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1 Inaccurate problem statement

In this paper we consider inhomogeneous, linear differential equations in one
dimension with constant coefficients. Namely

y(n)(x) + an−1 · y(n−1)(x) + . . .+ a1 · y′(x) + a0 · y(x) = f(x) (1)

where a0, a1, . . . an−1 ∈ R and f : R 7→ R is given and y : R 7→ R is sought.
We can solve the homogeneous case via the characteristic equation

λn + an−1 · λn−1 + . . .+ a1λ+ a0 = 0 (2)

and we have

y
(n)
h (x) + an−1 · y(n−1)

h (x) + . . .+ a1 · y′h(x) + a0 · yh(x) ≡ 0 (3)

where yh is a quasi-polynomial, containing (real) exponential, trigonometrial
and polynomial functions (recall the matrix exponential).

The next step is to find a particular solution of the inhomogeneous equa-
tion. At this point we restrict ourselves to the case, when f(x) has a special
form, specified later.

Example 1.1.
y′′(x) + y(x) = x (4)

The characteristic equation is λ2 + 1 = 0⇒ λ1,2 = ±i. Therefore

yh(x) = c1 · sin(x) + c2 · cos(x) (5)

We search the particular solution in the following (linear) form

yip(x) = Ax+B (6)

This yip is the test function, we assume that there is an element in {Ax+B|A,B ∈ R} ⊆
C∞(R) such that it solves (4). If we find one, the the general solution is
c1 · sin(x) + c2 · cos(x) + Ax+B with the above determined A and B.
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We will show a linear-algebraic formulation of the above techniques and
we will propose some accurate questions later. The solution of the homo-
geneous case is simpler, however non-trivial, what about the particular so-
lution? What test function to choose? If one has already proposed a test
function (a supposed form of the solution), how to determine the coefficients?
Are the coefficients uniquely determined?

2 Linear algebra formalism

Definition 2.1. Let F ⊆ C∞(R) be a subspace in the space of smooth func-
tions. We shall call F d-closed iff it is closed under derivation. Precisely
f ∈ F ⇒ f ′ ∈ F .

Claim 2.2. If F ⊆ C∞(R) is d-closed then

span(F) =
{

n∑
i=1

ci · fi
∣∣∣∣∣n ∈ N, ci ∈ R, fi ∈ F

}

is also.

Proof. Suppsose fi ∈ F (and f ′i ∈ F) for i = 1 . . . n. Then
n∑
i=1

ci · fi ∈ spanF

⇓(
n∑
i=1

ci · fi
)′

=
n∑
i=1

ci · f ′i︸︷︷︸
∈F

∈ spanF

In plain words a d-closed space always can be considered as a linear space
(closed under real, linear combination).

A d-closed space F , can be finite, or infinite dimensional. for expamle

F = span
{
eλx|λ ∈ R

}
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is infinite dimensional, however (somehow) diagonal. And

F = span
{
eλix|λi ∈ R, i = 1 . . . n

}
is n dimensional.

Claim 2.3. Derivation on an n dimansional, d-closed space (F) can be rep-
resented by a DF ∈ Rn×n matrix. We call the matrix D the differential
operator in the space F .

Proof. We know that d
dx : F 7→ F , since F is d-closed. We also know that F

is a finite dimensional linear space and derivation is linear, therefore it has
to be expressed with a matrix-multiplication.

Constructively, let us choose a basis: F = span {fi}i=1...n. The jth ele-
ment in the ith coloumn of the matrix D is the coefficient cj where

f ′i =
n∑
l=1

cl · fl ∈ F

For example let Ftrig := {A sin(x) +B cos(x)|A,B ∈ R}. Then (A sin +B cos)′ =
−B sin +A cos, hence

Dtrig =
 0 −1

1 0


Claim 2.4. There are three basic, finite dimensional d-closed spaces:

• Ftrig,ω = span {sin(ωx), cos(ωx)}, ω ∈ R

• Fexp,λ =
{
c · exλ|c ∈ R

}
, λ ∈ R

• Fpoli,n = span ({xi}i=0...n), n ∈ N

and the derivation acts on these as

• Dtrig,ω =  0 −ω
ω 0

 ∈ R2×2
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• Dexp,λ = [
λ
]
∈ R1×1

• Dpoli,n = 

0 1 0 · · · 0
0 0 2 0
... . . . . . .

0 n

0


∈ R(n+1)×(n+1)

respectively

Proof. One can check these matrices by direct differentiation.

There are other d-closed function-spaces. We present two ways of con-
structing d-closed spaces.

Claim 2.5. Let F = span {fi}i=1...n and G = span {gj}j=1...m two finite, d-
closed space with differential operators DF ∈ Rn×n, DG ∈ Rm×m respectively.
Also suppose that F ∩ G = ∅

Then the space F ⊕ G = span {F ,G} = {f + g|f ∈ F , g ∈ G} is also a
finite, d-closed space, with a differential operator:

D = diag {DF , DG} ∈ R(n+m)×(n+m) (7)

Proof. Let f ∈ F , g ∈ G.

(f + g)′ = f ′ + g′ = DFf︸ ︷︷ ︸
∈F

+DGg︸ ︷︷ ︸
∈G

∈ F ⊕ G (8)

If we consider F ⊕ G as span {f1, . . . fn, g1, . . . gm}, then the the formula (7)
also follows.

Claim 2.6. Let F = span {fi}i=1...n and G = span {gj}j=1...m two finite, d-
closed space with differential operators DF ∈ Rn×n, DG ∈ Rm×m respectively.

Then the space F⊗G = span {fi · gj} i=1...n
j=1...m

is also a finite, d-closed space,
with a differential operator:

D = DF ⊗ Idm + Idn⊗DG ∈ R(n·m)×(n·m) (9)
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Proof. First of all, by span {fi · gj} i=1...n
j=1...m

we mean

span{f1 · g1, f1 · g2, . . . f1 · gm︸ ︷︷ ︸
f1·G

, f2 · g1, . . . , f2 · gm︸ ︷︷ ︸
f2·G

, . . . fn · gm}.

The ordering matters.
Now

(fi · gj)′ = f ′i · gj + fi · g′j = DFfi︸ ︷︷ ︸
∈F

·gj + fi ·DGgj︸ ︷︷ ︸
∈G

∈ F ⊗ G (10)

The above formula also consludes the formula (9).

Example 2.1. Let F := span{1, x} = R1[x], we have called that Fpoli,1

earlier. Furthermore, let G := Fexp,1. Then F ⊗ G = span{ex, x · ex} a two
dimensional space.

Let us calculate the differential operator according to (9).

D =
 0 1

0 0

⊗ [ 1
]

+
 1 0

0 1

⊗ [ 1
]

= (11)

 0 1
0 0

+
 1 0

0 1

 =
 1 1

0 1

 (12)

Let us derivate the function x · ex = 0 · ex + 1 ·x · ex. This function is
0
1


with vector notation.

(x · ex)′ =
[
ex x · ex

]
·

1 1
0 1

 ·
0
1

 =
[
ex x · ex

]
·

1
1

 = (1 + x)ex

Note that the formula (9) of the differential operator can be extended for
arbitrary many tensor terms, for three terms i.e.

DF1⊗F2⊗F3 = D1⊕D2⊕D3 = D1⊗ Id2⊗ Id3 + Id1⊗D2⊗ Id3 + Id1⊗ Id2⊗D3

(13)
and similarly for more terms.

Consider equation (1), where the right-hand-side comes from a closed,
finite dimensional space F , with differential operator D ∈ Rd×d. Then f(x)

6



can be represented by a vector f(x) ↔ v ∈ Rd and x ∈ Rd is sought such
that (

Dn + an−1D
n−1 + . . . a1D + a0 Id

)
x = v (14)

The problem also includes to find a finite, d-closed space F , such that
f ∈ F and (14) can be solved.

Consider Example 1.1. y′′ + y = x can be written as(
d2

dx2 + Id
)
y = x (15)

We have to find a d-closed space F with differential operator D such that
x ∈ F and we have to find every solution of the equation

(
D2 + Id

)
y = x (16)

where x is the vector representation of the function x and the vector y is the
variable.

Recall the solution of this simple case. y(x) = yh(x)+yip(x) = c1 sin(x)+
c2 cos(x) + x. The space F is span {1, x, sin(x), cos(x)}. The differential
operator is

D =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 (17)

Mind the direct product structure of F .

D2 + Id =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 (18)

Therefore every solution of (D2+Id)y = (0, 1, 0, 0)> has the form (0, 1, c1, c2)>.
This is exactly what we have already seen.
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3 Homogeneous case

Consider

y(n)(x) + an−1 · y(n−1)(x) + . . .+ a1 · y′(x) + a0 · y(x) = 0 (19)

Claim 3.1. The solutions of (19) form a finite, d-closed space.

Proof. If f(x) solves (19), then f ∈ F .

• F is d-closed.

f (n) + an−1 · f (n−1) + . . . a1 · f ′ + a0 · f = 0 (20)

⇓(
f (n) + an−1 · f (n−1) + . . . a1 · f ′ + a0 · f

)′
= 0 (21)

m

(f ′)(n) + an−1 · (f ′)(n−1) + . . . a1 · f ′′ + a0 · f ′ = 0 (22)

• Linear combination of solutions is also a solution. This is trivial.

• Finite dimensionality follows from existence and uniqueness theorems.
Without initial or bondary conditions, the degree of freedom is at most
n in an nth order differential equation.

So we search for an n dimensional, d-closed space F , with differential
operator D such that

Dn + an−1D
n−1 + . . .+ a1D + a0 Id = 0. ∈ Rn×n (23)

In other words, the task is to find a differential operator which has a given
spectrum (characteristic polynomial).

Claim 3.2. Let D ∈ Rn×n be any given matrix. Then D is the differential
operator of a finite, d-closed space: F , and dimF ≤ n.
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Proof. Consider the following first order system of differential equations

f ′(x) = Df(x) (24)

where f(x) = (f1(x), . . . fn(x))>.
Similarly like in Claim 3.1, we can state that the coordinate functions of

the solutions form a (maximum) n dimensional d-closed space

F := span
{
fi(x), i = 1 . . . n such that (f1(x), . . . fn(x))> solves (24)

}
.

(25)
The differential operator of this space is D, this is exactly what (24) means.
The functions in F are uniquely detrermined up to linear combination.

We can also state that the Jordan normal form of D is the only significant
factor, because change of basis can be represented as f  Pf , D  PDP−1

and span{f} = span{Pf}.

We saw that D is not only a property of a finite, d-closed space, rather
identifies it.

Consequence 3.3. The only essential, finite, d-closed spaces are in Claim
2.4.

Proof. Technically, we have to check, that one can construct any matrix (any
given Jordan normal form) with the matrices Dpoli,n, Dexp,λ and Dtrig,ω. If so,
then there are no more significantly different d-closed spaces.

• Consider the differential operator of Fexp ⊗Ftrig:

Dexp,λ ⊗ Id2 + Id1⊗Dtrig,ω =
[
λ
]
⊗

1 0
0 1

+
[
1
]
⊗

 0 ω

−ω 0

 =
 λ ω

−ω λ

 (26)

The eigenvalues of this matrix are λ±iω. This means that any complex
number can be the eigenvalue of a differential operator (we just gave
the space and the operator).
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• One can concatenate the blocks above. In this way, any diagonal matrix
can get as a differential operator. What about the Jordan blocks?

• Suppose that we have a d-closed space F with differential operator DF .
Let us calculate the differential operator of Rn[x]⊗F :

Dpoli,n ⊗ Id︸ ︷︷ ︸

0 Id
. . . . . .

0 n Id
0



+ Id⊗DF︸ ︷︷ ︸
DF

. . .
DF



= (27)



DF Id 0 · · · 0
0 DF 2 Id 0
... . . . . . .

DF n Id
DF


(28)

• For DF = [λ] ∈ R1×1 this is exactly a Jordan block. For F = Fexp,λ ⊗
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Ftrig,ω it is

λ ω 1 0
−ω λ 0 1

λ ω 2 0
−ω λ 0 2

. . . . . .


 

conjugation transform P•P−1
(29)



λ+ iω 0 1 0
0 λ− iω 0 1
0 0 λ+ iω 0 1 0
0 0 0 λ− iω 0 1

. . . . . .


 

exchanging the subspaces

(30)

λ+ iω 1 0 0
0 . . . . . . 0

λ+ iω 1
λ+ iω

λ− iω 1 0 0
0 . . . . . . 0

λ− iω 1
λ− iω



(31)

 
In the characteristic polynomial

p(z) =
(
(λ− z)2 + ω2

)n+1
(32)

Finaly we showed that any real polynomial can get as a characteristic polinom
of a differential operator.

In more practical context: let

p(x) =
k′∏
i=1

(x− xi)νi ·
k∏

j=k′+1

(
(x− xj)2 + cj

)νj

.

given with cj > 0. For the terms (x − xi)νi take Rνi−1[x] ⊗ Fexp,xi
. For the

irreducible blocks take the Rνj−1[x]⊗Fexp,xj
⊗Ftrig,√cj

. And concatenate the
blocks diagonally (take the direct sum of the d-closed spaces).
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Remark 3.4. The characteristic polynomial of a differential operator is ex-
actly it’s minimal polynomial.

Proof. Consider a Jordan block of size m+ 1 in D with eigenvalue λ:

λ 1
λ 1

. . .
λ

 (33)

This gives us the subspace eλx ·Rm[x], therefore the additional smaller Jordan
blocks do not extend this subspace, eλx · Rl[x] ⊆ eλx · Rm[x] if l ≤ m. The
spanned space, constructed in (25), is effected only by the largest Jordan
block. For trigonometrical subspaces likewise.

In this way, every occurance of an eigenvalue can be reduced to the largest
Jordan block. Hence the minimal polinomial is the characteristic polynomial.

Also one can construct a differential operator of the form
λ 1 0
0 λ 0
0 0 λ


by taking the generating system (not basis) {eλx, x · eλx, eλx}. But in this set
up, the differential operator is not well defined.

We shortly summerize the results about finite dimensional, d-closed spaces:

• Every d-closed space has a differential operator.

• Every matrix can be a differential operator of a d-closed space.

• The differential operator identifies the d-closed space.

• We gave the d-closed space of every matrix.

Now we can solve (19).
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Claim 3.5 (solution of the homogeneous case). We constructed all solutions
of the ODE (19) in Consequence 3.3.

Proof. Find the d-closed space, corresponding to the matrix with character-
istic polynomial xn + an−1x

n−1 + . . . a1x+ a0. This was constructed in Con-
sequence 3.3. There are no more solutions, since the space constructed in
Consequence 3.3. was n dimensional, closed and any other space with bigger
dimension would contradict the uniqueness of the solution of an ODE.

4 Inhomogeneous case

Let us call the solution space of the homogeneous equation Fhom with dif-
ferential operator Dhom (this is what we constructed in the former section).
From earlier results we know that Fhom is well defined and n dimensional.

Now we consider (1) again and let us call the polynomial on the left-hand-
side

p(x) := xn + an−1x
n−1 + . . . a1x+ a0. (34)

With the d-closed space technique we are able to solve (1) when the right-
hand-side comes from a d-closed space. In finite dimensional case, f can only
contain exponential, trigonometrial and/or polinomial terms.

Due to the block structure of differential operators (Jordan blocks of
different eigenvalues), we only deal with the case

f(x) = xm · eλx · (A sin(ωx) +B cos(ωx)) (35)

where m ∈ N, λ ∈ R, ω ∈ R.

Claim 4.1. Assume, that the function (35) is not in the space of the homo-
geneous solutions (Fhom). Take F = Fpoli,m⊗Fexp,λ⊗Ftrig,ω with differential
operator D ∈ R2(m+1)×2(m+1). Then

det p(D) 6= 0 (36)

⇓

p(D)y = f (37)
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can be solved uniquelly, where f is the vector representation of the function
f in the space F . The function represented by the vector y solves (1).

Proof. The assumption of the statement is equivalent with the fact that λ±iω
in (35) is not the eigenvalue of the differential operator Dhom.

If so, then p(D) is clearly invertible, since p(x) is the characteristic poly-
nomial of Dhom and D has no joint eigenvalue with Dhom.

Therefore, the function p(D)−1f solves (1), this is exactly (37).

Now let us assume, that the function in (35) is in Fhom. We suppose
that Fhom = Fpoli,k ⊗Fexp,λ⊗Ftrig,ω without the loss of generality (mind the
Jordan blocks). Then p(x) = ((x− λ)2 + ω2)k and p(D) is not invertible. F
and Fhom differs only in the order of the polynomial term.

Claim 4.2. Let Dj be the differential operator of the space Fpoli,j ⊗Fexp,λ ⊗
Ftrig,ω, the characteristic polynomial of Dj is pj(x) = ((x− λ)2 + ω2)j+1.
Then for the image the following holds:

Im (pj(Dj+m)) = Fpoli,m ⊗Fexp,λ ⊗Ftrig,ω (38)

for any j ∈ N.

Proof. Recall the form of Dj in (29), there ar j + 1 blocks in the diagonal.
We can calculate pj(Dj+m) directly.





λ ω 1 0
−ω λ 0 1

λ ω 2 0
−ω λ 0 2

. . . . . .


− λ Id



2

+ ω2 Id



j+1

= (39)





0 ω 1 0
−ω 0 0 1

0 ω 2 0
−ω 0 0 2

. . . . . .



2

+ ω2 Id



j+1

= . . . (40)
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We use the 2× 2 block structure.

. . . =



Dtrig,ω Id

Dtrig,ω 2 Id
. . . . . .


2

+ ω2 Id


j+1

= (41)





D2
trig,ω 2Dtrig,ω 2 Id

D2
trig,ω 4Dtrig,ω 6 Id

D2
trig,ω 6Dtrig,ω 12 Id
. . . . . . . . .

+ ω2 Id



j+1

= . . . (42)

Like the square of a Jordan block. And we know that D2
trig,ω =

−ω2 0
0 −ω2

.

. . . =



0 2Dtrig,ω 2 Id
0 4Dtrig,ω 6 Id

0 6Dtrig,ω 12 Id
. . . . . . . . .



j+1

(43)

The matrix under the power is nilpotent, and every power decreases the rank
by 2 (1 block). Therefore the j + m blocks in the upper-diagonal collapses
into m blocks in the j + 1th-diagonal. Hence the image space is the upper
2(m+ 1) component, which is the subspace Rm[x]⊗Fexp,λ ⊗Ftrig,ω.

On one word, to get (35) on the right hand side, multiply the test-
function-space by Rk−1[x], where k is the multiplicity of the coincide root
in the homogeneous solution.

Since the range space in Claim 4.1 and 4.2 is the same: Rm[x]⊗Fexp,λ ⊗
Ftrig,ω, and due to the collapse of the Jordan blocks in Claim 4.2, the inho-
mogeneous particular solution is also unique.

5 In infinite dimension

With the help of characterising the finite dimensional d-closed spaces, we
found the unique solution of the inhomogeneous equation, if the right-hand-
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side comes from a finite space. But what if it comes form an infinite dimen-
sional d-closed space? What can we say about infinite dimensional d-closed
spaces?

Definition 2.1 allows infinite dimensional spaces and Claim 2.2 also holds.
Moreover the differential operator also exists, but it is not a matrix. In this
way equation (37) makes sense, but y and f are infinite dimensional vectors
and D is an operator.

Technically C∞(R) is a d-closed space, therefore no matter what is the
right-hand-side, the infinite dimensional formalism always holds. Construc-
tively, let f(x) ∈ C∞(R) and take Fn := span{f, f ′, . . . f (n)}. If Fm ⊆ Fn

for some m > n, then we are in the finite dimensional case. The general case
can be solved with the Wronskian, and there is no need for further discus-
sion. However, we show an example of our linear algebraic method in infinite
dimensional case.

Example 5.1. Let us consider

y′′(x) + y(x) = e(x2) (44)

In more general consider the d-closed space R[x] · e(x2). For a q(x) ∈ R[x]:
(
q(x) · e(x2)

)′
= (q′(x) + 2x · q(x)) e(x2) (45)

If one consider R[x] · ex2 as:

span
{
ex

2
, x · ex2

, x2 · ex2
, . . .

}
(46)

then one can check that the differential operator is:

D =



0 1 0 · · ·
2 0 2
0 2 0 3
0 0 2 0 4

. . . 0 . . .


(47)
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Let us cut the differential operator.

Dn :=



0 1 0 · · ·
2 0 2
0 2 0 3
0 0 2 0 4

. . . 0 . . .


∈ R(n+1)×(n+1) (48)

Then (D2
n + Id) y = (1, 0, . . . 0︸ ︷︷ ︸

n

)> can be solved for y ∈ Rn+1. If the operator

D2
n + Id has a uniform spectral gap, then its inverse is uniformly bounded for

every n, thus (
D2
n + Id

)−1
(1, 0, . . . 0)> (49)

converges to an `2 vector, the solution of (44).
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