nom nom ag ag/nom ag
Peter is ill. nom nom nom nom ag/nom ag

object marking English (eng), Hungarian (hun)
ergative 1 Kabardian (kgb), Avar (ava), Adige (ady)
ergative 2 Aghul (agx), Udi (udi)
active Bats (bbl)
lexicalized active Georgian (kat), Dakota (dak)
subject marker Mingrelian (xmf), maidu (nmu)

Table 11: Arguments of intransitive verbs in different languages (Komlósy
1982). The SIL code of the languages is also indicated.

pothesis used in modern syntax, the argument of an intransitive verbs
can also be patient (e.g. fall, melt).

Komlósy (1982) gives a good summary of how the agent and patient
of intransitive and transitive verbs are classified by surface cases in
different languages. Komlósy reviews a number of ergative (or active
and subject-marking) languages in terms of the case of the arguments
of different single-argument verbs. Table 11 shows where the different
languages draw the line between the two cases on a scale of activity.
These data suggest that in a language-independent case system we need
to make finer differences than the binary AGT vs PAT partition. It is a
question of whether this would really improve the performance of our
systems in these languages. Such experiments would exceed the bounds
of the present thesis, so we’ll stick with the simpler case set.
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5.2 individual relations

With agent and patient, we essentially follow the generative semantic
tradition. We deviate more from the history by using the dative (DAT).
The name is taken from the oldest terminology of generative semantics
(Heringer 1967; Fillmore 1968). Fillmore himself later separated the da-
tive into experiencers, objects (Object), and goals (Goal). We basically
use the dative only for verbs with at least three surface arguments, in
other cases only based on their similarity to the former. As for their
meaning, some of the three-argument verbs are the special cases of say,
very reminiscent of Schank’s (see Section 2.2.3) mental transmission
mtrans: admit, allow, command, declare, emphasize, explain, express,
forbid, grateful, say, swear, teach, thank. Another group is related to
give, i.e. Schank’s physical transmission ptrans: bestow, have, help,
lend, let, make offering, offer, owe, owing to, pass, pay, present, sell,
show. Recall that we do not handle predicative arguments of verbs like
appear, regard, and seem. They are marked dative in Hungarian, but in
a division finer than ours (Chafe 1970), Complement would be a case
on its own. ToDo Novák: „vmi vmilyennek látszik/tűnik” szerkezetben
a datívuszos predikatív vonzatot PAT szerepűnek tekintené, de akkor
mi lenne az alany szerepe (mélyesete)? There are some further words
in the defining vocabulary with dative marked arguments in Hungarian
(nehéz ‘difficult; heavy’, y tetszik x-dat ‘x likes y’) or German (ähneln
‘resemble’, beitreten ‘join’, gleichen ‘equal’), but these are too sporadic
to draw any generalization, so we treat them as exceptional.
There are as many as three locative cases in 4lang, TO and FROM

corresponding to the Fillmore Goal (Goal) and Source (Source), and the
essive AT. In Section 2.2.6, we reviewed Hayes (1979), in whose approach
“to really capture the notion of ‘above’, you probably have to go into
analogies to do with e.g. interpersonal status: Judge’s seats are raised;
Heaven is high, Hell is low; to express submission, lower yourself, etc.”
4lang has gone as far as possible in abstraction: if an argument in many
languages gets a surface case that is also used to express the goal of
movement (specific inflectional suffixes in Hungarian, and prepositions
in English), then we consider it a goal. We mean able, accustom, add,
addition, available, belong, gentle (hu:gyengéd, la:mollis, pl:delikatny),
include, invite, join, law, listen, load, mix, necessary, need, occasion,
put, ready, remind, sensitive, similar, skill, tendency. The other two
locative cases are the source (accept, borrow, buy, cut off, date, derive,
of, profit, remove, rent, rubber, separate, subtract, take) and the essive
space (situated, stay).
In the language-specific module already mentioned it is possible to

mark some arguments of some verbs with surface cases, if their case is
unpredictable from their deep case (quirky case). On the other hand,
it is already clear from English, Hungarian and German that there are
verbs where no generalization seems useful. In this case, we use the
same REL keyword as for predicates with a single surface argument,
e.g. prefer to something.
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5.2.3 Relational nouns

Finally, consider the relationship between relational nouns and the
word associated with them (e.g. in the case of interest, the stakeholder).
The phenomenon that makes the noun interest relational is twofold. On
the surface hand, the proportion of possessed occurrences of the word
interest is significantly higher than among other nouns. On the other
hand, which is more interesting from a semantic point of view, no mat-
ter how we want to describe the meaning of the word interest, we would
probably refer to the “stakeholder”. The grammatical relationship be-
tween the two words is possessive in most relational nouns, but we find
something different in about one-tenth of the lexemes. In the case of
the words occasion and need, the participant which we call the goal for
lack of a better word, is sublative in Hungarian (-rA, lit. onto) and for
in English. In the representation of relational nouns, we use the key-
words POSS or TO according to the grammatical relationship between
the two words to indicate the place where the representation of the
related word (the interested person and the target, respectively) goes.
TO is the same abstract goal we encountered at verbs. By mediating
deep cases, the linguistic relationship thus helps to find the semantic
relationship between the two things (the interested and the interest; the
occasion and the goal). We will not handle relational nouns that are
productively formed from a verb, because 4lang does not distinguish
e.g. participles from the corresponding verb.

5.3 todo deep cases markers in kornai (2022)

The motivation of the 2014 version of deep cases in 4lang was to cap-
ture language-universal regular correspondences between the semantic
role (e.g. agent) and the syntactic properties of the arguments (the
surface case of the argument, which sentence alternations the verb par-
ticipates in). See Section 3.7 for the applications of 4lang to word and
sentence similarity and entailment. Both the agents (resp. patient) in
the manual definitions and the subjects (resp. object) in the depen-
dency analysis have been linked with a 1 (resp. 2) arrow. They did not
use the remaining deep cases. Specifically, no implementation tested
whether the treatment of relational nouns with POSS and TO described
above benefits NLP applications.

Concurrently with this thesis, Kornai (2023, Ch 2.4.) proposes a more
minimalistic treatment of linking that restricts the cross-lingual claims
to AGT and PAT. These two deep cases directly correspond to the edge
colors 1 and 2. The relevant part of Kornai’s section can be found by
searching for “the most recalcitrant of our primitives, the linkers”, or
simply for “recalcitrant”. Some of the syntactio-semantic information is
expressed with a new relation mark_. The definition of (mostly mental)
transfer verbs will contain "dative" mark_ person. Another frequent
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first argument of mark_ is the object of to, e.g. "to/3600 _" mark_ act
in the definitions of able, difficulty, and ready.

5.4 conclusion

We have shown how deep cases can work in a machine comprehension
resource that assigns deep cases directly to rather abstract language-
independent concepts in each language.

Clearly, the most important deep cases are agent and patient. In the
next chapter we analyze the representation of these relations with the
tools of tensor decomposition.
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DECOMPOS ING A TRANS IT IVE VERB TENSOR

Contents
6.1 Introduction 158
6.2 Counts, weighting, and associations 160

6.2.1 Salience and normalized PPMI 161
6.2.2 Higher-order PMI 162

6.3 Tensor decomposition 163
6.3.1 Canonical Polyadic Decomposition 163
6.3.2 Tucker decomposition 164

6.4 Related work 164
6.4.1 Ambiguity, verbs and vectors 164
6.4.2 Tensors for language 166
6.4.3 Evaluation in related work 168
6.4.4 Hungarian 169

6.5 Experiments 169
6.5.1 Setting: the corpus and the task 170
6.5.2 Quantitative results in SVO-similarity 170
6.5.3 Qualitative analysis of latent dimensions 173
6.5.4 Comparing subject and object vectors 176

6.6 Conclusion of the main experiments 177
6.7 Follow-up 177

6.7.1 Clustering verb vectors 177
6.7.2 Hungarian data and preverbs 179

6.8 Conclusion 180

6.1 introduction

Verbs have been characterized on the basis of how frequently various
syntactic constituents occur in various grammatical relations to them,
which is, not surprisingly, related to the meaning of the verb (Levin
1993). These selectional preferences have been analyzed with machine
learning tools (Van de Cruys 2009). Verb structures include colloca-
tions, whose syntactic modifiability or semantic compositionality is re-
duced: their linguistic distribution may be idiosyncratic or the sense of
the combination may be habitual or even fixed (Bouma 2009).
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6.1 introduction

Tensors (>2-dimensional arrays) generalize matrices; while matrices
contain numbers aligned in two dimensions, rows and columns, ten-
sors have more of these dimensions, also called axes or modes1 Singu-
lar value decomposition (SVD) of a co-occurrence matrix is a natural
tool to compute generalizations about the interactions between two
modes, like words and documents (LSA, Landauer and Dumais (1997),
Section 4.1.3), target and context words (words embeddings, Mikolov,
Sutskever, et al. (2013), Levy and Goldberg (2014c), and Pennington,
Socher, and Manning (2014)), or words and dependency contexts (Levy
and Goldberg 2014a). Four ways of looking at SVD (in LSA) can be
distinguished (Turney and Pantel 2010): the goal can be the modeling
of some latent meaning, noise reduction, indirect aka high-order co-
occurrences (when two words appear in similar contexts), or sparsity
reduction. Intuitively, language features multi-mode interactions: the
turntable playing the piano can be strange (Van de Cruys 2009), while
the two-mode relations xplay, subj, turntabley and xplay, obj, pianoy
are perfect. Tensor generalizations of matrix decomposition (Kolda and
Bader 2009), especially low-rank factorizations, open the way for the
analysis of such interactions.

It seems that, after intensive early research (Van de Cruys 2009; Van
de Cruys, Poibeau, and Korhonen 2013; Polajnar, Rimell, and Clark
2014; Fried, Polajnar, and Clark 2015; Hashimoto and Tsuruoka 2015),
results obtained with skip-gram and related word embedding methods
outshone tensor methods for verb argument structure. Yet tensor de-
composition házi védésre remains relevant, as it is more interpretable
than more recent methods, and it has developed remarkably. NLP test-
beds in the domain of verb argument structure have been involved in
cutting-edge scalable, noise-robust tensor works (Sharan and Valiant
2017; Bailey, Meyer, and Aeron 2018; Frandsen and Ge 2019). The
data-driven linguistic understanding of word ambiguity and especially
that of verb selection is still immature. Here we try to make progress
in the linguistic direction by further research on tensorial analysis of
verb argument structure.

Tensor decomposition provides embedding vectors for each mode (in
our case, nouns as subjects, verb, and nouns as objects) analogous to
word embeddings in (shallow or deep) neural networks. In this paper,
we compute different association measures between subjects, verbs, and
objects, populate tensors with these measures, decompose the tensors
with different algorithms, and investigate the resulting word embed-
dings quantitatively and qualitatively to answer the following questions.

Our first four questions will be answered quantitatively in the mod-
eling of English subject-verb-object triple similarity, while the last two
questions are qualitative.

1 The term mode is preferred when data from different modalities are fused.
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decomposing a transitive verb tensor

• Which association measure yields the best representations? We
experiment with several measures, including our novel generaliza-
tion of normalized pointwise mutual information to the higher-
order (>2) case.

• Should we include empty argument fillers (subjects or objects)
in our co-occurrence statistics? Ideally, including them may help
generalization over the transitive and the intransitive uses of the
same verb, while discarding them may help focusing on transitive
structures cleanly as a separate phenomenon.

• The two tensor decomposition algorithms, CPD and Tucker, which
we will introduce in Section 6.3, have very different time-complexity:
Tucker is much faster. Tensor decomposition has hyper-parameters
like the decomposition rank and the frequency cutoff. Both are
related to memory limitation, especially the latter. It would be
beneficial, if the two algorithms reached the best results with sim-
ilar hyper-parameters, because then a fast parameter tuning with
Tucker would also benefit CPD. Is this the case?

• How does the trade-off between the three hyper-parameters re-
lated to the size of the decomposition (i.e. the decomposition rank,
the inclusion of empty fillers, and the frequency cutoff) look like?

• Do latent dimension of our word embeddings reflect lexical knowl-
edge?

• Can the difference between each noun as a subject versus an ob-
ject correspond to some intuitive difference between subjecthood
and objecthood?

Section 6.2 describes the linguistically motivated association mea-
sures between subjects, verbs, and objects we apply. These measures
include ones that are novel to the best of our knowledge. Section 6.3 of-
fers an introduction to tensor decomposition. Section 6.4, most of which
originally appeared in Hungarian as Makrai (2020), reviews the com-
putational linguistic applications of tensor decomposition, especially
those related to verb argument structure. Last but not least, Sections
6.5 to 6.7 describe our experiments. Our code is available online.2

6.2 counts, weighting, and associations

Word co-occurrences form sparse arrays, as most words do not oc-
cur empirically with most words, and frequencies span many orders
of magnitude (Zipf or power law distribution, Manin (2008) and Git-
tens, Achlioptas, and Mahoney (2017)). In order to scale to large data,
linguistic tensor decomposition methods have to be based on sparse

2 https://github.com/makrai/verb-tensor
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6.2 counts, weighting, and associations

tensors populated with more sophisticated scores than frequency. Now
we turn to these weighting functions and especially to linguistically
motivated association scores.

The simplest choice is the logarithm of the co-occurrence frequency
(Pennington, Socher, and Manning 2014; Sharan and Valiant 2017).
Jenatton et al. (2012) places the modeling of the xsubject, verb, objecty
triples in the context of multi-relational learning, and apply a weighting
function related to the log-bilinear model (Mnih and G. Hinton 2007;
Mikolov, Chen, et al. 2013).
Van de Cruys (2009, 2011) and Van de Cruys, Poibeau, and Korho-

nen (2013), and Bailey, Meyer, and Aeron (2018) use three-mode gen-
eralizations of the information-theoretic association measure (Positive)
Pointwise Mutual Information ((P)PMI). Positivity is related to sparse
inputs: in order to attribute higher scores to actual co-occurrences than
unattested ones, PMI and the lexicographic association scores intro-
duced in the following paragraph, positive variants of the association
measures have to be used, e.g. PPMI, which replaces negative PMI
entries with zero. We discuss the two types of three-variable general-
ization of PPMI in Section 6.2.2: the more standard total correlation
(that we still call PMI) and interaction information.

We also experiment with generalizing Log Dice (Rychlý 2008) to
three axes

log 3fpx, y, zq
fpxq ` fpyq ` fpzq

` c,

where c is chosen so that the Log-Dice values are non-negative. (While
3 in the nominator is redundant, because it is subsumed under c, we
keep it in the formula to make it more reminiscent of the established
2-variable case.) The use of Log Dice as well as salience introduced
in the next paragraph has, to the best of our knowledge, mainly been
limited so far to lexicography.

6.2.1 Salience and normalized PPMI

PPMI, despite of its nice information-theoretic interpretability, is bi-
ased towards rare events (Turney and Pantel 2010; Levy et al. 2015;
Zhuang et al. 2018). This motivates the Sketch Engine lexicographic
software (Kilgarriff et al. 2004) to multiply vanilla PPMI by log f (in
our case, by logpfpx, y, zq), to get the measure of salience. We apply sim-
ilar modifications to every score introduced in Section 6.2 so far. Denot-
ing vanilla PPMI, interaction information and Log Dice by pmi-vanl,
iact-vanl, and Dice-vanl, respectively, we get pmi-sali, iact-sali,
and Dice-sali by multiplying the vanilla score by log fpx, y, zq.
There is a theoretically better motivated way of transforming PMI

to some measure which is less biased towards rare combinations. In
Bouma (2009)’s approach, normalization is related to boundedness. He
looks for measures whose absolute value is pointwise larger than that of
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decomposing a transitive verb tensor

PMI. Entropy and negative log probability are two of those measures,
and we follow the literature in choosing the latter. In our experiments,
we apply this normalization to the two multi-mode generalizations of
PMI which will be introduced in Section 6.2.2, interaction information
and the one which we will still call PMI. While normalized interaction
information does not excel in our experiments, tree-variable normalized
PMI, which is to the best of our knowledge the novelty of the present
paper, proves the best among the alternatives considered. Empirically,
when divided by ´ log ppx, y, zq, positive interaction information and
the more standard 3-mode PPMI is upper-bounded by 1 and 2, respec-
tively.

6.2.2 Higher-order PMI

One would think that it’s obvious that the 3-variable generalization of
Pointwise Mutual Information (PMI) is

log ppx, y, zq
ppxqppyqppzq

, (1)

but it turns out that this is only one of the possible generalizations. Van
de Cruys (2011) introduces two pointwise association measures, whose
expected values are two different multivariate generalizations of mu-
tual information (Shannon and Weaver 1949): interaction information
(McGill 1954) and total correlation (Watanabe 1960).

Pointwise interaction information is based on the notion of condi-
tional mutual information.3

log ppx, yqppx, zqppy, zq
ppx, y, zqppxqppyqppzq

Total correlation on the other hand quantifies the amount of informa-
tion that is shared among the variables, with a pointwise variant defined
by the formula in Equation (1). Following the literature (Villada Moirón
2005; Van de Cruys 2009; Van de Cruys, Poibeau, and Korhonen 2013;
Bailey, Meyer, and Aeron 2018), when we speak about (multivariate
Positive) Pointwise Mutual Information in this paper, we will mean
(pointwise) total correlation.

Van de Cruys (2011) reports that in their Dutch experiments both
methods are able to extract salient subject verb object triples (proto-
typical svo combinations like poll represents opinion and fixed expres-
sions). Narrowing the scope to the word play, they find that interaction
information picks up on prototypical svo combos, e.g. orchestra plays
symphony, while the more established one (which he calls specific cor-
relation) picks up on play a role and salient subjects that go with the
expression.

3 Mnemonically, the formula of the pointwise variant generalizes the 2-mode case
along the inclusion and exclusion principle, except it has the numerator and the
denominator swapped to ensure a proper set-theoretic measure.
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6.3 tensor decomposition

Figure 14: Canonical Polyadic Decomposition, figure from Rabanser, Shchur,
and Günnemann (2017).

Figure 15: Tucker Decomposition, figure from Rabanser, Shchur, and Günne-
mann (2017).

6.3 tensor decomposition

The main entry point to tensor computation is Kolda and Bader (2009),
but Rabanser, Shchur, and Günnemann (2017) is also worth consulting.

There is no single generalization of the SVD concept, the two most
popular extensions, Canonical Polyadic Decomposition and the more
general Tucker, feature different generalized properties. Sidiropoulos
et al. (2017) discuss the interpretation of these two different ways of
decomposition in signal processing and machine learning points of view.

6.3.1 Canonical Polyadic Decomposition

Canonical Polyadic Decomposition (CPD, aka CanDecomp, Parallel
Factor model, CanDecomp, rank decomposition, or Kruskal decompo-
sition, (Carroll and Chang 1970)) expresses a tensor as a minimum-
length linear combination of rank-1 tensors. A rank-1 tensors is the
tensor product of a collection of vectors, just as the dyadic product of
two vectors is a 1-rank matrix, see Figure 14.

The alternating least squares algorithm (ALS, Carroll and Chang
(1970) and Harshman (1970)) is an iterative method for CPD. In each
iteration, all but one of the modes are fixed and the remaining one is
fitted. ALS does not guarantee convergence, and even if it converges,
this cannot be detected in a trivial way. Orth-ALS (Sharan and Valiant
2017) improves on ALS.
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Figure 16: Three related topics. “Not in the unity of a single person, but in a
Trinity of one substance.”

6.3.2 Tucker decomposition

ToDo Szécsényi: „CPD seems more relevant for linguistics representa-
tion”. Miért?
While CPD seems more relevant for linguistics representation, we

also discuss Tucker decomposition, because it can be computed much
more efficiently. Tucker decomposition (aka Higher Order SVD, Tucker
(1966)) factorizes a tensor into a core tensor G multiplied by a matrix
along each mode, see Figure 15. In the case of

subjectˆ verbˆ object

tensors, rows of the three matrices contain embedding vectors of entities
(subjects or objects) and those of verbs (“relation”), and entries of the
core tensor G determine the levels of interactions between the former
three. Tucker decomposition is not unique, because we can transform G
without affecting the fit if we apply the inverse of that transformation
to the factor matrices. Uniqueness can be improved (Kolda and Bader
2009) by imposing e.g. sparsity, making the elements small, or making
the core “all-orthogonal”. Other priors and constraints in tensor learn-
ing involve non-negativity and independence (Lahat, Adali, and Jutten
2015).

6.4 related work

6.4.1 Ambiguity, verbs and vectors

Figure 16 illustrates various relations between ambiguity, verbs, and
vectors. Word sense disambiguation (WSD, Pilehvar and Collier (2016),
Collados et al. (2016), and Alexander Panchenko et al. (2016)) and
induction (WSI) are the tasks of classifying or clustering word tokens
to senses (with or without supervision), respectively.
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decomposing a transitive verb tensor

Verbs offer a field where ambiguity interacts with argument structure
(selectional restrictions, Vulić, Mrkšić, and Korhonen (2017), Majewska
et al. (2018), and Sun et al. (2010)).

Multi-sense word embedding models (Reisinger and Mooney 2010;
Huang et al. 2012; Neelakantan et al. 2014; Bartunov et al. 2016; Li
and Jurafsky 2015; Borbély, Makrai, et al. 2016; Makrai and Lipp 2018)
model different meanings of word forms with different vectors in unsu-
pervised fashion.

Dependency-based word embeddings (Levy and Goldberg 2014b; MacA-
vaney and Zeldes 2018) on the other hand use syntactic relations pro-
vided by dependency parsers as contexts for target words. Amrami and
Goldberg (2018) apply deep word representations (Peters, Neumann,
Iyyer, et al. 2018; Devlin et al. 2018; Howard and Ruder 2018) to achieve
state-of-the-art for unsupervised WSI. Peters, Neumann, Zettlemoyer,
et al. (2018) analyses the WSD information (among other features) cap-
tured in the representations demonstrating that a language modeling
on its own provides WSD performance close to the state-of-the-art.

Tucker decomposition also proved promising for link prediction aka. Knowl-
edge Graph Completion, where elements of the tensor encode facts: in
the input tensor, 1 indicates a true fact, and 0 indicates unknown (false
or a missing). The task is to suggest missing true values among the 0s.
Kazemi and Poole (2018) and Balažević, Allen, and Hospedales (2019)
offer solutions for the problem that Tucker decomposition performs
poorly for this task, as it learns two independent embedding vectors
for each entity, a subject and an object vector. In Balažević, Allen, and
Hospedales, subject and object entity embedding matrices are assumed
equivalent.

6.4.2 Tensors for language

Table 12 summarizes some features of NLP-oriented related work.
Van de Cruys (2009) introduces a non-negative tensor factorization

model for selectional preference induction. Van de Cruys, Poibeau, and
Korhonen (2013) develop this line of research by concentrating on com-
positionality and modifying the tensor factorization model to the min-
imization of the Kullback-Leibler divergence, which fits better to long-
tail distributions we find in language. The latent models (i.e. word
vectors) for nouns are fixed to values computed from standard co-
occurrence data, and the induction of three-way subject-verb-object
interactions is inspired by Tucker decomposition. Fixing subject and
object vectors to two-order co-occurrence data limits the exploitation
of three-order structure provided by tensors.
Jenatton et al. (2012) learn semantic verb representations in the

context of multi-relational learning that originally involves data-sets
describing multiple relations (now verbs) between entities (now nouns),
e.g. social networks, recommender systems, the semantic web, or bio-
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6.4 related work

informatics data. In this paradigm, a collection of relations is modeled,
where the relations themselves can be similar in some respect to each
other. In their experiments, entities have a unique representation shared
between relation types. The linguistic tensor is trained on a corpus of
xsubject, verb, direct objecty sentences.

Zhang et al. (2014) investigate how manually created semantic re-
sources can be combined with neural word embeddings to separate
synonyms from antonyms, relations that are notoriously difficult to dis-
tinguish with distributional means. They inject the thesaurus data as
the first slice (pane) of their tensor and the distributional similarities
as the second one.

Sharan and Valiant (2017)4 compute a generic word embedding from
a symmetric 3-mode tensors with Orthogonal-ALS, a modification of
the ALS approach that is as efficient as standard ALS, but provably
recovers the true factors with random initialization under standard in-
coherence assumptions on the factors i.e. that the factors have small
correlation with each other, what is satisfied in NLP problems, where
the rank of the recovered tensor is typically significantly sublinear in
the dimensionality of the space. Orthogonal-ALS periodically “orthogo-
nalizes” the estimates of the factors, thus preventing multiple recovered
factors from “chasing after” the same factors. They get the word em-
bedding by concatenating the three recovered factor matrices (with 100
latent dimensions each) into one matrix (with 300 columns) and nor-
malizing the word vectors. These authors do not evaluate their results
in respect to ą2-order relationships in NLP.

Sharan and Valiant (2017) evaluate their embeddings obtained as an
orthogonalized tensor in the standard word analogy (i.e. “puppy is to
dog as kitten is to x”) and semantic word-similarity tasks. The use of
Orth-ALS rather than standard ALS leads to significant improvement,
but the matrix SVDmethod still outperforms the tensor based methods.
After considering the pessimistic option that natural language may „not
contain sufficiently rich higher-order dependencies among words that
appear close together, beyond the 2-mode structure”, they give another
possible explanation that the two tasks they evaluated on may not
require this higher (>2) order statistics.

Zhuang et al. (2018) propose to use second-order co-occurrence rela-
tions to train word embeddings via a newly designed metric.

While it was rejected from ICLR 2018, we also mention Bailey, Meyer,
and Aeron (2018)5, who train a 3-mode super-symmetric tensor that is
remarkable from the word sense induction perspective: it turns out that
representations for each meaning of a polysemous word is obtained by
multiplication with an appropriate context vector. Bailey, Meyer, and
Aeron also mention the relation between learning tensors and Gaus-
sian mixture models (GMM), specifically GMMs that capture poly-

4 http://web.stanford.edu/~vsharan/orth-als.html
5 https://github.com/popcorncolonel/tensor_decomp_embedding
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xathlete, run, racey finish (.29), attend (.27), win (.25)
xuser, run, commandy execute (.42), modify (.40), invoke (.39)

xman, damage, cary crash (.43), drive (.35), ride (.35)
xcar, damage, many scare (.26), kill (.23), hurt (.23)

Table 13: Most similar verbs to verbs contextualized in transitive structures
(Van de Cruys, Poibeau, and Korhonen 2013).

semy in word embeddings (Athiwaratkun, Wilson, and Anandkumar
2018; Anandkumar et al. 2014). We leave this to future work as we do
not enough experience with GMMs to go in more details here. Bailey
et al. also emphasize the importance of analyzing the performance as a
function of training set size (Jastrzebski et al. 2017), which is commonly
done in transfer learning evaluation.

Frandsen and Ge (2019)’s model captures specific syntactic relations
between words with correlations between three words (measured by
their PMI) form a tensor.

6.4.3 Evaluation in related work

6.4.3.1 Qualitative analysis

Van de Cruys (2009) finds that among the 100 dimensions they train,
44 exemplify frame semantics. In a dimension we could call police ar-
rest suspect, subjects, verbs and objects with the greatest weight are
words like police, arrest, and suspect, respectively. Other examples are
majority support proposal or government send troop. The semantics
of another 43 dimensions is less clear: they represent single verbs, or
different senses of a verb get mixed up. Thirteen dimensions are based
on fixed expressions, e.g. x play role, the subject slot being distributed
evenly among dozens of words, e.g. revenge, shame, institution, or cul-
ture.

In the tensor by Van de Cruys, Poibeau, and Korhonen (2013), slices
represent verbs. They illustrate the data by showing the most similar
verbs to query verbs contextualized in triples, see Table 13.

In the qualitative part of their evaluation, Frandsen and Ge (2019)
search for the words with closest embedding to the composed adjective-
noun and verb-object vectors.

6.4.3.2 Quantitative analysis

Van de Cruys (2009) evaluates his model in pseudo-disambiguation
where the task is to judge which subject (s or s 1) and direct object (o
or o 1) is more likely for a particular verb v. The test set is constructed
by drawing xs, v, oy from the corpus, while s 1 and o 1 are a subject and a
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direct object randomly chosen from the corpus, e.g. youngster/coalition
drink beer/share.

They evaluate their system in the similarity task for transitive sen-
tences (Grefenstette and Sadrzadeh 2011), which is an extension of the
similarity task for compositional models (Mitchell and Lapata 2008).

Jenatton et al. (2012) evaluate their model in two tasks: verb pre-
diction given a subject and a direct object, and lexical similarity clas-
sification. They observe that the latent representations are sparse or,
more precisely, dominated by few large values: the top 2% of the largest
values account for about 25% of the `1 norm.

Zhang et al. (2014) evaluate their work in antonym questions (Mo-
hammad, Dorr, and Hirst 2008).

Bailey, Meyer, and Aeron (2018) evaluates in two groups of tasks:
one includes a modification of outlier detection (Camacho-Collados and
Navigli 2016) and some supervised tasks, and the other consists of
POS classification without sentential context, sentiment analysis (as
described in Schnabel et al. (2015), which in turn heavily builds on
Maas et al. (2011)), and word similarity.

Frandsen and Ge (2019) evaluate their work in the adjective-noun
phrase similarity task (Mitchell and Lapata 2010).

6.4.4 Hungarian

WSD for Hungarian in the machine-learning sense goes back at least to
Miháltz (2005) and Vincze et al. (2008). Verbs have been in the focus of
researchers ranging from corpus linguists to NLP proper (Dressler and
Ladányi 2000; Kuti, Héja, and Sass 2010; Miháltz and Sass 2013). The
main databases of verb constructions are Mazsola (Bálint Sass 2015;
Bálint Sass 2018), Tádé (Kornai, Nemeskey, and Recski 2016), and
Manócska (Kalivoda, Vadász, and Indig 2018; Ágnes Kalivoda 2019).
Word embeddings of Hungarian have been analyzed by researchers in-
cluding Makrai (2016), Siklósi (2016), and Szántó, Vincze, and Farkas
(2017)6.

ToDo Szécsényi: a lábjegyzetben levő hivatkozásnak jobb helye lenne
a bibliográfiában.

6.5 experiments

In this section, we report our experiments. After the introduction (Sec-
tion 6.5.1) of the corpus that serves as the basis of our empirical in-
vestigations, Section 6.5.2 compares association measures, the two al-
ternatives for treating missing arguments, the two decomposition algo-
rithms, and some other hyper-parameters (the decomposition rank and
the frequency cutoff) in the classical task of predicting the similarity

6 rgai.inf.u-szeged.hu/project/nlp/research/w2v/doc.html
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cutoff shape with unfilled shape without unfilled

1 (324 196, 90 606, 287 967) (206 488, 41 075, 188 619)
10 (160 629, 37 427, 129 694) (109 432, 19 824, 92 635)
100 (92 999, 20 937, 69 536) (71 768, 13 907, 57 420)
1000 (44 168, 10 444, 32 359) (40 309, 8 838, 30 280)

10000 (13 765, 5 070, 12 313) (13 610, 4 895, 12 115)
100000 (3 474, 2 313, 4 120) (3 463, 2 308, 4 108)
1000000 (546, 814, 981) (545, 813, 980)

10000000 (36, 194, 87) (35, 194, 86)

Table 14: The length of each axis, i.e. the number of subjects, verbs, and
objects, at different frequency cutoffs.

of English subject-verb-object triples (Kartsaklis and Sadrzadeh 2014).
Then in Section 6.5.3, we investigate the latent dimensions qualitatively.
Section 6.5.4 compares the embedding vector of each noun as a subject
versus an object, to see how differently nouns behave in the two roles.

6.5.1 Experimental setting: the corpus and the similarity task

In our experiments, we took the occurrence counts of xsubject, verb7, direct objecty
triples from the automatically dependency-parsed (Nivre et al. 2016)
English corpus DepCC (Panchenko et al. 2018), irrespectively of whether
there were other arguments or adjuncts. Regarding empty fillers, we
investigated two alternatives: including them (represented by a fixed
string) or discarding them from our statistics. tensorly (Kossaifi et
al. 2016) was used for CPD and (general and non-negative) Tucker de-
composition of tensors. For tensor population in COOrdinate format, we
use the sparse Python library.

Our quantitative tests are based on a classical similarity data-set
for English transitive verb structures (SVO triples) by Kartsaklis and
Sadrzadeh (2014, KS14). The data-set contains triples with gold (hu-
man) similarity scores. We represent SVO triples by concatenating the
corresponding subject, verb, and object embedding vector (we exper-
imented with normalizing the vectors, but we did not find it useful),
ToDo Szécsényi: Az ilyenek részletesebb kifejtése tenné izgalmasabbá a
dolgozatot. and computed the Spearman correlation between the cosine
similarities of the (long) vectors in each pair with the human scores.

6.5.2 Quantitative results in transitive structure similarity

We populated tensors with the association measures introduced in Sec-
tion 6.2. The statistics were based on either including empty argument

7 Verb means, in Universal Dependencies terms, that the upos starts with VB.
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assoc measure unfilled cutoff non-negative decomp algo rank corr

pmi-sali included 1 000 000 non-neg parafac 64 0.7359

pmi-sali included 1 000 000 non-neg parafac 128 0.7097
pmi included 1 000 000 non-neg parafac 64 0.6857

pmi-sali included 1 000 000 non-neg parafac 32 0.6773
pmi-sali included 300 000 non-neg parafac 64 0.6630
npmi included 1 000 000 non-neg parafac 64 0.6602

dice-sali included 1 000 000 non-neg parafac 64 0.4709
pmi-sali excluded 1 000 000 non-neg parafac 64 0.4578
pmi-sali included 1 000 000 general parafac 64 0.4560
ldice included 1 000 000 non-neg parafac 64 0.4409

log-freq included 1 000 000 non-neg parafac 64 0.4322
iact-sali included 1 000 000 non-neg parafac 64 0.4112
niact included 1 000 000 non-neg parafac 64 0.4068

pmi-sali included 3 000 000 non-neg parafac 64 0.3936
iact included 1 000 000 non-neg parafac 64 0.3248

pmi-sali included 1 000 000 non-neg tucker 64 0.2989

Table 15: Quantitative results: correlations in the subject-verb-object triple
similarity task (Kartsaklis and Sadrzadeh 2014) obtained with word
embeddings of tensor decompositions.

fillers (i.e. treating all arguments “optional”) or excluding these occur-
rences. We took different cutoffs and computed non-negative or general
CPD or Tucker decompositions in different ranks. Table 14 shows the
length of each axis, i.e. the number of subjects, verbs, and objects, at
different frequency cutoffs.

Correlations we obtain in the subject-verb-object task are shown in
Table 15. The properties of the original sparse tensor (the association
measure, whether empty fillers are included, and the frequency cutoff)
are show on the left of the vertical line, while those of the decomposi-
tions (non-negative or general CPD or Tucker decompositions to the
specified rank) are shown on the right. The table shows, in addition to
the best setting, each setting obtained by changing one meta-parameter.
házi védésre (E.g. the second and the third entries differ from the
best one only in the decompositions rank: the rank of the sectond one
is double of the best rank, while that of the third one is the half of
the best value.) The best result is obtained by non-negative CPD. The
horizontal lines shows where our best general Tucker, general CPD,
and non-negative Tucker decompositions – which we discuss later in
this subsection, and are not shown in this table – end up. In Tucker
decompositions, we use the same rank among all axes.

We obtained the best correlation, 0.7359, from the decomposition of
a tensor populated with salience-weighted PMI values, including empty
fillers, and setting the frequency cutoff to 1 million, i.e. restricting the
axes of the tensor to the subjects, verbs, and objects that appear at least
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Figure 17: The histogram of the verb embedding matrix elements. Note that
the vertical axis, which corresponds to the histogram count in each
bin, is logarithmic. The figure suggests that frequency decreases
faster than exponentially as larger weights are considered.

1 million times. This best correlation was obtained with non-negative
CPD in rank 64. This correlation value is in the same range as 0.76
obtained by Hashimoto et al. (2014) with a much more complex system
that used to be the state-of-the-art, when this task was fashionable.

ToDo The reader may object that the cutoff at 1 million is is an in-
credibly strict restriction, compared to word2vec-based models where
a few dozen occurrences result in perfectly usable representations (At-
tila Novák, personal communication). But it has to be borne in mind
that the cause for using a cutoff in tensor decomposition is not to have
enough samples, but to fit in the memory.

The table shows the correlation obtained by changing each (meta)-
parameter. While the results seem to be relatively robust with respect
to the decompositions rank, it may be interesting that when we con-
catenate the subject, the verb, and the object embedding vectors, 64
dimensional each, we get a vector in the famous range of a couple of
hundreds of dimensions, which proved to work well in many different
scenarios like LSA and static word embeddings (see the introduction).

As for our association measures, different weighted variants (salience,
vanilla, or normalization) of PMI work the best, followed by log-Dice
and log frequency. Variants of interaction information performs the
worst.

The inclusion of empty fillers, the frequency cutoff, and the decom-
position rank are all related to the size of the tensors. While we have
already seen that the decomposition rank does not have a great influ-
ence on the results, if we exclude empty fillers, a more generous fre-
quency cutoff may theoretically lead to better results than if we change
only one of these two parameters. It turns out, that we can indeed
get relatively good result (0.694181) this way, but with general Tucker
decomposition (instead of non-negative CPD) and log-Dice (instead of
salience-weighted). The cutoff is 1 million.
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Non-negative decomposition is advantageous from the interpretational
point of view, because in our experiments, they resulted in embedding
matrices which are sparse in the broad sense that most coordinates are
low. Figure 17 shows a histogram of the matrix elements. Note that the
vertical axis, which corresponds to the histogram count in each bin, is
logarithmic. The figure suggests that frequency decreases faster than
exponentially as larger weights are considered. The good performance
of non-negative CPD suggests that non-negativity introduces meaning-
ful structure. Sparsity raises the hope that coordinate are interpretable,
i.e. they correspond to concepts or properties.

CPD has the advantage that it maps the modes in the same space.
In our case, this is the most interesting for subjects and objects: we
can compare the same noun in the two roles. We return to this in
Section 6.5.4.

While our best results have been obtained with non-negative CPD,
we discuss general Tucker and CPD and non-negative Tucker as well.
Results with general decompositions and non-negative Tucker are shown
in Table 16 and Table 17, respectively. General Tucker and CPD and
non-negative Tucker all prefer normalized PMI as the association mea-
sure, disfavor interaction information, and results with log frequency
and log Dice vary. General and non-negative Tucker obtains the best
results with the same rank as non-negative CPD, and the two non-
negative decomposition algorithms also share the value for a best cut-
off. It is inconclusive whether it is advantageous to include occurrences
with unfilled arguments in our statistics.

6.5.3 Qualitative analysis of latent dimensions

Now we investigate the latent dimensions obtained by tensor decomposi-
tion. We experimented with non-negative and general CPD and Tucker
decomposition with the hyper-parameters that reached the best result
in the SVO-similarity task.

The latent dimensions are shown in Tables 18 to 20. (Dimensions
with general Tucker are degenerate, and they omitted to save space.)
Each line corresponds to a latent dimension. Dimensions are visualized
by the words with the greatest coordinates in the dimension. Blocks
represent dimension triples. H denotes that the corresponding gram-
matical function is unfilled. Some latent dimensions, like the first one
in our non-negative CPD are dominated by (the empty filler and) pro-
nouns. In these cases we emphasize the first contentful filler. -rrb-
stands for right round brackets, and its appearance may be an artifact
of the corpus.

In the case of CPD, the dimensions are enumerated in the order as
returned by the algorithm. With Tucker, the values gijk in the core
tensor G represent the interaction between the ith latent dimension
for subjects, the jth one for verbs, and the kth one for objects. We
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assoc measure unfilled cutoff rank correlation

npmi included 100 000 64 0.7191
pmi-sali included 100 000 64 0.7049
log-freq included 100 000 64 0.6883
pmi included 100 000 64 0.6759
npmi included 30 000 64 0.6729
ldice included 100 000 64 0.6685

ldice-sali included 100 000 64 0.6666
npmi included 300 000 64 0.6598
npmi included 100 000 128 0.6540
npmi included 100 000 32 0.6042
npmi excluded 100 000 64 0.5207

iact-sali included 100 000 64 0.5059
niact included 100 000 64 0.4632
iact included 100 000 64 0.4316

assoc measure unfilled cutoff rank correlation

npmi excluded 300 000 256 0.6383
pmi-sali excluded 300 000 256 0.6166
pmi excluded 300 000 256 0.5811
npmi excluded 1 000 000 256 0.5754
npmi excluded 100 000 256 0.5713
npmi excluded 300 000 512 0.5677
npmi excluded 300 000 128 0.5290
npmi excluded 30 000 256 0.5239
npmi included 300 000 256 0.5070

log-freq excluded 300 000 256 0.2465
ldice excluded 300 000 256 0.2093

iact-sali excluded 300 000 256 0.1280
niact excluded 300 000 256 0.0726
iact excluded 300 000 256 0.0615

Table 16: Results with general Tucker (top) and general CPD (bottom).
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assoc measure unfilled cutoff rank correlation

npmi excluded 1 000 000 64 0.5186
npmi excluded 1 000 000 128 0.5102
npmi excluded 300 000 64 0.4814
pmi excluded 1 000 000 64 0.4563

pmi-sali excluded 1 000 000 64 0.4387
npmi excluded 1 000 000 32 0.3753
npmi excluded 3000 000 64 0.3366
npmi optional 1 000 000 64 0.2889
iact excluded 1 000 000 64 0.0989

log-freq excluded 1 000 000 64 0.0763
ldice excluded 1 000 000 64 0.0698

ldice-sali excluded 1 000 000 64 0.0619
niact excluded 1 000 000 64 0.0454

iact-sali excluded 1 000 000 64 0.0064

Table 17: Results with non-negative Tucker.

dim words

0 H, that, which, it, story, he, they, who, what, one, she, work, event, -rrb-, this, you. . .
0 catch, attract, draw, pay, deserve, capture, gain, grab, get, receive, focus, require,. . .
0 attention, eye, crowd, interest, fire, visitor, audience, conclusion, breath, people, . . .
1 H, who, we, he, I, you, she, they, -rrb-, student, member, people, group, Center, parti. . .
1 attend, host, hold, organize, schedule, enjoy, join, arrange, cancel, miss, watch, pla. . .
1 meeting, event, conference, session, party, show, school, class, dinner, church, tour,. . .
2 that, which, it, this, H, change, factor, they, choice, condition, decision, issue, -rr. . .
2 affect, impact, influence, improve, hurt, reflect, benefit, change, damage, enhance, a. . .
2 ability, performance, health, outcome, life, quality, result, business, development, e. . .
3 file, which, page, site, that, it, book, report, section, document, collection, websit. . .
3 contain, include, provide, have, list, feature, display, show, comprise, present, give. . .
3 information, link, material, number, list, datum, name, content, statement, reference,. . .

Table 18: Latent dimensions with Non-negative ParaFac
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dim words

5 court, Court, judge, panel, official, we, he, it, authority, government, -rrb-, Board,. . .
10 reject, dismiss, deny, grant, hear, consider, decide, accept, throw, resolve, sustain,. . .
7 motion, appeal, claim, request, argument, case, challenge, application, complaint, att. . .
4 revenue, sale, share, price, stock, production, cost, rate, order, volume, number, fut. . .
3 rise, fall, increase, jump, drop, decline, climb, decrease, grow, gain, slip, represen. . .
1 percent, %, $, increase, point, most, rate, level, average, less, matter, value, cost,. . .
11 hotel, property, room, restaurant, home, Center, house, location, facility, House, are. . .
8 offer, boast, feature, have, provide, include, enjoy, serve, accommodate, occupy, prep. . .
9 room, pool, accommodation, access, facility, restaurant, variety, service, view, range. . .
6 board, Council, Board, Commission, Committee, member, committee, Congress, Court, cour. . .
2 approve, adopt, reject, pass, consider, review, endorse, propose, award, recommend, ac. . .
2 resolution, request, budget, plan, proposal, contract, change, application, project, i. . .

Table 19: Latent dimensions with Non-negative Tucker

dim words

0 Israel, group, government, Foundation, Association, company, -rrb-, military, army, Cl. . .
0 launch, wage, suspend, mount, begin, run, fund, organize, sponsor, administer, carry, . . .
0 campaign, attack, program, initiative, operation, strike, programme, website, effort, . . .
1 user, you, application, customer, developer, visitor, client, processor, device, User,. . .
1 access, select, specify, upload, view, enter, edit, browse, click, create, retrieve, m. . .
1 file, datum, content, document, page, parameter, site, folder, node, Internet, informa. . .
2 device, assembly, means, structure, system, element, plate, section, interface, unit, . . .
2 comprise, include, contain, have, utilize, employ, represent, say, mean, control, enab. . .
2 layer, element, device, tube, housing, spring, electrode, pump, plate, container, memb. . .
3 attorney, plaintiff, defendant, party, respondent, prosecutor, State, lawyer, governme. . .
3 file, receive, oppose, make, give, present, withdraw, handle, publish, drop, provide, . . .
3 motion, notice, petition, appeal, response, answer, objection, charge, request, submis. . .

Table 20: Latent dimensions with General ParaFac

sorted the triples of SVO latent dimensions in our best non-negative
and general Tucker decomposition by this interaction strength. The
index of each dimension, as returned by the algorithm, is also shown
in the table. E.g. the first block in non-negative Tucker shows that the
strongest interaction is between the 5th latent dimension of subjects,
the 10th one for verbs, and the 7th one for objects. Note that in the
non-negative case, gijk ě 0, so we do not have to take the absolute
value. Dimensions obtained with the two non-negative algorithms seem
semantically interpretable, while those from general decomposition are
less convincing.

6.5.4 Comparing subject and object vectors

Tensor decomposition can shed light on how differently nouns behave
as subjects and as objects. This question is related to symmetric fac-
torization (Bailey, Meyer, and Aeron 2018), which imposes symmetry
constraints between the embeddings of the same entities in different
modes (in our case, between the embeddings of the same noun as a
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subject or an object). Our approach is complementary, based on that
CPD maps nouns as subjects and objects in the same space.

In our experiments, we consider (non-negative) CPD decomposition
with the hyper-parameters that proved best in English SVO-similarity.
We computed the (unnormalized) dot product similarity between the
subject and object vector of each noun, and sorted all the nouns by this
similarity. The largest distance is found withH, he, she, they, I, device,
system, that, you, it. . . , while the most symmetric nouns are doubt, re-
ality, future, same, hope, feeling, mine, reason, consumer, plenty. . . A
possible explanation is that the former lemmas, especially personal pro-
nouns (or their inflected forms), are házi védésre arguably much more
frequent in agentive roles than other nouns, while they are infreqent in
patient roles. Words in the second group can be framed in language
both as animate and as inanimate. Future or hope are not alive in the
biological sense, but they are often attributed agentive roles (what can
be called a metaphorical use of language but being metaphorical dos
not mean that the usage is peripheral, as it has been noted by linguists).

6.6 conclusion of the main experiments

ToDo Novák: Jó lenne, ha [itt] explicite leírná, hogy ezek a [...] bevezetés-
ben megfogalmazott kérdésekre kapott válaszok, és hasonlóan tagolva
írná le azokat.
Weighted variants of positive pointwise mutual information proved

better than the considered alternatives in modeling subject-verb-object
structure similarity. It does not matter whether we include occurrences
with unfilled arguments in our statistics. Our best results were ob-
tained with non-negative CPD. The best frequency cutoff and the de-
composition rank is the same for the two non-negative decomposition
algorithms, which raises the hope that these hyper-parameters of non-
negative CPD can be fine-tuned based on the much faster non-negative
Tucker, but this needs to be tested in other setups. Our experiments
provided lexically interpretable latent dimensions, and our experiments
with non-negative CPD suggest that the difference between subject and
object embeddings can be related to animacy.

6.7 follow-up

In this section, we report experiments, which did not appear in Makrai
(2022).

6.7.1 Clustering verb vectors

Semantic classes of verbs like those in VerbNet (Section 2.5.4) may be
induced by clustering verb embedding vectors. If clusters obtained in
unsupervised fashion correspond to gold verb classes, ambiguous verbs
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# verbs verbs

702 have, do, get, go, take, think, know, want, need, give, look, work, provide, try, . . .

131 live, talk, stand, die, walk, wait, sit, stay, wonder, care, arrive, fly, gon, sleep, . . .
86 kill, catch, trust, bear, email, marry, fuck, date, judge, bless, honor, forgive, beg,. . .
85 add, eat, produce, deliver, prepare, drink, spread, cook, burn, taste, wash, supply, . . .
80 use, develop, manage, perform, complete, replace, install, connect, test, conduct, . . .
80 let, reach, hit, cost, exceed, rate, approach, /, -lsb-_VBD, rank, -lsb-_VB, \, -lsb-_. . .
79 put, break, pull, throw, push, lay, stick, grab, touch, press, suck, kick, shake, . . .
77 identify, commit, defend, repeat, expose, separate, dig, heal, dress, distinguish, . . .
76 send, check, view, click, display, generate, update, access, search, store, delete, . . .
65 leave, enter, visit, fill, explore, ride, clean, cross, surround, locate, clear, rent,. . .
59 be, come, start, happen, seem, begin, continue, appear, lead, end, occur, prove, . . .
58 help, keep, bring, remind, hurt, strike, worry, blow, inspire, bother, surprise, suit,. . .
57 tell, ask, call, thank, please, join, contact, become, assist, hire, name, engage, . . .
51 pay, spend, save, raise, determine, compare, charge, measure, adjust, predict, invest,. . .
46 make, see, find, love, like, hear, enjoy, remember, miss, guess, recommend, notice, . . .
43 understand, discover, recognize, examine, evaluate, investigate, acknowledge, assess, . . .
43 face, experience, address, fix, handle, suffer, solve, celebrate, resolve, mark, . . .
39 receive, win, lose, earn, gain, extend, deserve, capture, retain, lack, exercise, . . .
37 plan, fail, focus, vote, act, deal, attempt, rely, struggle, participate, benefit, . . .

Table 21: Verb clusters obtained from our verb embedding vectors in an un-
supervised fashion. The smallest cluster is omitted to save space.

like play mentioned in Section 6.1 may be detected as outliers from the
clusters, as their uses are composed of occurrences corresponding to
different clusters.

Our method for obtaining verb clusters consists of mapping verb
embedding vectors to a lower dimensional space with UMAP (McInnes
et al. 2018) and clustering them with HDBScan (McInnes, Healy, and
Astels 2017), which is a hierarchical, density based clustering algorithm.
Dimensionality reduction is needed because density makes little sense in
hundreds of dimensions. Our choices of UMAP meta parameters are the
following: We map verb embedding vectors to 16 or 32 dimensions (fine-
tuned in a comparison to VerbNet, see later). In HDBScan, we set the
number of neighbors to 30 and the minimum distance to 0, following the
recommendations at readthedocs8. The metric in the ambient space
(i.e. the original, high-dimensional one) is cosine. Minimum cluster size
is 15 or 5, and the related parameter of min_samples is 5.

We compare non-negative and general CPD and Tucker decompo-
sitions. The parameters of the original tensor and its decompositions
are set to the value with the best score in the SVO-similarity task. We
set one hyper-parameters of UMAP and HDBScan each, namely the
dimension we map to and minimum cluster size, based on comparison
to VerbNet classes.

In these computation we take VerbNet from the nltk.corpus pack-
age. In many cases, there are more class IDs associated to a verb. We

8 https://umap-learn.readthedocs.io/en/latest/clustering.html#
umap-enhanced-clustering
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6.7 follow-up

preverb verb args gloss

H bíz(ik) NOM -bAn ‘in’ trust sth
(rá) ‘onto’ bíz NOM ACC -rA ‘onto’ entrust sg to sy
meg perfect bíz(ik) NOM -bAn ‘in’ trust sy
meg perfect bíz NOM ACC INS entrust sy with sg
el ‘away’ bíz(za) NOM self-ACC get conceited

Table 22: Argument structure variants of the Hungarian verb bíz(ik) based on
Szécsényi (2019).

take the first one, as returned by the corresponding function. Out-
of-vocabulary verbs are treated as a separate class. We compare are
clustering to VerbNet classes with adjusted rand score in scikit-learn
(Pedregosa et al. 2011). We get the greatest score with non-negative
Tucker (embeddings mapped to 16 dimensions, and minimum cluster
size set to 15).
Table 21 shows the greatest clusters of English verbs. The greatest

cluster, separated by a line in the table is the one called -1 in HDBScan.
It contains points that “fall out” (as members of very small would-be
clusters) in the hierarchy. The algorithm considers them outliers9. In
our case, it seems that they are general verbs, especially those that
we find in light verb constructions. The remaining clusters seem to be
semantically coherent.

6.7.2 Hungarian data and preverbs

Finally, we mention pilot experiments in Hungarian, where two phe-
nomena interfere with verb agument structure and ambiguity. Table 22,
based on Szécsényi (2019), illustrates these with the verb bíz(ik) ‘trust’.
We can see that preverbs (verb particles, which can modify both the as-
pect and the meaning of a verb, Ágnes Kalivoda (2021)) interfere with
verb meaning, and the apparently incidental appearance of the suffix
-ik (which can be argued to be related to unaccusativity) increases data
sparsity. In our preliminary experiments, we built a subject ˆ preverb
ˆ verb ˆ object tensor from verb constructions in the data-base of
the Mazsola verb argument browser (Bálint Sass 2015). In this earlier,
unpublished phase of the project, we used CPD decomposition, solved
by the Orth-ALS (Sharan and Valiant 2017) algorithm. For the future,
we suggest introducing a mode for -ik. The “vocabulary” of this axis
would consists of only two choices: with or without -ik. The hypothesis
is that this tensor would profit from denser data representation.

9 See https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html#
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decomposing a transitive verb tensor

6.8 conclusion

Tensor decompositions offers a direction orthogonal to the mainstream
(Rogers, Kovaleva, and Rumshisky 2020) in the data-driven understand-
ing of linguistic structure. We may want to learn semantic verb classes
in an unsupervised fashion. If verb embedding vectors correspond to
Levin’s (1993) verb classes, ambiguous verbs could be identified in
the form of outliers in the clustering. This line of research can be ex-
tended cross-lingually (Vulić, Mrkšić, and Korhonen 2017; Majewska
et al. 2018; Sun et al. 2010).

In the past two chapters we proposed (in a symbolic framework) and
verified to some extent (in a distributional framework) a monosemic ap-
proach to the treatment of verb argument structure. In the remaining
two chapters of the thesis, we investigate whether relations which intu-
itively hold between concepts can also be detected in data-driven dis-
tributional representations, more specifically, static word embeddings
(word representations obtained with shallow neural networks).
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Nekem szavakról szavak jutnak az eszembe és viszont.
‘Words remind me of words and vice versa’

— Péter Esterházy

7
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In the last two chapters of the thesis, we investigate whether re-
lations which intuitively hold between concepts can also be detected
in data-driven distributional representations, more specifically, static
word embeddings (word representations obtained with shallow neural
networks).

First, we experiment with extracting lexical relations from text cor-
pora in the form of word embeddings. We start with lexical relations
proper: antonymy (opposite meaning, Section 7.1), causality (Section 7.2),
and hypernymy (what basic category a word belongs to, e.g. dogs are
animals, Section 7.3). These three sections appeared in proceedings of
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conferences, and here they appear in that same chronological order.
Then we broaden our focus to word analogies and translation (Sec-
tions 7.4 and 7.5).

This line of research is also related to semantic networks. In 4lang,
lexical decomposition is formalized in by 0-edges like dog 0

Ñ animal,
but the most information is apparently included in binary relations
like cow 1

Ð make 2
Ñ milk. The utility of word definitions depends on

whether these binary relations capture the right pieces of information.
Word embeddings can provide complementary information on whether
a putative relations relly exists.

As we already discussed in Chapter 4, the empirical support for both
the syntactic properties and the meaning of a word form consists in the
probabilities with that the word appears in different contexts. Contexts
can be documents as in latent semantic analysis (LSA, Section 4.1.3)
or other words appearing within a limited distance (window) from the
word in focus. In these approaches, the corpus is represented by a matrix
with rows corresponding to words and columns to contexts, with each
cell containing the conditional probability of the given word in the
given context. The matrix has to undergo some regularization to avoid
overfitting. In LSA this is achieved by approximating the matrix as the
product of special matrices.

In the last decade, deep neural networks have taken over the state-of-
the-art in many areas of artificial intelligence including vision (Krizhevsky
and Sutskever 2012), speech processing (Dahl et al. 2011), and lan-
guage (Peters, Neumann, Iyyer, et al. 2018), reducing the error by a
respectable factor. The first wave of a revolution have been word em-
beddings, word models learned by neural networks, which became very
popular since Mikolov, Chen, et al. (2013) and Mikolov, Sutskever, et
al. (2013). These more accurate variants of earlier VSMs map “similar”
word to similar vectors in space of some hundred dimensions. Word
similarity includes syntactic and semantic one, and vector similarity is
mostly measured by cosine similarity. As we will see by the end of this
chapter, embeddings reflect (Mikolov, Yih, and Zweig 2013) analogical
relations – a.k.a. relational similarity (Levy and Goldberg 2014b) –
like

woman´man « queen´ king

házi védésre The first three sections invetigate individual lexical
relations with the tools of distributional modeling: antonymy with an
embedding obtained by spectral clustering, the geometry of causality,
and hypernymy with sparse coding. Our question remains whether re-
lations which intuitively hold between concepts can also be detected
in data-driven distributional representations (in the most cases, static
word embeddings).

The main protagonist of the next section is the definition graph,
which we already used for the analysis of the importance of each word
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7.1 antonyms in an embedding from a definition
graph

good vertical

safe out raise level
peace war tall short

pleasure pain rise fall
ripe green north south

defend attack shallow deep
conserve waste ascending descending
affirmative negative superficial profound

...
...

...
...

Table 23: Word pairs associated to features good and vertical

as they define each other (Section 3.3). Theoretically, the same graph
plays an important role in activation speading, but this thesis does
not make claims about the implementations of this process (the inter-
ested reader should consult Nemeskey et al. (2013)). In this chapter,
it plays a third role: Makrai, Nemeskey, and Kornai (2013) used it to
compute a word embedding, which we compared to some other embed-
dings which were famous at the time from the aspect of antonymy: we
tested which subtype of antonymy is represented in each word embed-
ding. The embedding obtained from the definition graph turned out to
be more similar in this respect to variants of HLBL than to SENNA,
which suggests that our embedding was sound.

7.1 antonyms in an embedding from a definition graph

In this section, which originally appeared as Makrai, Nemeskey, and Ko-
rnai (2013)1, we test which putative semantic features like gender are
captured by VSMs. We assume that the difference between two vectors,
for antonyms, distills the actual property which is the opposite in each
member of a pair of antonyms. So, for example, for a set of male and
female words, such as xking, queeny, xactor, actressy, etc., the difference
between words in each pair should represent the idea of gender. To test
the hypothesis, we associated antonymic word pairs from the WordNet
(Miller (1995), see Section 2.5.3) to 26 classes, e.g. end/beginning,
good/bad, . . . , see Table 23 and Table 25 for examples.

The intuition to be tested is that the first member of a pair relates
to the second one in the same way among all pairs associated to the

1 Makrai classified the antonymic relation pairs, and prepared the test. Nemeskey
finished the experiments. The applicativity idea, which gave the title of the paper,
and is regarded here as possible future work, is due to Kornai. We would like to
thank Zsófia Tardos and the anonymous reviewers for useful comments.
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same feature. For k pairs ~xi, ~yi we are looking for a common vector ~a
such that

~xi ´ ~yi “ ~a (2)

Given the noise in the embedding, it would be naive in the extreme
to assume that (2) can be a strict identity. Rather, our interest is with
the best ~a which minimizes the error

ToDo Szécsényi: A 149. oldalon a 4. képlet adja meg az a vektor
optimalizálásánál a vektorhoz tartozó hiba kiszámításának módját, az
alatta levő mondatban pedig az áll, hogy a hiba az x-y vektorok át-
lagánál a legkisebb. Miért volt akkor szükség az optimalizálásra? Az
optimalizált a vektor különbözött az átlagtól?

Err “
ÿ

i

||~xi ´ ~yi ´~a||
2 (3)

As is well known, E will be minimal when ~a is chosen as the arithmetic
mean of the vectors ~xi´ ~yi. The question is simply the following: is the
minimal Em any better than what we could expect from a bunch of
random ~xi and ~yi?
We selected 26 potentially antonymic datasets from WordNet such

as the ‘gender’ set discussed above. For example, the ‘hard’ set contains
the pairs hardened/soft, hardball/softball, hardware/software, still/s-
parkling, hard/soft, solid/gaseous, tough/tender, liquid/gaseous, hard-
ness/softness, hard_drug/soft_drug, hard_water/soft_water and the
‘distance’ set contains the pairs express/local, distant/close, repulsive/at-
tractive, open/close, far/near, distribution/concentration, distributed/-
concentrated, expanded/contracted, ultimate/proximate, distal/proximal.
Since the sets are of different sizes, we took 100 random pairings of the
words appearing on either sides of the pairs to estimate the error dis-
tribution, computing the minima of

Errrand “
ÿ

i

||~xi
1
´ ~y 1i ´~a||

2 (4)

For each distribution, we computed the mean and the variance of
Errrand, and checked whether the error of the correct pairing, Err is
at least 2 or 3 σs away from the mean.
Table 24 summarizes our results for four embeddings: the original and

the scaled HLBL (Mnih and G. E. Hinton 2009), SENNA (Collobert et
al. 2011). and on the 4lang embedding we will discuss in Section 7.1.1.
The first two columns give the number of pairs considered for a feature
and the name of the feature. For each of the three embeddings, we
report the error Err of the unpermuted arrangement, the mean m and
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7.1 antonyms in an embedding from a definition
graph

# feature HLBL original HLBL scaled SENNA
pairs name Err m σ r Err m σ r Err m σ r

156 good 1.92 2.29 0.032 11.6 4.15 4.94 0.0635 12.5 50.2 81.1 1.35 22.9
42 vertical 1.77 2.62 0.0617 13.8 3.82 5.63 0.168 10.8 37.3 81.2 2.78 15.8
49 in 1.94 2.62 0.0805 8.56 4.17 5.64 0.191 7.68 40.6 82.9 2.46 17.2
32 many 1.56 2.46 0.0809 11.2 3.36 5.3 0.176 11 43.8 76.9 3.01 11
65 active 1.87 2.27 0.0613 6.55 4.02 4.9 0.125 6.99 50.2 84.4 2.43 14.1
48 same 2.23 2.62 0.0684 5.63 4.82 5.64 0.14 5.84 49.1 80.8 2.85 11.1
28 end 1.68 2.49 0.124 6.52 3.62 5.34 0.321 5.36 34.7 76.7 4.53 9.25
32 sophis 2.34 2.76 0.105 4.01 5.05 5.93 0.187 4.72 43.4 78.3 2.9 12
36 time 1.97 2.41 0.0929 4.66 4.26 5.2 0.179 5.26 51.4 82.9 3.06 10.3
20 progress 1.34 1.71 0.0852 4.28 2.9 3.72 0.152 5.39 47.1 78.4 4.67 6.7
34 yes 2.3 2.7 0.0998 4.03 4.96 5.82 0.24 3.6 59.4 86.8 3.36 8.17
23 whole 1.96 2.19 0.0718 3.2 4.23 4.71 0.179 2.66 52.8 80.3 3.18 8.65
18 mental 1.86 2.14 0.0783 3.54 4.02 4.6 0.155 3.76 51.9 73.9 3.52 6.26
14 gender 1.27 1.68 0.126 3.2 2.74 3.66 0.261 3.5 19.8 57.4 5.88 6.38
12 color 1.2 1.59 0.104 3.7 2.59 3.47 0.236 3.69 46.1 70 5.91 4.04
17 strong 1.41 1.69 0.0948 2.92 3.05 3.63 0.235 2.48 49.5 74.9 3.34 7.59
16 know 1.79 2.07 0.0983 2.88 3.86 4.52 0.224 2.94 47.6 74.2 4.29 6.21
12 front 1.48 1.95 0.17 2.74 3.19 4.21 0.401 2.54 37.1 63.7 5.09 5.23
22 size 2.13 2.69 0.266 2.11 4.6 5.86 0.62 2.04 45.9 73.2 4.39 6.21
10 distance 1.6 1.76 0.0748 2.06 3.45 3.77 0.172 1.85 47.2 73.3 4.67 5.58
10 real 1.45 1.61 0.092 1.78 3.11 3.51 0.182 2.19 44.2 64.2 5.52 3.63
14 primary 2.22 2.43 0.154 1.36 4.78 5.26 0.357 1.35 59.4 80.9 4.3 5
8 single 1.57 1.82 0.19 1.32 3.38 3.83 0.32 1.4 40.3 70.7 6.48 4.69
8 sound 1.65 1.8 0.109 1.36 3.57 3.88 0.228 1.37 46.2 62.7 6.17 2.67
7 hard 1.46 1.58 0.129 0.931 3.15 3.41 0.306 0.861 42.5 60.4 8.21 2.18

10 angular 2.34 2.45 0.203 0.501 5.05 5.22 0.395 0.432 46.3 60 6.18 2.2

Table 24: Error of approximating real antonymic pairs (Err), mean and stan-
dard deviation (m,σ) of error with 100 random pairings, and the
ratio r “ |Err´m|

σ for different features and embeddings
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primary angular

leading following square round
preparation resolution sharp flat
precede follow curved straight

intermediate terminal curly straight
antecedent subsequent angular rounded
precede succeed sharpen soften
question answer angularity roundness

...
...

...
...

Table 25: Features that fail the test

variance σ of the errors obtained under random permutations, and the
ratio

r “
|m´Err|

σ
.

Horizontal lines divide the features to three groups: for the upper group,
r ě 3 for at least two of the three embeddings, and for the middle group
r ě 2 for at least two.

For the features above the first line we conclude that the antonymic
relations are well captured by the embeddings, and for the features
below the second line we assume, conservatively, that they are not. (In
fact, looking at the first column of Table 24 suggests that the lack of
significance at the bottom rows may be due primarily to the fact that
WordNet has more antonym pairs for the features that performed well
on this test than for those features that performed badly, but we did
not want to start creating antonym pairs manually.) For example, the
putative sets in Table 25 does not meet the criterion and get rejected.

7.1.1 Embedding from a definition graph

The 4lang embedding is created in a manner that is notably different
from the others. Our input is a graph whose nodes are concepts, with
edges running from A to B iff B is used in the definition of A. The
base vectors are obtained by the spectral clustering method pioneered
by Ng, Jordan, andWeiss (2001): the incidence matrix of the conceptual
network is replaced by an affinity matrix whose ij-th element is formed
by computing the cosine distance of the ith and jth row of the original
matrix, and the first few (in our case, 100) eigenvectors are used as a
basis.
Since the concept graph includes the entire Longman Defining Vo-

cabulary (LDV), each LDV element wi corresponds to a base vector bi.
For the vocabulary of the whole dictionary, we simply take the Long-
man definition of any word w, strip out the stopwords (we use a small
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7.1 antonyms in an embedding from a definition
graph

list of 19 elements taken from the top of the frequency distribution),
and form V pwq as the sum of the bi for the wis that appeared in the
definition of w (with multiplicity).

We performed the same computations based on this embedding as
in the previous section: the results are presented in Table 26. Judg-
ment columns under the three embeddings in the previous section and
4lang are highly correlated, see table 27.

Unsurprisingly, the strongest correlation is between the original and
the scaled HLBL results. Both the original and the scaled HLBL cor-
relate notably better with 4lang than with SENNA, making the latter
the odd one out.

So far we have seen that a dictionary-based embedding, when used
for a purely semantic task, the analysis of antonyms, does about as well
as the more standard embeddings based on cooccurrence data. Clearly,
a VSM could be obtained by the same procedure from any machine-
readable dictionary. Using LDOCE is computationally advantageous in
that the core vocabulary is guaranteed to be very small, but finding
the eigenvectors for an 80k by 80k sparse matrix would also be within
CPU reach.

7.1.2 Future work: Applicativity

The main advantage of starting with a conceptual graph lies elsewhere,
in the possibility of investigating function application.

The 4lang conceptual representation relies on a small number of
basic elements, most of which correspond to what are called unary
predicates in logic. Kornai (2012) argued that meaning of linguistic
expressions can be formalized using predicates with at most two ar-
guments (there are no ditransitive or higher arity predicates on the
semantic side). The x and y slots of binary elements such as x has
y or x kill y (Kornai and Makrai 2013) receive distinct labels called
nom and acc in case grammar (Fillmore 1977); 1 and 2 in relational
grammar (Perlmutter 1983); or agent and patient in linking theory
(Ostler 1979). The label names themselves are irrelevant, what matters
is that these elements are not part of the lexicon the same way as the
words are, but rather constitute transformations of the vector space.

Here we will use the binary predicate x has y to reformulate a classical
puzzle, analyzing queen of England, king of Italy etc. in a compositional
(additive) manner, but escaping the commutativity problem. For the
sake of concreteness we use the traditional assumption that it is the
king who possesses the realm and not the other way around, but what
follows would apply just as well if the roles were reversed. What we are
interested in is the asymmetry of expressions like Albert has England
or Elena has Italy, in contrast to largely symmetric predicates. Albert
marries Victoria will be true if and only if Victoria marries Albert is
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# feature 4lang

pairs name Err m σ r

49 in 0.0553 0.0957 0.00551 7.33
156 good 0.0589 0.0730 0.00218 6.45
42 vertical 0.0672 0.1350 0.01360 4.98
34 yes 0.0344 0.0726 0.00786 4.86
23 whole 0.0996 0.2000 0.02120 4.74
28 end 0.0975 0.2430 0.03410 4.27
32 many 0.0516 0.0807 0.00681 4.26
14 gender 0.0820 0.2830 0.05330 3.76
36 time 0.0842 0.1210 0.00992 3.74
65 active 0.0790 0.0993 0.00553 3.68
20 progress 0.0676 0.0977 0.00847 3.56
18 mental 0.0486 0.0601 0.00329 3.51
48 same 0.0768 0.0976 0.00682 3.05
22 size 0.0299 0.0452 0.00514 2.98
16 know 0.0598 0.0794 0.00706 2.77
32 sophis 0.0665 0.0879 0.00858 2.50
12 front 0.0551 0.0756 0.01020 2.01
10 real 0.0638 0.0920 0.01420 1.98
8 single 0.0450 0.0833 0.01970 1.95
7 hard 0.0312 0.0521 0.01960 1.06
10 angular 0.0323 0.0363 0.00402 0.999
12 color 0.0564 0.0681 0.01940 0.600
8 sound 0.0565 0.0656 0.01830 0.495
17 strong 0.0693 0.0686 0.01111 0.0625
14 primary 0.0890 0.0895 0.00928 0.0529
10 distance 0.0353 0.0351 0.00456 0.0438

Table 26: The results on 4lang

HLBL HLBL SENNA 4lang

original scaled

HLBL original 1 0.925 0.422 0.856
HLBL scaled 0.925 1 0.390 0.772
SENNA 0.422 0.390 1 0.361
4lang 0.856 0.772 0.361 1

Table 27: Correlations between judgments based on different embeddings

188



7.2 causality in vectors space language models

true, but from James has a martini it does not follow that ?A martini
has James.

While the fundamental approach of VSM is quite correct in assum-
ing that nouns (unaries) and verbs (binaries) can be mapped on the
same space, we need two transformations T1 and T2 to regulate the
linking of arguments. A form like James kills has James as agent,
so we compute V (James)`T1V (kill), while kills James is obtained as
V (James)`T2V (kill). The same two transforms can distinguish agent
and patient relatives as in the man that killed James versus the man
that James killed.

Such forms are compositional, and in languages that have overt case
markers, even ‘surface compositional’ (Hausser 1984). All input and
outputs are treated as vectors in the same space where the atomic
lexical entries get mapped, but the commutativity paradox goes away.
As long as the transforms T1 and T2 take different values on kill, has,
or any other binary, the meanings are kept separate. The interested
reader may consult Kornai (2023), who represent irreducible binary
elements (e.g. has, the comparative er, cause, the locative at, etc.)
with matrices, and the rest (including transitive verbs) are represented
by vectors.

The vector offset method for solving analogical questions assumes
that the four words (e.g. king, queen, man, and woman) form a paralel-
ogam. In the next section we invetigate causality, and find a different
geometry.

7.2 causality in vectors space language models

In this section, which originally appeared as Makrai (2014), we take a
semantic relation with rich literature in philosophy and application in
knowledge representation, causality (see Figure 18). We are interested
in the geometric function mapping the vector representation of a cause
(e.g. hurt) to the vector representing the corresponding effect (ache).

First we describe resources, methods, and results. As the results are
preliminary, we outline directions for further research as well.
We took causal word pairs from a natural language processing re-

source containing lexical information of various kinds, WordNet (Miller
(1995), see Section 2.5.3). The pairs are exemplified in Table 28. We
took several VSMs: SENNA (Collobert et al. 2011), those published
along with the papers Turian, Ratinov, and Bengio (2010) and Huang
et al. (2012), HLBL (Mnih and G. E. Hinton 2009), the English Poly-
glot (Al-Rfou’, Perozzi, and Skiena 2013), and 24 variants of the model
created from 4lang. Casual pairs were projected to a 2-dimensional
plane by principal component analysis, a machine learning technique
often used for visualizing high-dimensional data. The visualization sug-
gested that that there is a center in the vector space of the words, that
approximately fits the lines containing each causal pair, see Figure 19.
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discourage
0
��

CAUSE
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=AGT =PAT
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Figure 18: The definition of discourage in the 4lang concept lexicon exem-
plifies the use of ‘cause’ in associative network representations of
linguistics knowledge. The graph expresses that discourage means,
that the agent (=AGT) causes the participant that is called patient
in linguistics (=PAT) to lack confidence.

For testing the centrality property in the original, unreduced space,
we took random word pairs of the same number as we have causal
pairs. The point closest to all the lines fitting each pair was computed
for both the real and the random sample of word pairs using a formula
by Han and Bancroft (2010). Distances of the lines to the corresponding
center was also computed. Centrality implies that the expected value
of the distances is lower in the real case than in the random case. An
unpaired t-test showed that this condition holds in the case of SENNA
(p ă 0.001).

Some of the models created from 4lang also show significant (p ă
0.05) difference, but this statistical result has to be taken with caution,
because of the phenomenon known as multiple testing (Domingos 2012).

Standard statistical tests assume that only one hypothesis
is being tested, but modern learners can easily test millions
before they are done. As a result what looks significant may
in fact not be. [. . . ] This problem can be combatted by cor-
recting the significance tests to take the number of hypothe-
ses into account [. . . ]

Multiplying the p values by 24 significance is lost, so we should mo-
tivate the choice of some specific model among all 4lang models on
some independent grounds to make results significant. This remains a
problem for further research.

7.2.1 Conclusion

Looking for an insightful interpretation of causality in VSMs, we have
found a center point c in the VSM SENNA with the property that the
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give have
show see
encourage hope
feed eat
kill die
raise rise
...

...

Table 28: Word causes and effects in WordNet. WordNet contains semantic
relations like is-a (a chair is a furniture), instance-of (Mozart is an
instance of ‘composer’), antonym (cold and hot), part-of (Monday
is a part of ‘week’) as well.

Figure 19: A 2-d visualization of causal pairs in the VSMs suggest that lines
connecting causal pairs run close to a common center point.
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lines connecting the two members of causal word pairs run close to c.
In algebraic terms this means that

veffect « λvcause ` p1´ λqc

with a verb-dependent λ P R, reflecting the linguistic intuition that the
meaning of the effect is a combination of the meaning of the cause and
a causal element.

ToDo Szécsényi: A [fenti] képlet szerint az okozást és az okozott
hatást leíró igepárok vektorai egy igéktől független c pont két oldalán
egy igétől függő λ paraméter szerint elhelyezkedve találhatók meg. Van
ennek valamilyen nyelvészeti relevanciája, vagy csak egy érdekes megfi-
gyelés? A λ értéke e tényen kívül valahogyan jellemzi az adott igepárt?

Further research may discover more sophisticated connections be-
tween cause and effect vectors that apply to more models, possibly
all models obtained by one or more of the three mentioned methods
(co-occurrence matrices, neural nets, and lexicon graphs).2

7.3 hypernymy as interaction of sparse attributes

The distributional hypothesis (Z. S. Harris 1954) says that a word can be
described/represented based on how frequently it cooccurrs with every
other word. More specifically, the distributional inclusion hypothesis
(Weeds and Weir 2003; Chang et al. 2018) says that hypernymy can
be modeled based on that if animal is a hypernym of dog, animal will
be grammatical in every context where dog is. It is less clear whether
animal will appear in every context at least as frequently as dog does.
Now we test this method for hypernym extraction with the tools of
sparse coding.

Sparse vectors are vectors most of whose coordinates are zero, and
non-zero coordinates ideally correspond to interpretable properties. It
varies with models whether interpretability follows from the construc-
tion of the vectors, or the interpretation needs to be inferred from
some latent structure. Even in the latter case, sparse representations
tend to be more interpretable than less restricted ones. As far as sparse
attributes (i.e. non-zero coordinates in sparse word representations) cor-
respond to contexts, if follows from the distributional inclusion hypoth-
esis discussed above that hypernymy should boil down to pointwise
comparison.

This section originally appeared as Berend, Makrai, and Földiák
(2018)3, and describes 300-sparsans’ participation in SemEval-2018 Task
9: Hypernym Discovery, with a system based on sparse coding and a
formal concept hierarchy obtained from word embeddings. Our system

2 I would like to thank Balázs Szalkai for reminding me to the problem of multiple
testing.

3 Berend and Makrai worked together and did the same kind of work in the project,
but Berend clearly played the role of the first author.
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took first place in subtasks (1B) Italian (all and entities), (1C) Spanish
entities, and (2B) music entities.

7.3.1 Introduction

Natural language phenomena are extremely sparse by their nature,
whereas continuous word embeddings employ dense representations of
words. Turning these dense representations into a much sparser form
can help in focusing on most salient parts of word representations
(Faruqui et al. 2015; Berend 2017; Subramanian et al. 2018).

Sparsity-based techniques often involve the coding of a large number
of signals over the same dictionary (Rubinstein, Zibulevsky, and Elad
2008). Sparse, over-complete representations have been motivated in
various domains as a way to increase separability and interpretability
(Olshausen and Field 1997) and stability in the presence of noise.

Non-negativity has also been argued to be advantageous for inter-
pretability (Faruqui et al. 2015; Fyshe et al. 2015; Arora et al. 2016).
As Subramanian et al. (2018) illustrates this in the language domain,
where sparse features are interpreted as lexical attributes, “to describe
the city of Pittsburgh, one might talk about phenomena typical of
the city, like erratic weather and large bridges. It is redundant and
inefficient to list negative properties, like the absence of the Statue
of Liberty”. Berend (2018) utilize non-negative sparse coding for word
translation by training sparse word vectors for the two languages such
that coding bases correspond to each other.

Here we apply sparse feature pairs to hypernym extraction. The role
of an attribute pair xi, jy P φpqq ˆ φphq (where q is the query word, h
is the hypernym candidate, and φpwq is the set of indices of non-zero
components in the sparse representations of w) is similar to interaction
terms in regression, see Section 7.3.2 for details.

Sparse representation is related to hypernymy in various natural
ways. One of them is through Formal concept Analysis (FCA). (Cimi-
ano, Hotho, and Staab 2005) already strived to acquire concept hier-
archies from a text corpus with the tools of Formal concept Analysis
(FCA). Our submissions experiment with formal concept analysis tool
by Endres, Földiák, and Priss (2010). See the next subsection for a de-
scription of formal concept lattices, and how hypernyms can be found
in them.

Another natural formulation is related to hierarchical sparse coding
(Zhao, Rocha, and Yu 2009), where trees describe the order in which
variables “enter the model” (i.e. take non-zero values). A node may
take a non-zero value only if its ancestors also do: the dimensions that
correspond to top level nodes should focus on “general” meaning com-
ponents that are present in most words. Yogatama et al. (2015) offer
an implementation that is efficient for gigaword corpora. Exploiting the
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correspondence between the variable tree and the hypernym hierarchy
offers itself as a natural choice.

The task (Camacho-Collados et al. 2018) evaluated systems on their
ability to extract hypernyms for query words in five subtasks (three
languages, English, Italian, and Spanish, and two domains, medical and
music). Queries have been categorized as concepts or entities. Results
were reported for each category separately as well as in combined form,
thus resulting in 5ˆ 3 combinations. Our system took first place in
subtasks (1B) Italian (all and entities), (1C) Spanish entities, and (2B)
music entities. Detailed results for our system appear in Section 7.3.3.
Our source code is available online4.

7.3.1.1 Formal concept analysis

Formal concept Analysis (FCA) is the mathematization of concept and
conceptual hierarchy (Ganter and Wille 2012; Endres, Földiák, and
Priss 2010). In FCA terminology, a context is a set of objects O, a set
of attributes A, and a binary incidence relation I Ď O ˆA between
members of O and A. In our application, I associates a word w P O
to the indices of its non-zero sparse coding coordinates i P A. FCA
finds formal concepts, pairs xO,Ay of object sets and attribute sets
(O Ď O,A Ď A) such that A consists of the shared attributes of objects
in O (and no more), and O consists of the objects in O that have all
the attributes in A (and no more). (There is a closure-operator related
to each FCA context, for which O and A are closed sets iff xO,Ay is a
concept.) O is called the extent and A is the intent of the concept.5
There is an order defined in the context: if xA1,B1y and xA2,B2y are

concepts in C, xA1,B1y is a subconcept of xA2,B2y if A1 Ď A2 which
is equivalent to B1 Ě B2. The concept order forms a complete lattice.
The smallest concept whose extent contains a word is said to introduce
the object. We expect that h will be a hypernym of q iff npqq ď nphq

where npwq denotes the node in the concept lattice that introduces w.
The closedness of extents and intents has an important structural

consequence. Adding attributes to A (e.g. responses of additional neu-
rons) will very probably grow the model. However, the original concepts

4 https://github.com/begab/fca_hypernymy
5 Those who are familiar with closure operators may note the following. We can define
the prime operator 1 both for objects and attributes in a dual way: O 1 is defined as
the set ta P A | @o P O, xo, ay P Iu, i.e. that of the shared attributes of objects in O,
and A 1 as to P O | @a P A, xo, ay P Iu i.e. the set of the objects in O that have all
the attributes in A. Then the double application of 1 is a closure operation both on
objects and attributes: with notation S “ S 2, for either S Ď O or S Ď A, we have
S Ď S and S “ S, and the following conditions are equivalent for all O Ď O and
A Ď A:
• xO, Ay is a concept
• O is a closed set with respect to O ÞÑ O, and A “ O 1

• A is a closed set with respect to A ÞÑ A, and O “ A 1.
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will be embedded as a substructure in the larger lattice, with their or-
dering relationships preserved.

7.3.2 Our approach

Here we describe our system that is based on sparse non-negative word
representations and FCA besides more traditional features.

We use the popular skip-gram (SG) approach (Mikolov, Chen, et
al. 2013) to train d “ 100 dimensional dense distributed word represen-
tations for each sub-corpus. The word embeddings are trained over the
text corpora provided by the shared task organizers with the default
training parameters of word2vec (w2v), i.e. a window size of 10 and 25
negative samples for each positive context.

We derived multi-token units by relying on the word2phrase soft-
ware accompanying the w2v toolkit. An additional source for identify-
ing multi-token units in the training corpora was the list of potential
hypernyms released for each subtask by the shared task organizers.
Given the dense embedding matrixWx P Rdˆ|Vx|, for some subcorpus

of the shared task x P t1A, 1B, 1C, 2A, 2Bu, where |Vx| is the size of
the vocabulary and d is set to 100. As a subsequent step, we turn Wx

into sparse word vectors akin to Berend (2017) by solving for

min
DPC,αPRě0

‖Dα´Wx‖F ` λ‖α‖1, (5)

where C refers to the convex set of Rdˆk matrices consisting of d-
dimensional column vectors with norm at most 1, and α contains the
sparse coefficients for the elements of the vocabulary. The only differ-
ence compared to Berend (2017) is that here we ensure a non-negativity
constraint over the elements of α.
For the elements of the vocabulary we ran the formal concept analysis

tool of Endres, Földiák, and Priss (2010)6. In order to keep the size
of the DAG outputted by the FCA algorithm manageable, we only
included the query words and those hypernyms in the analysis which
occur in the training dataset for the corpora. As we will see in the next
subsection, this restriction turns out to be very useful.
Next, we determine a handful of features for a pair of expressions

pq,hq consisting of a query q and its potential hypernym h. Table 29
provides an overview of the features employed for a pair pq,hq. We
denote with q and h the 100-dimensional dense vectorial representa-
tions of q and h. Additionally, we denote with Q and H the sequence
of tokens constituting the query and hypernym phrases. Finally, we
refer to the set of basis vectors (in the FCA terminology, attributes)
which are assigned non-zero weights in the reconstruction of the vecto-
rial representation of q and h as φpqq and φphq. It is also considered as a

6 www.compsens.uni-tuebingen.de/pub/pages/personals/3/concepts.py
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Core feature name

cosine qᵀh
‖q‖2‖h‖2

difference ‖q´ h‖2
normRatio ‖q‖2

‖h‖2

qureyBeginsWith Qr0s “ h

queryEndsWith Qr´1s “ h

hasCommonWord QXH ‰ H

sameFirstWord Qr0s “ Hr0s

sameLastWord Qr´1s “ Hr´1s

logFrequencyRatio log10
countpqq
countphq

isFrequentHypernym c PMF50pq.typeq

sameConcept nphq “ npqq

parent npqq ă nphq

child nphq ă npqq

overlappingBasis φpqq X φphq ‰ H

sparseDifferenceqzh |φpqq ´ φphq|
sparseDifferencehzq |φphq ´ φpqq|
attributePairij xi, jy P φpqq ˆ φphq

Table 29: The features employed in our classifier. MF50pq.typeq refers to the
set of top-50 most f requent hypernyms for a given query type. At
submission time, this feature did not work properly.
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feature (isFrequentHypernym) whether a particular candidate hyper-
nym h belongs to the top-50 most frequent hypernyms for the category
of q (i.e. concept or entity). Modeling the two categories separately
played an important role in the success of our systems.
Three additional features are defined for incorporating the concept

lattice output by FCA. Denoting with npwq the concept that introduces
w, i.e. the most specific location within the DAG for w, our features
indicate whether npqq (1) coincides with that of h, (2) is the parent
(immediate successor) for that of h, or (3) is the child (immediate pre-
dictions) for that of h. Parents, and even the inverse relation, proved to
be more predictive than the conceptually motivated q ď h. In Table 29,
n1 ă n2 denotes that n1 is an immediate predecessor of n2. We will see
in post-evaluation ablation experiments, where we refer to the above
three features as the FCA features, that they were not useful in our
submissions.
The attributePairijs above, our most important features, are in-

dicator features for every possible interaction term between the sparse
coefficients in α. That means that for a pair of words pq,hq we defined
φpqqˆφphq, i.e. candidates get assigned with the Cartesian product de-
rived from the indices of the non-zero coefficients in α. Note that this
feature template induces k2 features, with k being the number of basis
vectors introduced in the dictionary matrix D according to Eq. 5.

In order to rank potential hypernym candidates over the test set we
trained a logistic regression classifier for concepts and entities utilizing
the sklearn package (Pedregosa et al. 2011)7 with the regularization
parameter defaulting to 1.0.
For each appropriate pq,hq pair of words for which h is a hypernym

of q, we generated a number of negative samples pq,h 1q, such that the
training data does not include h 1 as a valid hypernym for q. For a given
query q, either concept or entity, we sampled h 1 from those hypernyms
which were included as a valid hypernym in the training data with
respect to some q 1 ‰ q query phrase.
When making predictions for the hypernyms of a query, we relied on

our query type sensitive logistic regression model to determine the rank-
ing of the hypernym candidates. In our official submission, the ranking
was restricted to the phrases which were appeared in the training data
as a proper hypernym at least once.
After the appropriate model ranked the hypernym candidates, we se-

lected the top 15 ranked candidates and applied a post-ranking heuristic
over them, i.e. reordered them according to their background frequency
from the training corpus. Our assumption here is that more frequent
words tend to refer to more general concepts and more general hyper-
nymy relations potentially tend to be more easily detectable than more
special ones.

7 scikit-learn.org
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without attribute pairs with attribute pairs

MAP MRR P@1 P@3 P@5 P@15 MAP MRR P@1 P@3 P@5 P@15

1A offic 8.6 18.0 13.0 8.9 8.2 7.9 8.9 19.4 14.9 9.3 8.6 8.1
1A reprd 9.07 18.7 13.5 9.4 8.8 8.5 9.2 19.9 14.9 9.5 8.7 8.4
1B offic 9.4 19.9 13.2 9.5 9.3 8.8 12.1 25.1 17.6 12.9 11.7 11.2
1B reprd 9.2 19.5 12.8 8.9 8.9 8.7 12.8 26.7 18.9 13.6 12.4 11.9
1C offic 12.5 25.9 16.6 13.6 12.6 11.5 17.9 37.6 27.8 19.7 17.1 16.3
1C reprd 12.9 26.0 16.2 13.9 13.0 11.9 18.3 38.4 28.5 20.2 17.4 16.6
2A offic 15.0 32.2 24.8 17.7 15.8 11.6 20.8 40.6 31.6 23.5 21.4 17.1
2A reprd 15.1 32.4 24.4 18.0 16.2 11.8 21.5 43.7 35.6 25.3 21.8 17.0
2B offic 19.1 36.7 27.2 23.0 20.1 15.4 29.5 46.4 33.0 31.9 28.9 27.7
2B reprd 21.5 40.9 29.6 25.6 22.1 18.0 30.4 46.8 33.8 31.8 29.5 28.9

Table 30: Our submissions results: official and those that can be reproduced
with the code in the project repo (with the isFrequentHypernym
feature being turned off).

7.3.3 Results

7.3.3.1 Our submissions

Our submissions were based on k “ 200 dimensional sparse vectors
computed from unit-normed 100-dimensional dense vectors with λ “

.3. The sum of the two dimensions motivates our group name 300-
sparsans. For training the regression model with negative samples, 50
false hypernyms were sampled for each query q in the training dataset.
One of our submissions involved attribute pairs, the other not. Both
submissions used the conceptually motivated but practically harmful
FCA-based features.
Table 30 shows submission results. The figures that can be repro-

duced with the code in the project repo (reprd) is slightly different
from our official submissions (offic) for two reasons: because the im-
plementation of isFreqHyp contained a bug, and because of the natural
randomness in negative sampling. For reproducibility, we report result
without the isFreqHyp feature. The randomness introduced by nega-
tive sampling is now factored out by random seeding.

7.3.3.2 Query type sensitive baselining

Our submission with attribute pairs achieved first place in categories
(1B) Italian (all and entities), (1C) Spanish entities, and (2B) music
entities. This is in part due to our good choice of a fallback solution
in the case of OOV queries: we applied a category-sensitive baseline
returning the most frequent train hypernym in the corresponding query
type (concept or entity). Table 31 shows how frequently we had to rely
on this fallback, and Table 32 shows the corresponding pure baseline
results.
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Train Test

1A 975(4) 0.41% 1055(4) 0.38%
1B 709(1) 0.14% 767(2) 0.26%
1C 776(2) 0.26% 625(2) 0.32%
2A 442(58) 11.60% 433(67) 13.40%
2B 366(21) 5.43% 341(17) 4.75%

(a) concept

Train Test

1A 379(142) 27.26% 344(99) 22.35%
1B 249(41) 14.14% 205(26) 11.26%
1C 184(38) 17.12% 328(45) 12.06%
2A 0(0) — 0(0) —
2B 79(34) 30.09% 102(40) 28.17%

(b) entity

Table 31: Number of in-vocabulary (and out-of-vocabulary, OOV) queries per
query type. The ratio of the latter is also shown.

MAP MRR P@1 P@3 P@5 P@10

1A 9.8 22.6 19.8 10.0 9.0 8.6
1A 8.8 21.4 19.8 8.9 7.8 7.5

1B 8.9 21.2 17.1 9.1 8.3 7.9
1B 7.8 19.4 17.1 8.3 6.8 6.5

1C 16.4 33.3 24.6 17.5 16.1 14.9
1C 12.2 29.8 24.6 12.0 11.3 11.0

2A 29.0 35.9 32.6 34.3 34.2 21.7
2A 28.9 35.8 32.6 34.3 34.2 21.4

2B 40.2 58.8 50.6 44.6 40.3 35.5
2B 33.3 51.5 36.2 40.1 35.8 28.4

Table 32: Baseline results, most frequent training hypernyms. We (upper) con-
sider the most frequent hypernym in the given query type (concept
or entity). For comparison, we also show the MFH baseline provided
by the organizers (lower) that is based on the most frequent hyper-
nyms in general.
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candidate filtering off candidate filtering on

k ns MAP MRR P@1 P@3 P@5 P@15 MAP MRR P@1 P@3 P@5 P@15

200 50 6.5 14.9 13.1 7.4 6.1 5.5 12.1 25.4 18.9 12.9 11.6 10.9
200 all 6.9 15.8 14.1 7.6 6.3 5.8 13.0 27.1 19.9 14.2 12.5 11.8

300 50 6.9 15.8 13.9 7.6 6.4 5.9 12.1 25.7 19.5 13.0 11.5 11.0
300 all 8.0 17.8 15.4 8.9 7.4 6.8 13.5 28.0 21.1 14.5 12.9 12.3

1000 50 9.0 20.0 17.2 9.8 8.3 7.7 13.3 28.1 21.3 13.8 12.6 12.3
1000 all 11.6 26.1 22.5 12.5 10.8 10.0 13.6 27.2 19.4 13.9 13.2 12.8

Table 33: Post evaluation results on the 1A dataset investigating the effect
of various hyperparameter choices. k and ns denotes the number
of basis vectors and negative samples generated during training per
each positive pq,hq pair. Best results obtained for each metric are
marked as bold.

MAP MRR P@1 P@3 P@5 P@15

off off 10.3 21.3 15.0 10.6 10.1 9.6
off on 10.1 21.1 14.9 10.5 9.9 9.5
on off 12.1 25.4 18.9 12.9 11.6 10.9
on on 12.1 25.3 18.7 13.0 11.6 11.0

Table 34: Ablation experiments, on the 1A dataset with k “ 200,ns “ 50 (and
the implementation of isFreqHyp fixed). The first two columns indi-
cate whether attributePairij and FCA-derived features are utilized,
respectively.

7.3.3.3 Post-evaluation analysis

After the evaluation closed, we conducted ablation experiments, the
results of which are included in Table 34. In these experiments, we in-
vestigated the contribution of the features derived from sparse attribute
pairs and FCA. These ablation experiments corroborate the importance
of features derived from sparse attribute pairs and reveal that turning
off FCA-based features does not hurt performance at all. For this reason
– even though our official shared task submission included FCA-related
features – we no longer employed them in our post-evaluation experi-
ments.
Table 33 includes the detailed behavior of our model on subtask 1A

with respect to three distinct factors, that is

1. the number of basis vectors employed during sparse coding (k P
t200, 300, 1000u),

2. the number of negative training samples per positive sample (ns P
t50, allu),

3. candidate filtering being turned on/off.

In our original submission we generated 50 negative samples (ns) per
query q during training. In our post evaluation experiments we investi-
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MAP MRR P@1 P@3 P@5 P@15

1A 76.1 92.2 92.2 82.3 76.4 71.6
1B 71.2 93.4 93.4 78.5 70.9 65.7
1C 81.0 95.9 95.9 87.2 81.7 76.4
2A 72.6 89.6 89.6 81.0 75.3 64.1
2B 95.4 98.8 98.8 97.3 96.0 93.7

Table 35: Test results of an oracle system which uses candidate filtering.

gated the effects of generating more negative samples, i.e. we regarded
all the valid hypernyms over the training set – not being a proper hy-
pernym for q – as h 1 upon the creation of the pq,h 1q negative training
instances. This latter strategy is referenced as ns “ all in Table 33.

In our official submission we regarded only those hypernyms as po-
tential candidates to rank during test time which occurred at least once
as a correct hypernym in the training data. We call this strategy as can-
didate filtering. Historically, we applied this restriction to speed up the
FCA algorithm because this way the size of the concept lattice could be
made smaller. As there are valid hypernyms on the test set which never
occurred in the training data, our official submission would not be able
to obtain a perfect score even in theory. As ceiling analysis, Table 35
contains the best possible metrics on the test set that we could achieve
when candidate filtering is applied. In our post evaluation experiments
we also investigated the effects of turning this kind of filtering step
off. As Table 33 illustrates, however, our scores degrade after turning
candidate filtering off.

Our post evaluation experiments in Table 33 suggest that it is advan-
tageous to apply sparse representation of more expressive power (i.e. a
higher number of basis vectors). Generating more negative samples also
provides some additional performance boost. These previous observa-
tions hold irrespective whether candidate filtering is employed or not,
however, their effects are more pronounced when hypernym candidates
are not filtered.

Finally, we report our post-evaluation results for all the subtasks
and compare them to the official scores of the best performing systems
in Table 36. It can be seen from these enhanced results for category
“all” (concepts and entities mixed) that we would win (1B) Italian and
(1C) Spanish. Our post-evaluation system – which only differs from our
participating system that it fixes the calculation of a features, does not
rely on FCA-based features and uses k “ 1000 – would also place third
in the rest of the subtasks.
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MAP MRR P@1 P@3 P@10 P@15

1A 13.3 28.1 21.3 13.8 12.6 12.3
1A 19.8 36.1 29.7 21.1 19.0 18.3

1B 12.5 24.2 14.5 13.4 12.5 12.0
1B 12.1 25.1 17.6 12.9 11.7 11.2

1C 21.8 43.8 33.7 22.9 21.4 19.9
1C 20.0 28.3 21.4 20.9 21.0 19.4

2A 21.9 39.5 34.2 25.5 22.6 18.5
2A 34.0 54.6 49.2 40.1 36.8 27.1

2B 31.5 43.6 29.8 30.3 30.3 31.5
2B 41.0 60.9 48.2 44.9 41.3 38.0

Table 36: Post evaluation results for the different subtasks using k “

1000,ns “ 50 and hypernym candidate filtering. Upper: our sys-
tem, lower: subtask winner.

7.3.4 Conclusion

In this section we experimented with the integration of sparse word
representations into the task of hypernymy discovery. We strived to
utilize sparse word representations in two ways, i.e. via building con-
cept lattices using formal concept analysis and modeling the hypernymy
relation with the help of interaction terms. While our former approach
for deriving formal concepts from sparse word representations was not
successful, the interaction terms derived from sparse word representa-
tions proved to be highly beneficial.

7.4 analogy and translation

In Section 4.2, we introduced word2vec and GloVe as the two most
successful open-source tools that compute distributed language models
from gigaword corpora. word2vec implements the neural network style
architectures skip-gram and cbow, learning parameters using each word
as a training sample, while GloVe factorizes the cooccurrence-matrix (or
more precisely a matrix of conditional probabilities) as a whole. In this
section, which originally appeared as Makrai (2015) and Makrai (2016),
we compare the two systems on two tasks: a Hungarian equivalent of a
popular word analogy task and word translation between European lan-
guages including medium-resourced ones: Hungarian, Lithuanian and
Slovenian.
Neural nets are taking over in many fields of artificial intelligence. In

natural language processing applications, training items are the word
tokens in a text. Vectors representing word forms on the so called em-
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bedding layer have meaningful structure on their own: Collobert and
Weston 2008 trained a system providing state-of-the-art results in sev-
eral tasks (part-of-speech tagging, chunking, named entity recognition,
and semantic role labeling) with the same embedding vectors. Mikolov,
Yih, and Zweig (2013) trained an embedding with the skip-gram (sgram)
architecture that not only encodes similar word with similar vectors but
reflects relational similarities (similarities of relations between words)
as well. The system answers analogical questions. For more details see
Section 4.2.7.
The cooccurrence matrix based approach (Section 4.1) and the neural

one, are represented by the two leading open-source tools for computing
distributed language models (or simply vector space language models,
VSM) from gigaword corpora, GloVe and word2vec respectively. Here
we compare them on a task related to statistical machine translation.
The goal of the project to which the line of research reported here
belongs has been to generate protodictionaries for European languages
with fewer speakers. We have collected translational word pairs between
English, Hungarian, Slovenian, and Lithuanian.

We took the method of Mikolov, Le, and Sutskever (2013) who train
VSMs for the source and the target language from monolingual corpora,
and collect word translation by learning a mapping between these su-
pervised by a seed dictionary of a few thousand items.

Before collecting word translations, we test the models in an indepen-
dent and simpler task, the popular analogy task. For this, we created
the Hungarian equivalent of the test question set by Mikolov, Yih, and
Zweig (2013) and Mikolov, Chen, et al. (2013).8

The only related work that evaluated vector models of a language
other than English on word analogy tasks in these early years of word
embeddings we know is Sen and Erdogan (2014) who compare different
strategies to deal with the a morphologically rich Turkish language9. As
far as we know, application of GloVe to word translation was a novelty
of Makrai (2015).

7.4.1 A Hungarian analogical benchmark

Measuring the quality of VSMs in a task-independent way (a.k.a. in-
trinsic evaluation) is motivated by the idea of representation sharing.
VSMs that capture something of language itself are better than ones
tailored for a task. We compare results in the monolingual and the
main task in Section 7.4.4.4.

Analogical questions (also called relational similarities (Turney 2006)
or linguistic regularities (Mikolov, Yih, and Zweig 2013)) are intrinsic
measures of merit for vector models. This test has gained popularity

8 For data and else visit the project page http://corpus.nytud.hu/efnilex-vect.
9 I’m grateful to Mehmet Umut Sen for translating the essence of Sen and Erdogan
(2014) to English.
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English Hungarian
plural singular plural singular

decrease decreases lesznek lesz
describe describes állnak áll

eat eats tudnak tud
enhance enhances kapnak kap
estimate estimates lehetnek lehet

find finds nincsenek nincs
generate generates kerülnek kerül

Table 37: Morphological word pairs

in the VSM community. Mikolov, Yih, and Zweig (2013) observe that
analogical questions like “good is to better as rough is to . . . ” or “man
is to woman as king is to . . . ” can be answered by basic linear algebra
in neural VSMs:

good´ better « rough´ x (6)
x « rough´ good` better (7)

In this example. the difference corresponds to the morphological re-
lation of the comparative. So the vector nearest to the right side of (2)
is supposed to be rougher, which is really the case.
We created a Hungarian equivalent of the analogical questions made

publicly available by Mikolov, Yih, and Zweig (2013) and Mikolov,
Chen, et al. (2013). More precisely, we follow the main ideas reported
in Mikolov, Yih, and Zweig (2013), and target the sizes of the data-set
accompanying Mikolov, Chen, et al. (2013).
Analogical pairs are divided to morphological (“grammatical”) and

semantic ones. The morphological pairs in Mikolov, Yih, and Zweig
(2013) were created in the following way:

[We test] base/comparative/superlative forms of adjectives;
singular/plural forms of common nouns; possessive/non-possessive
forms of common nouns; and base, past and 3rd person
present tense forms of verbs. More precisely, we tagged
267M words of newspaper text with Penn Treebank POS
tags (Marcus, Santorini, and Marcinkiewicz 1993). We then
selected 100 of the most frequent comparative adjectives
(words labeled JJR); 100 of the most frequent plural nouns
(NNS); 100 of the most frequent possessive nouns (NN POS);
and 100 of the most frequent base form verbs (VB).

The Hungarian morphological pairs (Table 37) were created in the
following way: For each grammatical relationship, we took the most
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English Hungarian
# pairs # questions # pairs

gram1-adjective-to-adverb 32 992 40
gram2-opposite 812 29 30
gram3-comparative 37 1332 40
gram4-superlative 34 1122 40
gram5-present-participle 33 1056 40
gram6-nationality-adjective 41 1599 41
gram7-past-tense 40 1560 40
gram8-plural-noun 37 1332 40
gram9-plural-verb 30 870 40
capital-common-countries 23 506 20
capital-world 116 4524 166
city-in-state 68 2467
county-center 19
county-district-center 175
currency 30 866 30
family 23 506 20

Table 38: Sizes of the question sets

frequent inflected forms from the Hungarian Webcorpus (Halácsy et
al. 2004). The suffix in question was restricted to be the last one. See
sizes in Table 38. In the case of opposite, we restricted ourselves to
forms with the derivational suffix -tlan (and its other allomorphs) to
make the task morphological rather then semantic. plural-noun includes
pronouns as well.

For the semantic task (Table 39), data were taken from Wikipedia.
For the capital-common-countries task, we choose the one-word capitals
appearing in the Hungarian Webcorpus most frequently. The English
task city-in-state contains USA cities with the states they are located in.

English Hungarian

Athens Greece Budapest Magyarország
Baghdad Iraq Moszkva Oroszország
Bangkok Thailand London Nagy-Britannia
Beijing China Berlin Németország
Berlin Germany Pozsony Szlovákia
Bern Switzerland Helsinki Finnország
Cairo Egypt Bukarest Románia

Table 39: Semantic word pairs
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English Hungarian

Athens Greece Baghdad Iraq Budapest Magyarország Moszkva Oroszország
Athens Greece Bangkok Thailand Budapest Magyarország London Nagy-Britannia
Athens Greece Beijing China Budapest Magyarország Berlin Németország
Athens Greece Berlin Germany Budapest Magyarország Pozsony Szlovákia
Athens Greece Bern Switzerland Budapest Magyarország Helsinki Finnország
Athens Greece Cairo Egypt Budapest Magyarország Bukarest Románia

Table 40: Analogical questions

The equivalent tasks county-center contains counties (megye) with
their centers (Bács-Kiskun – Kecskemét), and currency contains the
currencies of the most frequent countries in the Webcorpus. The family
task targets gender distinction. We filtered the pairs where the gender
distinction is sustained in Hungarian (but dropping e.g. he – she). We
put some relational nouns in the possessive case (bátyja – nővére). We
note that this category contains the royal “family” as well, e.g. the
famous king – queen, and even policeman – policewoman.

Both morphological and semantic questions were created by match-
ing every pair with every other pair resulting in e.g.

`

20
2

˘

questions for
family (Table 40).

7.4.2 Word translation in European languages

For the collection of word translations, we take the method of Mikolov,
Le, and Sutskever (2013) that starts with creating a VSM for the source
and the target language from monolingual corpora in the magnitude
of billion(s) of words. VSMs represent words in vector spaces of some
hundred dimensions. The key point of the method is learning a linear
mapping from the source vector space to the target space supervised
by a seed dictionary of 5 000 words. Training word pairs are taken from
among the most frequent ones skipping pairs with a source or target
word unknown to the language model. The learned mapping is used to
find a translation for each word in the source model. The computed
translation is the target word with a vector closest to the image of the
source word vector by the mapping. The closeness (cosine similarity)
between the image of the source vector and the closest target vector
provides a confidence measures for the translation, the similarity of
the source and the computed target word. We will make further use
of this inter-lingual similarity score in Section 7.5, to filter translation
pairs obtained with more traditional methods. Best results are reported
when the dimension of the source model is 2–4 times the dimension of
the target model, e.g. 800 Ñ 300.

We generate word translations between the following language pairs:
Hungarian-Lithuanian, Hungarian-Slovenian, and Hungarian-English.
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cos ą vocab gold prec@1 prec@5

0.7 3803 301 68.4% 84.4%
0.6 9967 711 54.7% 74.1%
0.5 12949 958 46.6% 65.6%
0.4 13451 988 45.3% 64.0%

Table 41: Trade-off between precision and recall in Hungarian to English word
translation

The measure of confidence for each translational pair (the distance
of the vector computed by mapping the source word vector, and the
nearest target word vector) makes some tuning between precision and
recall possible (see Table 41). With a higher cosine similarity cut-off
(column cos ą), we get word translations for a smaller vocabulary (vo-
cab) with a higher precision, while lower cosine similarities produce a
greater vocabulary with translations of a lower precision. prec@1 is the
ratio of words, for which the first candidate translation coincides with
that provided in the seed dictionary, prec@5 is the ratio of words with
the seed translation in the first 5 candidates. These are strict metrics,
as synonyms of the gold translation count as incorrect. gold is the num-
ber of words with a gold translation in the corresponding part of the
test data.

We follow Mikolov, Yih, and Zweig (2013) in using least squares of
the Euclidean distance for training, and, surprisingly, cosine similarity
for translation generation, which is the only combination of the two
distances that works. We return to techniques related to this strange
combination in Section 8.4.2.

7.4.3 Data

7.4.3.1 Corpora and vectors

For English, we use vector models downloaded from the home pages
of the tools, while for the medium-resourced languages, we train new
models on the corpora in Table 42, using the tokenization provided by
the authors of the corpora.10

7.4.3.2 Seed dictionaries

Mikolov, Le, and Sutskever (2013) use Google translate as a seed dic-
tionary. We experimented with three seed dictionaries: (1) efnilex12,
the protodictionaries collected within the EFNILEX project (Héja and
Takács 2012), (2) word pairs collected using wikt2dict with and with-
out triangulation (See Ács, Pajkossy, and Kornai (2013), and, for sizes,

10 I would like to thank Vladimír Benko for information on corpora.
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language corpus # words

Lithuanian webcorpus (Zséder et al. 2012) 1.4 B
Slovenian slWaC (Ljubešić and Erjavec 2011) 1.6 B
Hungarian Webcorpus (Halácsy et al. 2004) 0.7 B
Hungarian HNC (Oravecz, Váradi, and Sass 2014) 0.8 B

Table 42: Corpora for medium-resourced languages. Word counts are given in
billions.

efnilex12 wikt wikt triang OSub12 OSub13 Europarl

en-hu 83 K 47 K +134 K 97 K 19 K 21 K
hu-lt 152 K 6 K +21 K 11 K 9 K 27 K
hu-sl 235 K 2 K +26 K 63 K 45 K 29 K

Table 43: Number of translational word pairs in the seed dictionaries

Table 43), and (3) dictionaries from the opus collection (Europarl, Open-
Subtitles2012 and OpenSubtitles2013, Tiedemann (2012))11. efnilex12
contains directed dictionaries (ranked by the conditional probability
(of cooccurrence) of the target word conditioned on the source word).

7.4.4 Results

ToDo Novák: az eredményeket bemutató táblázatok: nem összevethetőek
a különböző táblázatokban vagy a táblázatok különböző részeiben sz-
ereplő eredmények.
In the remainder of Section 7.4, we will use the abbreviation d for

dimension, w for window radius (w “ 15means that (a maximum of) 15
words are considered on both sides of the word in focus), i for number
of training iterations over the corpus (epochs), m for minimum word
count in the vocabulary cutoff, and n for number of negative samples
(in the case of word2vec).

7.4.4.1 Analogical questions

For comparing the Hungarian analogical questions to the English ones,
we trained sgram models on the concatenation of HNC and the Hun-
garian Webcorpus with d “ 300,m “ 5, either negative sampling or
hierarchical softmax (two techniques to avoid computing the denomi-
nator of softmax that is a sum with as many terms as there are words in
the embedding), and different levels of subsampling of frequent words,
see Mikolov, Sutskever, et al. (2013) for details. In Table 44, it can be
seen that, in the morphological questions, we (below the line) get sim-

11 http://opus.lingfil.uu.se/
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morph semant total

en, Mikolov et al (2013)
n “ 5 61 58 60
n “ 15 61 61 61
HS 52 59 55

hu
n “ 5 63.0 3419/5430 38.5 269/699 60.2 3688/6129
n “ 15 61.9 3359/5430 39.2 274/699 59.3 3633/6129
HS 48.9 2653/5430 22.5 157/699 45.8 2810/6129

Table 44: Comparison of results in our Hungarian word analogies (below the
line) to those of the authors of the original Mikolov, Sutskever, et
al. (2013)

ilar results in the Hungarian equivalent as the authors of the original
tasks (Mikolov, Sutskever, et al. (2013), above the line), while in the
semantic questions, Hungarian results are worse, suggesting that the
semantic questions are too hard. Refer to Novák and Novák (2018) (in
Hungarian) and the experiments by Döbrössy et al. (2019) reported in
Section 4.2.11 as well.

7.4.4.2 Protodictionary generation

In this subsection we report our results in Slovenian/Hungarian/Lithua-
nian to English protodictionary generation. We take four source embed-
dings: two Slovenian ones trained on slWaC, one trained on the Hun-
garian Webcorpus, and one on the Lithuanian webcorpus by Zséder
et al. (2012), all in d “ 600. One of the Slovenian models is a GloVe
one, the other models are cbow models with n “ 15 and w “ 10. The
target model is always glove.840B.300d12 from the GloVe site, the
seed dictionary is OpenSubtitles2012. Either the source (rs), the target
(rt) embedding, or both (rst) was restricted to words accepted by Hun-
spell. In Table 45 we compare our results (below the line) to those of
Mikolov, Le, and Sutskever (2013) (above the line) with slightly differ-
ent metaparameters. The vocabulary cutoff m of the source embedding
is specified for each word2vec model we trained.

7.4.4.3 word2vec, LBL4word2vec and GloVe

We compared word2vec, its modification LBL4word2vec13, and GloVe
with two parameter settings in the analogical task. The two parame-
ter settings were needed because the default (recommended) values of
d,w, i and m are different in the two architectures, see Table 47 with
the more computation-intensive setting in bold.

We trained two models with each architecture on HNC: a small one
with the less computation-intensive one of the two default values (ex-
cept for using d “ 52 for historical reasons) and a big one with the

12 http://nlp.stanford.edu/projects/glove/
13 https://github.com/qunluo/LBL4word2vec
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prec@1 prec@5

en Ñ sp 33 51
sp Ñ en 35 52
en Ñ cz 27 47
cz Ñ en 23 42
en Ñ vn 10 30
vn Ñ en 24 40
glove-sl Ñ en rs 44.80 63.40
word2vec-sl Ñ en m “ 100 rs 41.70 60.40
word2vec-hu Ñ en m “ 50 rst 32.80 54.70
word2vec-lt Ñ en m “ 100 rt 21.20 36.50

Table 45: Results in protodictionary collection

source word cos translations

öt 0.9101 five six eight three
jó 0.8961 good really too very
de 0.8957 but though even just
bár 0.8955 though but even because
hit 0.8904 faith belief salvation truth
ugyan 0.8880 though but even because
vöröshagymát 0.8878 onion garlic onions tomato

Table 46: Example word translations. cos is the cosine similarity of the image
of the source word vector by the learned mapping and the near-
est target vector. Words in the target language are listed in the
(descending) order of their similarity to the image vector.

word2vec GloVe

d 100 50
w 5 15
i 5 25
m 5 10

Table 47: Default values of parameters shared by word2vec and GloVe
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morph sem total

sm
al
l word2vec sgram 49.0% 2703 20.3% 156 45.5% 2859

LBL4word2vec sgram 46.6% 2567 19.4% 149 43.2% 2716
word2vec cbow 49.9% 2751 15.7% 121 45.7% 2872
glove 41.3% 2277 11.1% 85 37.6% 2362

bi
g

word2vec sgram 57.8% 3186 42.0% 323 55.8% 3509
LBL4word2vec sgram 55.5% 3058 36.3% 279 53.1% 3337
glove 58.1% 3206 31.3% 241 54.9% 3447
word2vec cbow 57.8% 3187 30.7% 236 54.5% 3423

Table 48: Comparison of models trained in different architectures. Rows
within each model “size” are sorted by precision in the semantic
task, which we consider more relevant to lexicography than mor-
phology. The total number of questions that do not contain out-of-
vocabulary words is 5514 in morphological questions and 6283 in
semantic ones.

more costly one. For the number of negative samples, which is specific
for word2vec, we use the default n “ 5. See results in Table 48. Note
that GloVe results could be further improved by taking the average of
the two vectors, the “focus” and context vector learned by the model
for each word (see Section 4.2.6).

7.4.4.4 Comparison of results in the two tasks

20 22 24 26 28 30 32

27

28

29

30

Figure 20: Precision in monolingual (horizontal axis) vs bilingual (vertical
axis) task

In Figure 20 we show the results of some Hungarian VSMs in the
analogical and the word translation task plotted against each other.
The horizontal axis shows precision in the semantic analogical ques-
tions, while the vertical axis shows precision (@5) in protodictionary
generation to the Google News model14 restricted to words accepted by

14 https://code.google.com/p/word2vec/#Pre-trained_word_and_phrase_vectors
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model question type Webcorpus HNC

word2vec
morphological 54.9 2924/5326 51.8 2856/5514
semantic 8.3 40/482 16.0 123/769
total 51.0 2964/5808 47.4 2979/6283

glove
morphological 47.4 2525/5326 48.2 2658/5514
semantic 9.3 45/482 14.4 111/769
total 44.2 2570/5808 44.1 2769/6283

Table 49: Comparison of results on two different corpora. The denominator of
each fraction is the number of questions with all three words known
to the vector model, while the numerator is the number of correct
answers for these questions. Parameters: d “ 152, m “ 10, i “ 5 in
both models. For word2vec, w “ 5 and n “ 5 while for glove, w “ 3.
The different window sizes mean that these results are not suitable
for comparing the models just the corpora.

Hunspell and using seed pairs collected with wikt2dict. It can be seen
that result in the two tasks are unfortunately uncorrelated.

7.4.5 Parameter analysis

7.4.5.1 Corpus

quality In Table 49, we compare on analogical questions mod-
els trained on two different corpora: the Hungarian National Corpus
(September 12 snapshot, Oravecz, Váradi, and Sass (2014)) that is a
curated corpus of Hungarian and the Hungarian Webcorpus (Halácsy
et al. 2004) that is a similarly sized webcorpus. The numbers suggest
that a curated corpus is more suitable for the analogical task, especially
in the semantic part or when GloVe is used.

morph sem total

1M 1.8 58/3256 0.0 0/84 1.7 58/3340
2M 6.1 191/3130 0.0 0/60 6.0 191/3190
10M 24.9 986/3954 7.4 8/108 24.5 994/4062
100M 55.1 2530/4594 31.4 37/118 54.5 2567/4712
754M 63.2 3486/5514 49.8 383/769 61.6 3869/6283

Table 50: The effect of corpus size

size Table 50 shows how the performance depends on the size of
the corpus. It is clear that a much larger corpus is needed to answer
semantic questions.
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morph semant total

cbow hs “ 0,n “ 5 59.4% 3276/5514 24.1% 185/769 55.1% 3461/6283
cbow hs “ 1,n “ 0 49.0% 2702/5514 13.9% 107/769 44.7% 2809/6283
cbow hs “ 1,n “ 5 49.5% 2730/5514 14.3% 110/769 45.2% 2840/6283
sgram hs “ 0,n “ 5 59.1% 3261/5514 33.6% 258/769 56.0% 3519/6283
sgram hs “ 1,n “ 0 49.8% 2744/5514 23.1% 178/769 46.5% 2922/6283
sgram hs “ 1,n “ 5 50.4% 2781/5514 23.1% 178/769 47.1% 2959/6283

Table 51: Hierarchical softmax (HS) and negative sampling

7.4.5.2 word2vec: Hierarchical softmax and negative samples

We also tried whether hierarchical softmax (HS) and negative sampling
can be combined to get better result with either of the techniques. A
negative answer can be seen in Table 51 (HNC, d “ 100,w “ 5, i “
5,m “ 5).

7.4.5.3 Protodictionaries: Seed dictionary

seed dictionary prec@1 prec@5

Europarl 17.70% 34.10%
wikt triang 13.10% 25.30%
wikt 12.50% 25.40%
OpenSubtitles2012 10.30% 23.40%
efnilex12 enÑhu 10.10% 23.80%

Table 52: Accuracy of protodictionary generation with different seed dictio-
naries

We compare result obtained in the protodictionary generation task
with different English-Hungarian seed dictionaries in Table 52. The
source language model is always glove.840B.300d, the target model
is also a GloVe model trained on HNC (d “ 300,m “ 1,w “ 15, i “ 25).
For details of the seed dictionaries see Section 7.4.3.2.

7.5 smoothed triangulation for lexical induction

Triangulation infers word translations in a pair of languages based on
translations to other, typically better resourced ones called pivots. This
method may introduce noise if words in the pivot are polysemous. The
reliability of each triangulated translation has traditionally been esti-
mated by the number of pivot languages (Tanaka and Umemura 1994).

As we have seen in Section 7.4.2, and will return to in Chapter 8,
Mikolov, Le, and Sutskever (2013) introduced a method for generat-
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ing or scoring word translations. Translation is formalized as a linear
mapping between distributed vector space models (VSM) of the two lan-
guages. VSMs are trained on monolingual data, while the mapping is
learned in supervised fashion, using a seed dictionary of some thousand
word pairs. The mapping can be used to associate existing translations
with a real-valued similarity score.

In this section, which originally appeared as Makrai (2016), we apply
linear mapping to filter triangulated translations, and show that scores
by the mapping are a smoother measure of merit than the number of
pivots. The methods we use are language-independent, and the train-
ing data is easy to obtain for many languages. For the line of research
reported in this section, we chose the German-Hungarian pair for eval-
uation, in which the filtered triangles resulting from our experiments
were, to the best of our knowledge, the greatest freely available list of
word translations by the time.

ToDo Novák:

• mekkora volt és mennyire jó, és mik közül a legnagyobb; hol lett
a sorrendezett lista elvágva

• Módszertanilag védhetetlennek találom, hogy itt a nyelvek közötti
leképezés kiértékelése egy másik teljesen automatikusan generált
zajos erőforrással (az OpenSubtitles2013 magyar-német szótárá-
val) való összehasonlításon alapul. De célszerű lenne helyette valódi
német-magyar szótárat használni.

• mindenképpen le kéne írni, OpenSubtitles2013 magyar-német szótára
pontosan hogyan jött létre

• raz új számozás szerint 8.1.5 szakasz 3. bekezdésében] meg van
adva két pontosságadat

• miért jelentős, hogy Simább a javasolt görbe, mint egy másik

7.5.1 Introduction

Word translations arise in dictionary-like organization as well as via ma-
chine learning from corpora. The former is exemplified by Wiktionary,
a crowd-sourced dictionary with editions in many languages. Ács, Pa-
jkossy, and Kornai (2013) obtain word translations from Wiktionary
with the pivot-based method, also called triangulation, that infers word
translations in a pair of languages based on translations to other, typi-
cally better resourced ones called pivots. Triangulation may introduce
noise if words in the pivot are polysemous. The reliability of each tri-
angulated translation is traditionally estimated by the number of pivot
languages (Tanaka and Umemura 1994).
The project reported in this section exploits human labor in Wik-

tionary combined with distributional information in VSMs. We train
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hu:letartóztat de:verhaften

en:arrest

Figure 21: Triangulation

VSMs on gigaword corpora, and the linear translation mapping on di-
rect (non-triangulated) Wiktionary pairs. This mapping is used to filter
triangulated translations based on the similarity scores. The motivation
is that scores by the mapping may be a smoother measure of merit than
considering only the number of pivots for the triangle. We evaluate the
scores against dictionaries extracted from parallel corpora (Tiedemann
2012). We show that linear translation really provides a more reliable
method for triangle scoring than pivot count.

The methods we use are language-independent, and the training data
is easy to obtain for many languages. We chose the German-Hungarian
pair for evaluation, in which the filtered triangles resulting from our
experiments are the greatest freely available list of word translations
we are aware of.

7.5.2 Triangulation

A method for creating dictionaries is triangulation through better re-
sourced ones called the pivot (Tanaka and Umemura 1994). The idea
is that if the English translation of the Hungarian word letartóztat is
arrest, and the German translation of arrest is verhaften, then the Ger-
man translation of letartóztat should be verhaften, see Figure 21.
Triangles are corrupted by ambiguity in the pivot word (the one in

the middle): German Dose can be translated as can to English (as a
synonym of tin), which, as a verb, translates to tud in Hungarian, which
is unrelated to Dose. Saralegi, Manterola, and Vicente (2011) analyze
two methods for pruning wrong triangles: one based on exploiting the
structure of the source dictionaries, and the other one based on an
estimate of distributional similarity acquired from comparable corpora.
The project reported in this section is more similar to the later in that it
uses distributional information applying a method connected to neural
language modeling.

7.5.3 Linear translation

As we already mentioned in Section 4.2.4, Mikolov, Le, and Sutskever
(2013) discovered that VSMs of different languages have such similari-
ties that a linear transformation can map representations of source lan-
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guage words to the representations of their translations. The method
belongs to the paradigm of supervised machine learning: specifically it
makes use of a great amount of monolingual data i.e. gigaword corpora
for training, needing to be supervised by a seed dictionary of some thou-
sand words. Mikolov, Le, and Sutskever formalize translation as linear
mapping W P Rd2ˆd1 from the source (monolingual) VSM Rd1 to the
target one Rd2 : the translation zi P Rd2 of a source word xi P Rd1 is
approximately its image Wxi by the mapping. The translation model
is trained with linear regression on the seed dictionary

min
W

ÿ

i

||Wxi ´ zi||
2,

and can be used to collect translations for the whole vocabulary (by
choosing zi to be the nearest neighbor ofWxi) or to score a translation
z coming from some other source (with the score being the distance
between Wxi and zi).15 In the original setting of the collection mode,
evaluation is done on another thousand seed pairs.
A common error in linear translation is when there are target words

that are returned as the translation of many words, which is wrong
in most of the cases. Dinu, Lazaridou, and Baroni (2015) propose a
method for downplaying the importance of such target words they call
global correction. Our experiments here use this method. We retrun to
this problem in Section 8.4.1 in more detail.

7.5.4 Data

Direct and triangulated Wiktionary translations have been extracted
with wikt2dict (Ács, Pajkossy, and Kornai 2013)16 that handles 43
editions of Wiktionary.
The German VSMs have been trained on SdeWaC (Baroni et al. 2009)

and the Hungarian one on the concatenation of the Hungarian Web-
corpus (Halácsy et al. 2004) and the Hungarian National Corpus (Oravecz,
Váradi, and Sass 2014) with word2vec17 (Mikolov, Chen, et al. 2013).18

For training and using the linear mapping, we forked19 the imple-
mentation by Dinu, Lazaridou, and Baroni (2015). The German to

15 Mikolov et al. use a surprising combination of vector distances, Euclidean distance in
training and cosine similarity (and distance) in collection (and, respectively, scoring)
of translations. This choice is theoretically unmotivated, but we (Makrai 2015) also
found it to work better than more consistent combinations of metrics. However, see
Xing et al. (2015) for opposing results. We return to this topic in Section 8.5.5.

16 https://github.com/juditacs/wikt2dict
17 https://code.google.com/p/word2vec/
18 The German VSM has been a continuous bag of words model in 300 dimensions

(infrequent words have been cut off at 100 occurrences), the Hungarian one a 600
dimensional one (with a cut-off of 10). The choice of meta-parameters was not fully
systematic.

19 https://github.com/makrai/dinu15/
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documents 3208
sentences 3.2 M
German tokens 23.3 M
Hungarian tokens 19.7 M
extracted word pairs 29.1 K

Table 53: The German Hungarian subsection of the OpenSubtitles2013 paral-
lel corpus (Tiedemann 2012)

Hungarian mapping was trained on the 5K direct word pairs that are
supported by the most pivots in Wiktionary. All the triangles were
scored. The Hungarian word embedding (and some glue code we wrote
for this project) is freely available20.

The scoring has been evaluated against a dictionary in the OPUS
project21 that has been extracted by Tiedemann (2012) from the Open-
Subtitles2013 parallel corpus, a collection of translated movie subti-
tles22. OpenSubtitles2013 contains 59 languages. The sizes of the Ger-
man Hungarian subsection are shown in Table 53.

Most of our training data are general in their domain: web corpora
(SdeWaC, the Hungarian Webcorpus), a curated corpus (the Hungar-
ian National Corpus, as far as a corpus of 754 million words may be
curated), and a crowd-sourced but otherwise standard dictionary (Wik-
tionary). One may ask whether the domain of the reference dictionary
extracted from movie subtitles is general to an appropriate extent, or
how far a problem of domain mismatch between train and test may
arise. We hypothesize that the mismatch is negligible and defer a more
detailed analysis to possible further research.

7.5.5 Evaluation

We evaluated the vector-based scoring of triangulated translational
word pairs (triangles) in comparison with a dictionary created from
the parallel corpus OpenSubtitles2013. For each (German) word, we
consider as gold translations all the (Hungarian) words that are listed
in the OpenSubtitles2013 dictionary as a translation.

For evaluation, we sort the triangles in two orders: as baseline, by the
number of pivots for the triangle, and more importantly, by the score in
the linear mapping (cos). Then in each order, we compute accuracy on
each 1000-word slice of the list (e.g. triangles 1–1000, then 1001–2000,
etc.) taking OpenSubtitles2013 translations as gold.
While the overall accuracy of the linear scoring (8.58%) is slightly

worse than that of pivot counting (9.32%), Figure 22 suggests that in

20 https://github.com/makrai/efnilex-vect
21 http://opus.lingfil.uu.se/
22 http://www.opensubtitles.org/
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Figure 22: Accuracy curve of triangles sorted by their pivot count as baseline,
or score in linear translations (cos). The later is smoother.

the order by cos, accuracy descends more smoothly than in the order by
pivot count. (The last 22.73% of the nearly 160 K triangles is out of the
vocabulary of one or both of the VSMs, so cos cannot be computed.)
Now we turn to a more quantitative support of this visual analysis.

7.5.6 Quantitative analysis of smoothness

We measure the smoothness of the accuracy curves by how well they
can be approximated by a function in some parametric family, see Fig-
ures 23 to 26. We tried two families with similar results. The fist family
is exponential functions of the form

a ¨ expp´bxq ` c,

where x is the index of the vocabulary slice (0 for words 0–1000, 1 for
1001–2000, etc), and a, b, and c are parameters to fit. The second family
is that of power law functions

a ¨ pbx` cqk,

where k is another parameter to fit, and the remaining variables play
similar roles as in the exponential case. The error of the fit (i. e. the
lack of smoothness) is quantified as the mean squared error (MSE, not
to be confused with multisense word embeddings, which are the topic
of Chapter 8) between the two curves.
The MSE of the two accuracy curves (scoring translations by pivot

counting or cosine score) approximated by the two families (exponen-
tial or power law functions) are shown in Table 54. The MSE of the
accuracy curve in pivot counting is 2.51 (resp. 4.42) times more than
that in scoring by the linear mapping, when both curves are modeled
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scoring method exp power law

pivot counting 6.1859e-04 5.2182e-04
linear mapping 2.4574e-04 1.1789e-04

ratio 2.51 4.42

Table 54: The mean squared error of fitting parametric curves to the accuracy
values obtained by translation scoring methods. Linear mapping
produces a smoother accuracy decay than pivot counting.
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Figure 23: The accuracy curve of pivot counting approximated by an expo-
nential function.

as exponential (resp. power law) functions. It is probably also worth
mentioning that if we take the 20–30 000 words with the greatest con-
fidence with the two methods, the accuracy is slightly in the proposed
method than in the baseline, see especially Figures 27 and 28.

219



lexical relations

0 0.5 1 1.5
¨105

0

0.2

0.4

0.6

0.8

rank of word

ac
cu

ra
cy

by score in linear mapping

Figure 24: The accuracy curve of scores by the linear mapping approximated
by an exponential function.
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Figure 25: Accuracy curves of scores by pivot count approximated by power
law functions.
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Figure 26: Accuracy curves of scores by the linear mapping approximated by
power law functions.
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Figure 27: The exponential approximations of the accuracy curves.
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Figure 28: The power law approximations of the accuracy curves.
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The name of the song is called “Haddocks’ Eyes.”’
‘Oh, that’s the name of the song, is it?’ Alice said, trying to feel interested.

‘No, you don’t understand,’ the Knight said, looking a little vexed. ‘That’s what
the name is called. The name really is “The Aged Aged Man.”’

‘Then I ought to have said “That’s what the song is called”?’ Alice corrected herself.
‘No, you oughtn’t: that’s quite another thing! The song is called “Ways and

Means”: but that’s only what it’s called, you know!’
‘Well, what is the song, then?’ said Alice, who was by this time completely

bewildered.
‘I was coming to that,’ the Knight said. ‘The song really is “A-sitting On A Gate”:

and the tune’s my own invention.’

— Lewis Carroll

8
CROSS -L INGUAL WORD SENSE INDUCTION
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8.1 do multi-sense embeddings learn more senses?

Now we turn to the connection between word ambiguity and multi-
linguality/translation. ToDo Novák: leginkább akkor probléma, ha a
jelentések gyakorisága jelentősen különbözik. Multi-sense word embed-
dings (MSEs) have modeled different meanings of word forms with dif-
ferent (static) vectors since before the advent of deep language models/-
contextualized word representations (Section 4.3). In this final section
on the thesis, which originally appeared as Borbély, Makrai, Nemeskey,
and Kornai (2016) and Makrai and Lipp (2018), we propose a method
for evaluating MSEs by their degree of semantic resolution, measur-
ing the detail of the sense clustering. The method exploits the prin-
ciple that words may be ambiguous as far as the postulated senses
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finom
durva

finom
ízletes

fine
coarse

delicious
tasty

Figure 29: Linear translation of word senses. The Hungarian word finom is
ambiguous between ‘fine’ and ‘delicious’.

translate to different words in some other language. In the context of
embedding-based dictionary induction, we also test whether the orthog-
onality constraint and related vector preprocessing techniques help in
reverse nearest neighbor search. These questions receive a negative an-
swer.

8.2 towards a less delicious inventory

Word sense induction (WSI) is the task of discovering senses of words
without supervision (Schütze 1998). The goal of WSI can be set at two
levels. We may more modestly aim to distinguish homophony from pol-
ysemy (see Section 2.3.7). Ideally, we could even differentiate between
metonymy and metaphor, two subtypes of polysemy. Approaches in-
clude multi-sense word embeddings (MSEs), i.e. vector space models
of word distribution with more vectors for ambiguous words. In MSEs,
each vector is supposed to correspond to a different word sense, but
in practice, models frequently have different sense vectors for the same
word form without an interpretable difference in meaning.

Our first publication in this topic (Borbély, Makrai, et al. 2016) ap-
peared at the 1st Workshop on Evaluating Vector-Space Representa-
tions for NLP. In a progammatic paper of the workshop, Gladkova and
Drozd (2016) calls polysemy “the elephant in the room” as far as eval-
uating embeddings are concerned. We attacked this problem head on,
by proposing a method for evaluating multi-sense word embeddings
(MSEs).

We emphasize at the outset that our evaluation proposal probes an
aspect of MSEs, semantic resolution, which is not well measured by
the well-known word sense disambiguation (WSD) task that aims at
classifying occurrences of a word form to different elements of a sense
inventory pre-defined by some experts. Our goal is to probe the granu-
larity of the inventory itself.
As we discussed in Section 3.1.1, the central linguistic/semantic/psy-

chological property we wish to capture is that of a concept, the un-
derlying word sense unit. To the extent standard lexicographic prac-
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tice offers a reasonably robust notion (this is of course debatable, but
we consider a straight correlation of 0.27 and and a frequency-effect-
removed correlation of 0.60 over a large vocabulary1 a strong indication
of consistency), this is something that MSEs should aim at capturing.
We leave the matter of aligning word senses in different dictionaries
for future work, but we expect that by (manual or automated) align-
ment the inter-dictionary (inter-annotator) agreement can be improved
considerably, to provide a more robust gold standard.

The differentiation of word senses is fraught with difficulties, espe-
cially when we wish to distinguish homophony, using the same written
or spoken form to express different concepts, such as Russianmir ‘world’
and mir ‘peace’ from polysemy, where speakers feel that the two senses
are very strongly connected, such as in Hungarian nap ‘day’ and nap
‘sun’. To quote Zgusta (1971) “Of course it is a pity that we have to rely
on the subjective interpretations of the speakers, but we have hardly
anything else on hand”. Etymology makes clear that different languages
make different lump/split decisions in the conceptual space, so much
so that translational relatedness can, to a remarkable extent, be used
to recover the universal clustering (Youn et al. 2016).

One of the confounding factors is part-of-speech (POS, recall Sec-
tion 3.1.2). Very often, the entire distinction is lodged in the POS,
as in divorce (noun) and divorce (verb), while at other times this is
less clear, compare the verbal to bank ‘rely on a financial institution’
and to bank ‘tilt’. Clearly the former is strongly related to the nominal
bank ‘financial institution’ while the semantic relation ‘sloping side-
ways’ that connects the tilting of the airplane to the side of the river
is somewhat less direct, and not always perceived by the speakers. The
Collins-COBUILD (CED, Sinclair (1987)) dictionary starts with the se-
mantic distinctions and subordinates POS distinctions to these, while
the Longman dictionary (LDOCE, Boguraev and Briscoe (1989)) starts
with a POS-level split and puts the semantic split below. Of the Hungar-
ian lexicographic sources, the Comprehensive Dictionary of Hungarian
(NSZ, Ittzés (2011)) is closer to CED, while the Explanatory Dictio-
nary of Hungarian (EKSZ, Pusztai (2003)), is closer to LDOCE in this
regard.
Our method is based on the principle that words may be ambigu-

ous to the extent to which their postulated senses translate to different
words in some other language. For the translation of words, we applied
the method by Mikolov, Le, and Sutskever (2013) who train a trans-
lation mapping from the source language embedding to the target as
a least-squares regression supervised by a seed dictionary of the few
thousand most frequent words. The translation of a source word vector
is the nearest neighbor of its image by the mapping in the target space.

1 These results are published in the same Borbély, Makrai, et al. (2016), but this
thesis does not discuss them in detail, because they were conducted mainly by Dávid
Nemeskey.
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In the multi-sense setting, we have translated from MSEs. (The target
embedding remained single-sense.)

Section 8.3 introduces MSEs. In section 8.4, we elaborate on the
cross-lingual evaluation. Part of the evaluation task is to decide on
empirical grounds whether different good translations of a word are
synonyms or translations in different senses. Reverse nearest neighbor
search, the orthogonality constraint on the translation mapping, and
related techniques are also discussed. Section 8.5 offers experimental
results with quantitative and qualitative analysis. It should be noted
that our evaluation is not very strict, but rather a process of looking for
something conceptually meaningful in these unsupervised MSE models.
ToDo Specifically, as pointed out by Attila Novák, the our method
does not detect false negatives (words that are actually ambiguous, but
the system attributes them a single vector). We make our Hungarian
multi-sense embeddings2 and the code for these experiments3 available
on the web.

8.3 multi-sense word embeddings

Vector-space language models with more vectors for each meaning of a
word originate from Reisinger and Mooney (2010). Huang et al. (2012)
trained the first neural-network-based MSE. Both works use a uniform
number of clusters for all words that they select before training as po-
tentially ambiguous. The first system with adaptive sense numbers and
an effective open-source implementation is a modification of skip-gram
(Mikolov, Sutskever, et al. 2013), multi-sense skip-gram by Neelakan-
tan et al. (2014), where new senses are introduced during training by
thresholding the similarity of the present context to earlier contexts.
Bartunov et al. (2016) and Li and Jurafsky (2015) improve upon

the heuristic thresholding by formulating text generation as a Dirichlet
process. In AdaGram (Bartunov et al. 2016), senses may be merged
as well as allocated during training. mutli-sense skip-gram4 (Li and
Jurafsky 2015) applies the Chinese restaurant process formalization of
the Dirichlet process. neela, AdaGram, and mutli have a parameter for
semantics resolution (more or less senses): λ, α, and γ, respectively.
MSEs are still in the research phase: Li and Jurafsky (2015) demon-

strate that, when meta-parameters are carefully controlled for, MSEs
introduce a slight performance boost in semantics-related tasks (seman-
tic similarity for words and sentences, semantic relation identification,
part-of-speech tagging), but similar improvements can also be achieved
by simply increasing the dimension of a single-sense embedding.

2 https://hlt.bme.hu/en/publ/makrai17
3 https://github.com/makrai/wsi-fest
4 Note the l Ø t metathesis in the name of the repo which is the only way of distin-
guishing it from the other two multi-sense skip-gram models.
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8.4 linear translation from mses

As we already discussed in Sections 7.4.2 and 7.5.3, Mikolov, Le, and
Sutskever (2013) discovered that embeddings of different languages are
so similar that a linear transformation can map vectors of the source
language words to the vectors of their translations.

The method uses a seed dictionary of a few thousand words to learn
translation as a linear mapping W Rd1 Ñ Rd2 from the source (mono-
lingual) embedding to the target: the translation zi P Rd2 of a source
word xi P Rd1 is approximately its image Wxi by the mapping. The
translation model is trained with linear regression on the seed dictio-
nary

min
W

ÿ

i

||Wxi ´ zi||
2

and can be used to collect translations for the whole vocabulary by
choosing zi to be the nearest neighbor of Wxi. We follow Mikolov, Le,
and Sutskever (2013) in (i) using different metrics, Euclidean distance
in training and cosine similarity in collection of translations, and in
(ii) training the source model with approximately three times greater
dimension than that of the target embedding.
In a multi-sense embedding scenario, Borbély, Kornai, Makrai, and

Nemeskey (2016)5 take an MSE as the source model, and a single-
sense embedding as target. The quality of the translation has been
measured by training on the most frequent 5k word pairs and evaluating
on another 1k seed pairs.

8.4.1 Reverse nearest neighbor search

A common problem when looking for nearest neighbors (NNs) in high-
dimensional spaces (Radovanović, Nanopoulos, and Ivanović 2010; Suzuki
et al. 2013; Tomašev N. 2013), and especially in embedding-based dic-
tionary induction (Dinu, Lazaridou, and Baroni 2015; Lazaridou, Dinu,
and Baroni 2015) is when there are hubs, data points (target words)
returned as the NN (translation) of many points (Wxs), resulting in
incorrect hits (translations) in most of the cases. Dinu, Lazaridou, and
Baroni (2015) attack the problem with a method they call global cor-
rection. Here, instead of the original NN, which we will call forward
NN search to contrast with the more sophisticated method, they first
rank source words by their similarity to target words. In reverse near-

5 The 2016 paper measured the sense granularity with two methods: Section 2 was
based on computer readable lexica, and Section 3 presented the multilingual method.
The former was the work of Nemeskey. The latter is the joint work of Borbély
and Makrai, with equal contribution. In the 2018 paper, Makrai went on alone to
elaborate the multilingual method.
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est neighbor (rNN6) search, source words are translated to the target
words to which they have the lowest (forward) NN rank.7

In reverse NN search, we restricted the vocabulary to some tens of
thousands of the most frequent words. We introduced this restriction
for memory saving, because the |Vsr| ˆ |Vtg| similarity matrix has to
be sorted column-wise for forward and row-wise for reverse ranking, so
at some point of the computation we keep the whole integer matrix of
forward NN ranks in memory. It turned out that the restriction makes
the results better: a vocabulary cutoff of 215 “ 32768 both on the source
and the target size yields slightly better results (74.3%) than the more
ambitious 216 “ 65536 (73.9%). This is not the case for forward NN
search, where accuracy increases with vocabulary limit (but remains
far below that of reverse NN).

8.4.2 Orthogonal restriction and other tricks

Xing et al. (2015) note that the original linear translation method is
theoretically inconsistent due to its being based on three different sim-
ilarity measures: word2vec itself uses the dot-product of unnormalized
vectors, the translation is trained based on Euclidean distance, and
neighbors are queried based on cosine similarity. They make the frame-
work more coherent by length-normalizing the embeddings, and restrict-
ing W to preserve vector length: their matrix W is orthogonal, i.e. the
mapping is a rotation. Faruqui and Dyer (2014) achieve even better
results by mapping the two embeddings to a lower-dimensional bilin-
gual space with canonical correlation analysis. Artetxe, Labaka, and
Agirre (2016) analyze elements of these two works both theoretically
and empirically, and find a combination that improves upon dictionary
generation and also preserves analogies Mikolov (2013) like

woman` king´man « queen

among the mapped points Wxi. They find that the orthogonality con-
straint is key to preserve performance in analogies, and it also im-
proves bilingual performance. In their experiments, length normaliza-
tion, when followed by centering the embeddings to 0 mean, obtains
further improvements in bilingual performance without hurting mono-
lingual performance.

6 We use lowercase r in the abbreviation, to avoid confusion with recurrent neural
networs.

7 If more target words have the same forward rank, Dinu, Lazaridou, and Baroni (2015)
make the decision based on cosine similarity. This tie breaking has not proven useful
in our experiments.
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8.5 experiments

8.5.1 Data

We trained neela, AdaGram8, and mutlimodels on (original and stemmed9
forms of) two semi-gigaword (.7–.8 B words) Hungarian corpora, the
Hungarian Webcorpus (Webkorpusz, Halácsy et al. (2004)) and (the
non-social-media part of) the Hungarian National Corpus (HNC, Oravecz,
Váradi, and Sass (2014)). We used Wiktionary as our seed dictionary,
extracted with wikt2dict10 (Ács, Pajkossy, and Kornai 2013). We
tried several English embeddings as target, including the 300 dimen-
sional skip-gram with negative sampling model GoogleNews released
with word2vec (Mikolov, Chen, et al. 2013)11, and those released with
GloVe (Pennington, Socher, and Manning 2014)12. We report the best
results, which were obtained with the release GloVe embeddings trained
on 840 B words in 300 dimensions.

8.5.2 Orthogonal constraint

We implemented the orthogonal restriction by computing the singular
value decomposition

UΣV “ SJt Tt

where St and Tt are the matrices consisting of the embedding vectors of
the training word pairs in the source and the target space, respectively,
and taking

W “ U1V

where 1 is the rectangular identity matrix of appropriate shape. The or-
thogonal approximation was implemented following a code13 by Gábor
Borbély.
Table 55 shows the effect of these factors. Precision in forward NN

search follows a similar trend to that in (Xing et al. 2015) and Artetxe
(2016): the best combination is an orthogonal mapping between length-
normalized vectors; however, centering did not help in our experiments.
Reverse NNs yield much better results than the simpler method, but
none of the orthogonality-related techniques give further improvement
here. The cause of reverse NN’s apparent insensitivity to length may
be the topic of further research.

8 I would like to thank Sergey Bartunov for help with his tool.
9 Follow-up work reported in section 8.5.5 applied a third option in preprocessing.

10 https://github.com/juditacs/wikt2dict
11 https://code.google.com/archive/p/word2vec/
12 https://nlp.stanford.edu/projects/glove/
13 https://github.com/hlt-bme-hu/eval-embed
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8192 16384 32768
general linear orthogonal general linear orthogonal general linear orthogonal

any disamb any disamb any disamb any disamb any disamb any disamb

fw
d

vanilla 28.7% 2.40% 32.1% 2.40% 36.2% 3.40% 42.0% 4.70% 36.7% 4.20% 44.5% 6.00%
normalize 28.2% 2.20% 33.7% 3.40% 35.1% 2.80% 44.4% 5.80% 36.6% 3.80% 48.2% 6.00%
+ center 26.6% 2.10% 32.8% 2.90% 32.9% 2.70% 42.0% 4.50% 34.6% 3.50% 43.9% 5.50%

re
v

vanilla 53.8% 11.85% 51.7% 11.37% 58.3% 11.99% 56.6% 12.59% 74.3% 23.60% 73.6% 22.30%
normalize 53.3% 11.61% 50.0% 10.90% 58.0% 12.35% 56.5% 12.59% 73.7% 24.20% 72.8% 22.10%
+ center 51.7% 11.37% 53.3% 11.14% 57.1% 11.99% 57.7% 12.35% 69.7% 22.20% 73.5% 23.00%

Table 55: Precision@10 of forward and reverse NN translations with and with-
out the orthogonality constraint and related techniques at vocabu-
lary cutoffs 8192 to 32768. any and disamb are explained in sec-
tion 8.5.3. The source has been an AdaGram model in 800 dimen-
sions, α “ .1, trained on Webkorpusz with the vocabulary cut off
at 8192 sense vectors.

dim α{γ p m any disamb

HNC 800 .02 100 48.5% 7.6%
neela Wk 300 – 2 big 54.0% 12.4%
HNC stem 800 .05 big 55.1% 10.4%
HNC 160 .05 3 200 62.2% 15.0%
mutli Wk 300 .25 71 62.9% 17.4%
Webkorpusz 800 .05 100 65.9% 17.4%
HNC 600 .05 5 100 68.6% 16.6%
HNC 600 .1 3 50 69.1% 18.8%
Webkorpusz 800 .1 100 73.9% 23.9%

Table 56: Our measures, any and disamb, for different MSEs. The source em-
bedding has been trained with AdaGram, except for when indicated
otherwise (neela, mutli). The meta-parameters are dimension, the
resolution parameter (α in AdaGram and γ in mutli), the maximum
number of prototypes (sense vectors), and the vocabulary cutoff
(min-freq, the two models with big have practically no cut-off).

8.5.3 Results

We evaluate MSE models in two ways, referred to as any and disamb.
The method any has been used for tuning the (meta)parameters of the
source embedding and to choose the target: a traditional, single-sense
translation has been trained between the first sense vector of each word
form and its translations. (If the training word is ambiguous in the seed
dictionary, all translations have been included in the training data.)
Exploiting the multiple sense vectors, one word can have more than
one translation. During the test, a source word was accepted if any of
its sense vectors had at least one good translation among its k reverse
nearest neighbors (rNN@k).

In disamb, we used the same translation matrix as in any, and in-
spected the translations of the different sense vectors to see whether
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the vectors really model different senses rather than synonyms. The
lowest requirement for the non-synonymy of sense vectors s1, s2 is that
the sets of corresponding good rNN@k translations are different. The
ratio of words satisfying this requirement among all words with more
than one sense vector is shown as disamb in table 56.

The values in Table 56 are low. This can in part be due to that the
neela and the mutli models were trained with lower dimension than
the best-performing model. This also means that results here are not
comparable among these different architectures. Follow-up experiments
(conducted after the paper review) are reported in section 8.5.5.

Table 57 shows the successfully disambiguated words sorted by the
cosine similarity s of good rNN@1 translations of different sense vec-
tors. (We found that most of the few cases when there are more than
two sense vectors with a good rNN@1 translation are due to the fact
that the seed dictionary contains some non-basic translation, e.g. kap-
csolat ‘relationship, conjunction’ has ‘affair’ among its seed translations.
In these cases, we chose two sense vectors arbitrarily. When there are
sense vectors with more than two rNN@k hits, the choice of the corre-
sponding target words is also arbitrary.) Relying on s is similar to the
monolingual setting of clustering the sense vectors for each word, but
here we restrict our analysis to sense vectors that prove to be sensible
in linear translation.
We see that most words with s ă .25 are really ambiguous from a

standard lexicographic point of view, but the translations with s ą .35
tend to be synonyms instead.

8.5.4 Part-of-speech

The clearest case of homonymy is when unrelated senses belong to dif-
ferent parts-of-speech (POSs), and the translations reflect these POSs,
e.g. nő ‘woman; increase’ or vár ‘wait; castle’.15 In purely semantic
approaches, like 4lang (see Section 3.1.2), POS-difference alone is not
enough for analyzing a word as ambiguous, e.g. we see the only differ-
ence between the noun and participle senses of alkalmazott, ‘employee;
applied’ as employment being the application of people for work; in the
case of belső ‘internal; interior’, the noun refers to the part of a building
described by the adjective.
More interesting are word forms with related senses in the same POS,

e.g. cikk, ‘item; article’ (an article is an item in a newspaper); eredmény,
‘score; result’ (a score is a result measured by a number); magas, ‘tall;
high’ (tall is used for people rather than high); or idegen, ‘strange, alien;
foreign’, where the English translations are special cases of ‘unfamiliar’
(person or language).

15 We note that some POSs in Hungarian have blurred borders, e.g. it is debatable
whether the nominal önkéntes ‘voluntary; volunteer’ is ambiguous for its POS.
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cross-lingual word sense induction

s covg

E -0.04849 függő addict, aerial 0.4
S 0.01821 alkotó constituent, creator 0.5
S 0.05096 előzetes preliminary, trailer 1.0
S 0.0974 kapcsolat affair, conjunction, linkage 0.33
I 0.1361 kocsi coach, carriage 1.0
S 0.136 futó runner, bishop 1.0
S 0.1518 keresés quest, scan 0.67
S 0.1574 látvány outlook, scenery, prospect 0.6
S 0.1626 fogad bet, greet 1.0
S 0.1873 induló march, candidate 1.0
I 0.187 nemes noble, peer 0.67
E 0.1934 eltérés variance, departure 0.4
E 0.1943 alkalmazás employ, adaptation 0.33
S 0.2016 szünet interval, cease, recess 0.43
E 0.2032 kezdeményezés initiation, initiative 1.0
S 0.2052 zavar disturbance, annoy, disturb, turmoil 0.57
S 0.2054 megelőző preceding, preventive 0.29
IE 0.2169 csomó knotI , lumpI , matE 1.0
E14 0.21 remény outlook, promise, expectancy 0.6
S 0.2206 bemutató exhibition, presenter 0.67
E 0.2208 egyeztetés reconciliation, correlation 0.5
S 0.237 előadó auditorium, lecturer 0.67
E 0.2447 nyilatkozat profession, declaration 0.4
I 0.2494 gazda farmer, boss 0.67
I 0.2506 kapu gate, portal 1.0
I 0.2515 előbbi anterior, preceding 0.67
I 0.2558 kötelezettség engagement, obligation 0.67
E 0.265 hangulat morale, humour 0.5
E 0.2733 követ succeed, haunt 0.67
SE 0.276 minta normS , formulaE , specimenS 0.75
S 0.2807 sorozat suite, serial, succession 1.0
S 0.2935 durva coarse, gross 0.18
I 0.3038 köt bind, tie 0.67
E 0.3045 egyezmény treaty, protocol 0.67
I 0.3097 megkülönböztetés discrimination, differentiation 0.5
I 0.309 ered stem, originate 0.5
I 0.319 hirdet advertise, proclaim 1.0
E 0.3212 tartós substantial, durable 1.0
I 0.3218 ajánlattevő bidder, supplier, contractor 0.6
I 0.3299 aláírás signing, signature 0.67
I 0.333 bír bear, possess 1.0
I 0.3432 áldozat sacrifice, victim, casualty 1.0
IE 0.3486 kerület wardI , boroughI , perimeterE 0.3
I 0.3486 utas fare, passenger 1.0
I 0.3564 szigorú stern, strict 0.5
I 0.3589 bűnös sinful, guilty 0.5
I 0.3708 rendes orderly, ordinary 0.5
I 0.3824 eladó salesman, vendor 0.5
I 0.3861 enyhe tender, mild, slight 0.6
I 0.3897 maradék residue, remainder 0.33
I 0.3986 darab chunk, fragment 0.4
E 0.4012 hiány poverty, shortage 0.5
I 0.4093 kutatás exploration, quest 0.5
...

...
I 0.4138 tanítás tuition, lesson 0.67
I 0.4196 őszinte frank, sincere 0.67
I 0.4229 környék neighborhood, surroundings, vicinity 0.38
I 0.4446 ítélet judgement, sentence 0.67
I 0.4501 gyerek childish, kid 0.67
I 0.4521 csatorna ditch, sewer 0.4
I 0.4547 felügyelet surveillance, inspection, supervision 0.43
E 0.4551 ritka rare, odd 0.5
S 0.4563 szerető fond, lover, affectionate, mistress 0.67
I 0.4608 szeretet affection, liking 0.67
I 0.4723 vizsgálat inquiry, examination 0.67
I 0.4853 tömeg mob, crowd 0.5
I 0.4903 puszta pure, plain 0.22
I 0.4904 srác kid, lad 1.0
I 0.4911 büntetés penalty, sentence 0.29
I 0.4971 képviselő delegate, representative 0.67
I 0.4975 határ boundary, border 0.67
I 0.5001 drága precious, dear, expensive 1.0
S 0.5093 uralkodó prince, ruler, sovereign 0.5
I 0.5097 válás separation, divorce 0.67
I 0.5103 ügyvéd lawyer, advocate 0.67
I 0.5167 előnyös advantageous, profitable, favourable 1.0
I 0.5169 merev rigid, strict 1.0
I 0.5204 nyíltan openly, outright 1.0
I 0.5217 noha notwithstanding, albeit 1.0
I 0.5311 hulladék litter, garbage, rubbish 0.43
I 0.5311 szemét litter, garbage, rubbish 0.43
I 0.5612 kielégítő satisfying, satisfactory 1.0
E 0.5617 vicc joke, humour 1.0
I 0.5737 szállító supplier, vendor 1.0
I 0.5747 óvoda nursery, daycare, kindergarten 1.0
I 0.5754 hétköznapi mundane, everyday, ordinary 0.75
I 0.5797 anya mum, mummy 1.0
I 0.5824 szomszédos neighbouring, neighbour 0.4
E 0.5931 szabadság liberty, independence 1.0
I 0.6086 lelkész pastor, priest 0.4
I 0.6304 fogalom notion, conception 1.0
I 0.6474 fizetés salary, wage 0.67
I 0.6551 táj landscape, scenery 1.0
I 0.6583 okos clever, smart 0.67
I 0.6707 autópálya highway, motorway 0.5
I 0.6722 tilos prohibited, forbidden 1.0
I 0.6811 bevezető introduction, introductory 1.0
I 0.7025 szövetség coalition, alliance, union 0.75
I 0.7065 fáradt exhausted, tired, weary 1.0
I 0.7066 kiállítás exhibit, exhibition 0.67
I 0.7135 hirdetés advert, advertisement 1.0
I 0.7147 ésszerű rational, logical 1.0
I 0.7664 logikai logic, logical 1.0
I 0.7757 szervez organise, organize, arrange 1.0
I 0.8122 furcsa strange, odd 0.4
I 0.8277 azután afterwards, afterward 0.67
I 0.8689 megbízható dependable, reliable 0.67

Table 57: Hungarian words with the rNN@1 translations of their sense vectors.
The first column is a post-hoc annotation by András Kornai (E error
in translation, I identical, S separate meanings), s is the cosine
similarity of the translations, and covg denotes the coverage of the
@1 translations over all gold (good) translations.

5 The basic translations hope is missing
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8.5 experiments

any disamb

AdaGram 73.3% 18.53%
mutli sense vectors 71.0% 19.46%
mutli context vectors 69.9% 20.76%

Table 58: The resolution trade-off between translation precision and sense
distinctiveness. The source models are 600-dimensional Hungarian
models trained on the de-glutinized version of the Hungarian Na-
tional Corpus. Other meta-parameters have been set to default.

Finally we mention two cases where the relation between the two
senses is more idiosyncratic, but in a monosemic approach, they will
have a single representation: beteg means ‘ill, sick; patient’. Though ill
is a health state and patient is a situational role, patients of doctors
are usually ill. A monosemic system is designed to give account of
metaphorical relations like the one between the meanings of világos,
‘bright; clear’ as well.

8.5.5 Comparison of AdaGram and mutli

After the compilation of the 2017 edition of the Festschrift, we trained
models that enable a more fair comparison of AdaGram and mutli in
terms of semantic resolution: we trained 600-dimensional models for
Hungarian to have the 2:1 ratio between the source and the target di-
mension that has been reported to be optimal for this task (Mikolov, Le,
and Sutskever 2013; Makrai 2016). This time we used the de-glutinized
version (Borbély, Kornai, et al. 2016; Nemeskey 2017) of the Hungarian
National corpus for better morphological generalization.16 The word
embeddings are available online17.
We can see in table 58 that there is a trade-off between the two

measures, which may be interpreted to indicate that the more specific
a vector is, the easier it is to translate, but if the vectors are too specific,
then the translations may coincide.18

As a direction for future research, the analysis of the observed and
inferred number of word senses as a function of word frequency may
shed more light on how good a model of word ambiguity the Dirichlet
Process is.

16 While the name de-glutinized is due to the HLT research group, the same method
has been first proposed in Hungarian by Siklósi and Novák (2016). The paper has
an English version (Siklósi 2016) – unfortunately behind a pay-wall.

17 https://hlt.bme.hu/en/publ/makrai17
18 There are two mutli models because Skip-gram and the related MSE models rep-

resent each word with two vectors, u and v in the formula ppwi | wjq9 exppuJ
i vjq,

that mutli calls sense versus context vectors, respectively.
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These results display two properties, one of them remarkable.

— Levelt, Roelofs, and Meyer 1999

9
CONCLUS ION

ToDo Szécsényi a bírálat összegzésének végén: elengedhetetlen része
lenne a dolgozatnak egy vissza- és továbbtekintő záró összegzés

ToDo Novák: A többi eredményhez is kéne hasonló összefoglalás
[mint Section 6.6], illetve mindhez egy-egy tézismondat is, amiket meg
kéne számozni, és egy összefoglaló fejezetben külön össze is szedni.

In Section 3.3, we quantified the importance of each node of the se-
mantic network in the recursive process of defining words by each other.
It turned out that the greatest burden is worn by special elements in the
formalism, especially deep cases (i.e. the place-holders of the represen-
tation of an argument within the representation of a function), nodes
corresponding to lexical relations (e.g. the comparative -er), more or
less contentful unary or binary predicates (e.g.exist, want), and special
nodes in the formalism, e.g. other, which blocks the unification of two
nodes in a definition with the same label. The message of this experi-
ment is that we should pay a great attention to the representation of
deep cases, to which we turn in the first foreground chapter.

Chapter 5 proposed a set of what we call deep cases along with the
hand-written formulaic definitions of the core vocabulary of 4lang (Sec-
tion 3.2). Deep cases denote the nodes in the graph representing the
meaning of a predicate where the representation of the argument (sin-
gle word, entity or phrase) has to be inserted. Our theoretical principle
has been to capture syntactic-semantic regularities that appear in many
languages. In the radically monosemic approach of 4lang, the transitive
and the intransitive use of the same verb is represented with the same
formula, which contains both the agent and the patient. Unaccusative
verbs were attributed a deep patient. The recipient of both physical and
mental transfer verbs have been represented as a deep dative. While the
inventory of deep cases is restricted to just eight linkers, three of these
are locative (TO, FROM, and the static AT). Our radical monosemic ap-
proach also implies that relational nouns whose arguments have similar
linguistic markers as goals of verbs are attributed a deep goal.
Chapter 6 invenstigated the structure of core verb arguments with

distributional tools. Our focus was on the subject and the object.

• Which association measures yield the best representations for
the comparison of English subject-verb-object triples? We ex-
perimented with several measures, including multiple novel gen-
eralizations of weighted positive pointwise mutual information
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(PPMI) to the higher-order (>2) case. Pointwise mutual informa-
tion (PMI) has two higher-order generalizations, the more popu-
lar one which is still called PMI in the literature, and interaction
information. We combined both generalizations with salience (Kil-
garriff et al. 2004) and normalization (Bouma 2009). The former
is motivated by leixcogaphic prectice and the latter by making
the function bounded.
These weighted higher-order PPMI variants have proven better
in the representation of English subject-verb-object triples than
the baselines. Specifically the best result was obtained by the
non-negative Parafac decomposition of a salience-weighted PMI
tensor, followed by the general Tucker decomposition of a normal-
ized PMI tensor.

• We also asked whether empty argument fillers (subjects or, more
importantly, objects) should be included in our co-occurrence
statistics for better generalization over the transitive and the in-
transitive uses of the same verb, or they just introduce noise. Our
two best results (non-negative Parafac and general Tucker) sug-
gest that the inclusion of emtpyt objects benefit word representa-
tion. This is also in line with our monosemic approach discussed
in the previous chapter, i.e. that the 4lang formulas of verbs with
both a transitive and an intransitive use represent the two uses
with the same formula.

• Our two tensor decomposition algorithms, CPD and Tucker, have
very different time-complexity: Tucker is much faster. Onthe other
hand, tensor decomposition has hyper-parameters like the decom-
position rank and the frequency cutoff. Both are related to mem-
ory limitation, especially the latter. Nevertheless, while the cutoff
is only to ensure that the decomposition fits within the memory
limits, the rank is an essential parameter. Recall, that Landauer
and Dumais (1997) argued that the 300 dimewnsions of LSA are
psychologically real. It is beneficial, if the two algorithms reach
the best results with similar rank, because then a fast parameter
tuning with Tucker also benefits CPD. Indeed, we found that,
the best results are obtained with a rank of 64, either with non-
negative Tucker or with general Parafac.

• How does the trade-off between the three hyper-parameters re-
lated to the size of the decomposition (i.e. the decomposition rank,
the inclusion of empty fillers, and the frequency cutoff) look like?
If we exclude empty fillers, a more generous frequency cutoff may
theoretically lead to better results than if we change only one of
these two parameters. It turns out, that we can indeed get rel-
atively good result this way (0.6942 with a cutoff of 1 million),
but with general Tucker decomposition (instead of non-negative
CPD) and log-Dice (instead of salience-weighted PMI).
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• Do latent dimension of our word embeddings reflect lexical knowl-
edge? Dimensions obtained with the two non-negative algorithms
seem semantically interpretable, while those from general decom-
position are less convincing. This is in parallel with the gen-
eral motivation of non-negative representations by interpretabil-
ity, what we will also seen in our hypernym extraction experi-
ments (Section 7.3).

• Can the difference between each noun as a subject versus an ob-
ject correspond to some intuitive difference between subjecthood
and objecthood? Indeed, the greatest difference between the two
roles is found with personal pronouns (or the missing object),
while the smallest is with abstract nouns like doubt. A possible
explanation is that the former lemmas, especially personal pro-
nouns, are arguably much more frequent in agentive roles than
other nouns, while they are infreqent in patient roles. Words in
the second group can be framed in language both as animate and
as inanimate. Future or hope are not alive in the biological sense,
but they are often attributed agentive roles. This again supports
the monosemic approach to the treatment of metaphorical word
usage that we propose in 4lang.

The last two chapters invenstigated static word embeddings. Re-
search in the past decade, especially the series of papers by Mikolov
and his colleagues, discussed in Section 4.2, showed two surprising prop-
erties: with static word embeddings: morphological relations (e.g. the
systematic difference between singular words and their plurals) and
even elements of lexical meaning (e.g. the systematic difference between
male word and their female counterparts) can be added or subtracted
as the same kind of linear algebraic vectors that represent the words
themselves, and translation can be formalized by a liear mapping from
the word embedding space of the source language to that of the target
language. These methods were first published for the best resourced lan-
guages like English or Spanish, where syntactic relations are expressed
by word order.

In Section 7.4 we were interested whether these linear analogies and
translation properties hold for mid-resourced languages, including mor-
phologically rich ones with their relaively free word order. In these lan-
guages more word types occur in more arrangements (orders), making
the co-occurrence data much sparser. We found that morphological rela-
tions are reflected in a similarly clear fashion as in the better-resourced
languages, while for the semantic relations, greater care has to be taken,
to which we returned in Section 8.5.5. In translation, we obtained sim-
ilar scores as the seminal papers “out of the box”.

We also combined linear word translation with the old method of
triangulation, a.k.a. pivot-based word translation. We filtered a list of
triangulated translational word pairs based on the distance cospt,Msq

between the embedding vector t of the word in the target language,
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and the vector obtained by mapping the source vector s, where M is
the translation mapping. We found that this score is smoother than
the more traditional measures, which suggests that better translations
can be selected based on this score more reliably.

While analogical question sets test many relations, we paid special
attention to three individual relations: antonymy, causality, and hyper-
nym. In Section 7.1, we computed a word embedding from the definition
graph, and tested it in the task of representing sub-types of antonymy.
This was the third time that we used this graph in this thesis. The first
one was Section 3.3, where we used if for quantifying the importance of
each node (word or relation) in the process as words define each other,
and the second use, which we did not go in details, was as a means
for linking verbs to their arguments based on selectional preferences.
In this third case, we used it to compute a word embedding, which we
compared to some other embeddings which were famous at the time.
The focus of our comparison was antonymy: we tested which subtype
of antonymy is represented in each word embedding. The embedding
obtained from the definition graph turned out to be more similar in
this respect to variants of HLBL than to SENNA (these both used
to be famous word embedding sets), what verifies the validity of our
embeddings.

Our invenstigation of causality in Section 7.2 is an interesting exam-
ple of explorative computational linguistics: we started with a visual
inspection of cause-effect pairs in the word embeddings space. The 2d
plots suggested that the lines connecting each cause with its effect run
close to a common “center of causality”. We used statistical tests to
see whether the property holds in the original space. Senna, an early
word embedding for English (famous in the time) showed the property,
while many other early word embeddings did not. Nevertheless, another
linear algebraic formulation makes this finding congnitive linguistically
appealing: we can say, at least in Senna, that the meaning of an ef-
fect is a combination of the meaning of the corresponding cause and a
uniform causal element.

A variant of the distributional hypothesis, the distributional inclu-
sion hypothesis (Weeds and Weir 2003; Chang et al. 2018) says that
hypernymy can be modeled based on that if animal is a hypernym of
dog, animal will be grammatical in every context where dog is. It is less
clear whether animal will appear in every context at least as frequently
as dog does. We tested this hypothesis with the tools of sparse coding.
Sparse vectors are vectors most of whose coordinates are zero, and

non-zero coordinates ideally correspond to interpretable properties. It
varies with models whether interpretability follows from the construc-
tion of the vectors, or the interpretation needs to be inferred from
some latent structure. Even in the latter case, sparse representations
tend to be more interpretable than less restricted ones. As far as sparse
attributes (i.e. non-zero coordinates in sparse word representations) cor-
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respond to contexts, if follows from the distributional inclusion hypoth-
esis discussed above that hypernymy should boil down to pointwise
comparison. Section 7.3 tests this idea in hypernymy discovery. Our
method enabled us to win three subtask at SemEval-2018 Task 9. (Our
project was originally motivated by formal concept analysis, but that
method did not proove successful.)

One of the greatest problems in lexical semantics is word ambigu-
ity and, more specifically, homonymy and polysemy. Static word em-
beddings represent each word form with a single linear algebraic vec-
tor. Chapter 8 proposed an evaluation method for multisense (static)
word embeddings (MSEs), where the different senses of an ambiguous
word are represented with different vectors. The method fits in the con-
text of embedding-based dictionary induction, and we also analyzed
the interaction between some techniques of lexicon inference, especially
the orthogonality constraint and reverse nearest neighbor (NN) search.
We found that reverse NNs yield much better results than the simpler
method, but none of the orthogonality-related techniques give further
improvement. Using our two measures, any, which quantifies transla-
tion quality in general, and disamb, which measures the precision of
ambiguous word detection, we compared the two SOTA MSE models,
AdaGram and mutli. We found a trade-off between the two measures:
the more specific a vector is, the easier it is to translate, but if the
vectors are too specific, then the translations may coincide.
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