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The System
Two infinitesimally small balls move up and down
along a vertical half line. The lower ball collides
with the upper ball and with the floor in a totally
elastic way.
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The total energy of the balls is an integral of
motion and assumed to be 1/2 and we set 1 −
m2 = m1 = m. The dynamics is discretized with
a Poincaré section: h1 = 0, v1 > 0. These
result in a two dimensional phase space.

Interesting Phase Space
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Wojtkowski in [1] in-
troduced a useful pair
of coordinates with
which the calculations
are simpler and the
Lebesgue measure (µ)
is invariant.
Considering the colli-
sions there are two sce-
narios: the balls can
collide before the lower
one returns to the floor
or the lower ball drops
back, avoiding the up-
per one. Hence the

phase space is divided into two subsets and the
dynamics is piecewise continuous. M =M1∪M2

First Return Map
In order to have uniform hyperbolicity we intro-
duce the first return map of the set M1. This
means that the lower ball bounces alone for a
while until it collides with the upper ball. The
new map T :M1 7→ M1 has more singularities.

M2

R0

R1
R2

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

For the configurations in Rn the lower particle
bounces n + 1 times on the floor until the next
collision. We proved the following tail bound:

µ(Rn) ≤ const · 1
n4

Hyperbolicity
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In [1] the hyperbolicity of the system is proved via
cones. To provide hyperbolicity one has to find
an unstable cone field {Cx ⊂ TxM}x∈M which
satisfies Dx T (Cx) ⊂ CTx for every x ∈M.
Our phase space (as a manifold) is embedded in
R2, so is the tangent space. Therefore it’s easy
to define cones. The proper unstable cone field in
our system is a constant one: {(a, b) ∈ R2|ab ≤
0} ⊂ TxM1 = R2 for every x ∈ M1. If the
tangent vector of a curv is lying in the cone field,
we call it unstable curv. These curves expand
under the action of T .

Result: rate of mixing and CLT
From [1] we know, that the system is ergodic and
mixing if the lower particle is heavier (m > 1

2 ).
That is

lim
n→∞

|E ((f ◦ Tn)g)− E(f)E(g)| = 0.

for every f, g ∈ L2
µ(M). We define the

rate of mixing as the decay rate in the
above formula for Hölder continuous functions,
and distinguish polynomial and exponential
tail bounds. We proved that the dynamics
mixes with a polynomial (summable) rate if the
mass parameter is in a certain open set.
We also proved the Central Limit Theorem
(CLT), that is, for Hölder continuous f with
Ef = 0:

lim
n→∞

µ

(
f + f ◦ T + . . . f ◦ Tn−1

√
nσ

≤ z
)

= Φ(z)

where Φ is the Gauss distribution function and σ
depends on the sum of the autocorrelations of f
(hence summability of the mixing rate is needed
for a finite sigma).

About the Method
We prove the polynomial mixing by combining
the exponential mixing of the first return map and
the estimation of the first return times ( 1

n4 ). This
method of Chernov and Zhang was introduced in
[2] based on [3] and [4].
First we prove exponential mixing for the first
return map with Young towers ([3]). Secondly we
use the estimation of the return times and the
a later result of Young ([4]) to prove polynomial
mixing for the original map. The final mixing rate
was calculated from the first return times:

(logn)3/n2
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Involution

Hh, zL F1Hh, zL F2ëF1Hh, zL THh, zL
F1ëTHh, zL

IëTHh, zL
F1ëIëTHh, zLF2ëF1ëIëTHh, zL

TëIëTHh, zLIëTëIëTHh, zL

In billiards the involution is a common
technique used to handle the inverse of
the dynamics. In our proof it helped to
reduce the regularity of the stable direc-
tions (directions in a backward invariant
cone field) to the unstable ones.
We call the map I :M1 7→ M1 involution
if I = I−1 and T−1 = I ◦ T ◦ I. In our
system the involution is the composition
of F1 and an operator which reverses the
velocity of the upper ball.

The Second Iterated Map
In the conditions of Chernov and Zhang one has to treat the expansions of the unstable curves.
Hyperbolicity expands these curves but the singularities break them apart. The first return
map did not expand enough to overcome the bad effect of the singularities. However we
could work with the second iterate of T that has fewer singularities compared to its expansion.
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