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Chapter 1

Definitions

In this work we study a specific dynamical system, hence we start with a brief
introduction to certain general concepts of dynamical systems. In mathematics a
physical system is represented as a map T : M 7→ M where the set M is the phase
space. In discrete time the map T evolves the system one step forward, in continuous
time Tt depends on a parameter t ∈ I, where I ⊆ R is a specified interval. The flow
Tt evolves the system t time forward and Tt+s = Tt ◦Ts. If the system is at the state
x ∈ M at the time 0, then it will be in the state Ttx at the time t. {Tt}t∈I , in both
the continuous and the discrete case, is a commutative semi-group with respect to
the action of the dynamics.

1.1 Statistical Properties

Sometimes it is not useful or interesting to study the smaller details of a system
(motion) but one asks questions like: Where is a particle after a long time? What
pattern can I see when I start the system from a typical configuration and look at
it after a long time?
This type of approach can be familiar for example from statistical physics. To ensure
that the above questions make sense we have to study certain stochastic properties.
Ergodic theory studies the behavior of dynamical systems in the above mentioned
way and it’s main interest is the evolution of measures.

Definition 1.1.1 Take a phase space: M and a dynamics (in discrete time): T :
M 7→ M. T is an endomorphism on the probability measure space (M,Σ, µ) if T
preserves µ.

µ(M) = 1 and

µ(T−1A) = µ(A) for every A ∈ Σ
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If T is invertible and T−1 is also an endomorphism with µ then we call it an
automorphism and µ(TA) = µ(A) also holds. An endomorphism T : M 7→ M
with a measure µ means the objects together: (T,M,Σ, µ)

The most basic property is the ergodicity.

Definition 1.1.2 A T : M 7→ M endomorphism with a measure µ is ergodic if:
every invariant f : M 7→ R function is constants almost everywhere.

µ ({x ∈ M|f(x) = f(Tx)}) = 1 ⇒ µ ({x ∈ M|f(x) = c}) = 1

For some c ∈ R.

The existence of a nontrivial invariant set disproves ergodicity. If the set A ⊆ M is
invariant (µ (A ∆ T−1A) = 0) and 0 < µ(A) < 1 then the function I{x∈A} is invariant
however not constant almost everywhere. The lack of a nontrivial invariant set is
also an equivalent characterization of ergodicity [17].

In the definition 1.1.2 the function f : M 7→ R can be regarded as a measure-
ment. In physics this means that we measure a certain quantity (f(x) ∈ R) in a
certain state of the system (x ∈ M ). Sometimes the function f : M 7→ R is called
an observable. In the terminology of probability theory we think of an observable
of an endomorphism as a random variable in the following way: let (M,Σ, µ) be a
probability space of an endomorphism and f : M 7→ R a µ-measurable function.

Definition 1.1.3 Let (T,M,Σ, µ) be an endomorphism and f ∈ L1
µ(M) be an

observable. The space average of f is:

E(f) :=
∫

M
f(x) dµ(x)

The time average of f is:

f̂ := lim
n→∞

1
n

n−1∑
i=0

f ◦ T i

f̂(x) = lim
n→∞

f(x) + f(Tx) + . . .+ f(T n−1x)
n

If the limit exists.
We call (Snf) (x) = f(x) + f(Tx) + . . .+ f(T n−1x) the Birkhoff sum of f .

One can easily check that f̂ is invariant (if it exists). Therefore in ergodic endomor-
phisms the f̂ is constant almost everywhere.

The following theorem is the equivalent of Law of Large Numbers in Ergodic
theory.
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Theorem 1.1.4 (Birkhoff) Let (T,M,Σ, µ) be an endomorphism and f ∈ L1
µ(M)

an observable.
If the T is ergodic then the time average does exist almost everywhere and

f̂ = E(f) almost everywhere.

In other words the time average converges to the space average (for µ-typical points).

Mixing is a stronger stochastic property than ergodicity, it is motivated by the
independence (uncorrelatedness) of random variables.

Definition 1.1.5 A T : M 7→ M endomorphism with a measure µ is mixing if:
for any measurable A,B ⊆ M

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B)

Another definition:

Definition 1.1.6 A T : M 7→ M endomorphism with a measure µ is mixing if:
for any square-integrable functions f, g ∈ L2

µ(M)

lim
n→∞

E ((f ◦ T n)g) = E(f)E(g) that is

lim
n→∞

∫
M
f(T nx)g(x) dµ(x) =

∫
M
f(x) dµ(x)

∫
M
g(x) dµ(x)

If f, g are indicator functions of measurable sets, then this formula is the same as
in definition 1.1.5. In [17] one can see the equivalence of these two definitions. The
latter definition allows to define the decay of correlations for specific observables.
Motivated by the subject of our study from now on I use more specific conditions on
the below introduced objects. From now on I assume that the phase space is always
a Riemannian manifold.

Definition 1.1.7 A T endomorphism on a Riemannian manifold M with a Borel
measure µ mixes with a polynomial rate α ≥ 0 if:
for any Hölder continuous functions f, g : M 7→ R
there exists a c ≥ 0 such that the following holds (for every n ∈ N)

|E ((f ◦ T n)g) − E(f)E(g)| ≤ cn−α

In the definition M does not have to be a Riemannian manifold but it has to be a
metric space in order to define Hölder continuity. Meanwhile M, in the examples
of physics, is usually a Riemannian manifold.
To define an exponential rate of mixing we use cλn

f,g as a bound where λf,g depends
on the Hölder exponents of f and g.

Since the Law of Large Numbers holds for every ergodic endomorphism it is
natural to study the CLT.
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Definition 1.1.8 For an ergodic endomorphism (T,M,Σ, µ) the Central Limit Theorem
holds if:
for any Hölder continuous function f : M 7→ R

lim
n→∞

µ

(
Snf√
nσ

≤ z

)
= 1√

2π

∫ z

−∞
e− x2

2 dx

Where f is supposed to be "centered": E(f) = 0
and σ is the "variance".

σf
2 =

∞∑
n=−∞

E(f(f ◦ T n))

Here one can see that the fast decay of correlations is crucial in CLT. Without the
series ∑n E(f(f ◦ T n)) being summable there is no chance to have CLT.

In this work I keep going on the way prescribed by Chernov and Zhang (see
chapter 3) in order to prove polynomial decay of correlations, and further properties,
for the system of two falling balls. Some of the basic elements of such a proof were
introduced in my Bsc thesis, now I detail the whole method.

1.2 Hyperbolic systems

In the study of stochastic properties, beside ergodicity, the hyperbolicity is an im-
portant property. This property is commonly used in order to study mixing and it’s
rate in ergodic systems.

To define a dynamics being hyperbolic, first we have to introduce Lyapunov
exponents. Consider a map T : M 7→ M.

Definition 1.2.1 A point x ∈ M HAS a Lyapunov exponent: χ and
a characteristic subspace: Eχ

x ⊆ TxM if:
For every v ∈ Eχ

x

lim
n→∞

1
n

log ∥Dx T
n · v∥ = χ

This definition is motivated by linear maps. Let us consider the simple case, when
T is linear, and it’s matrix A has all different eigenvalues, which we denote by
λ1 < · · · < λm. In this simple case χi = log |λi| and Eχ

x is the direction of the
subspace spanned by the corresponding eigenvector (ui).

Anui = λn
i ui

∥Anui∥ = |λi|n ∥ui∥

log ∥Anui∥ = n log |λi| + log ∥ui∥
1
n

log ∥Anui∥ = log |λi| + log ∥ui∥
n

lim
n→∞

1
n

log ∥Anui∥ = log |λi|

7



In the general case of T : M 7→ M the existence of these objects is not guaranteed.
The Oseledec theorem, see [6], states that the exponents exist almost everywhere,
with respect to any invariant measure, if the T is differentiable on the phase space.
The exponents also exist if the endomorphism satisfies some weaker properties, also
mentioned in [6].

If χ < 0 we call Eχ
x a stable subspace of x, if χ > 0 an unstable subspace,

otherwise neutral. The vectors in a stable subspace shrink exponentially fast as
n → ∞ and grow exponentially fast as n → −∞. The vectors in an unstable
subspace act vice verse. Let the manifold be m dimensional and let us denote the
exponents by χx

1 , χ
x
2 , . . . , χ

x
m with the corresponding subspaces: Eχ1

x , Eχ2
x , . . . , Eχm

x .
We group the subspaces according to the sign of the exponents. This way we have
three subspaces for every point:

Rm ∼= TxM =

⊕
χx

i <0
Eχi

x


︸ ︷︷ ︸

Es
x

⊕⊕
χx

i >0
Eχi

x


︸ ︷︷ ︸

Eu
x

⊕⊕
χx

i =0
Eχi

x


︸ ︷︷ ︸

En
x

Definition 1.2.2 A map T acting on a Riemannian manifold M is hyperbolic if
En

x is trivial but none of the Es
x, Eu

x are trivial (and do exist) for almost every point
with respect to the Lebesgue measure.

Notice that the definition requires the existence with respect to the Lebesgue mea-
sure, not the invariant measure. In general it can happen that the invariant measure
is singular. However a system can be hyperbolic in the above sense even without a
Lebesgue-continuous invariant measure.

In a two dimensional map the hyperbolicity means that there is one stable
and one unstable direction in the Lebesgue-typical points. The directions of the
(un)stable subspaces determine a vector field in the phase space. Roughly speaking
the integral curves through these directions are the (un)stable manifolds. It is easy
to determine these manifolds and exponents if the map is linear. For example in
the CAT map (discussed in [17]) one has to calculate the eigendecomposition of
the CAT matrix. But this is a more difficult task in a general case, when we can
visualize the subspaces via cones.

Definition 1.2.3 In a linear space A a cone C is a subset of A which is closed
under the scalar multiplication. (a collection of directions)

x ∈
⊆A︷︸︸︷
C ⇒ λx ∈ C ∀λ ∈ R

In a Riemannian manifold R a cone in a point x ∈ R is subset of the tangent space
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Cx ⊆ TxR which is a cone in TxR.

A special way of defining cones (in a point of a Riemannian manifold R) is to take
two vectors v1, v2 ∈ TxR, the sides of the cone, and let

Cx (v1, v2) = ±{α1v1 + α2v2 |α1 ≥ 0 and α2 ≥ 0} ⊆ TxR

Figure 1.1:

x

y

Definition 1.2.4 A cone field, of a Riemannian manifold R, is a set of cones
{Cx}x∈R. We require continuity in the following sense.
To compare two cone we need a metric: d (Cx, Cy). Since we have a Riemannian
manifold we can compare sets in tangent spaces of nearby points by identifying the
tangent spaces with parallel translation. To compare sets in the same tangent space
we take the unit vectors in a cone:

C1
x = {v ∈ Cx : |v| = 1}

and use the Hausdorff metric: dH

(
C1

x, C1
y

)
We will deal only with cones given by a pair of vectors and in this case the continuity
is easier to define.

In our case R will be a bounded subset of R2 with a trivial Riemannian structure.
To simplify the formalism of cones we identify the tangent spaces TxM ∼= R2 with
the same R2 in which R lies. Thence it is possible to define a continuous cone field
as

{Cx (v1(x), v2(x))}x∈M

Where vi : M 7→ R2 are continuous functions determining the sides of the cones.

Definition 1.2.5 Let T : M 7→ M be our endomorphism. A cone field {Cx}x∈M is
invariant if T maps every cone inside the cone at the image point.

Dx T (Cx) ⊆ CT x for every x ∈ M
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In the definition T acts on a cone Cx ⊆ TxM in a natural way: represent a cone
with vectors from all of the directions and apply Dx T to all of them. {Dx T · v}v∈Cx

can be obtained as an other collection of directions in TT xM.
To see the relation between the cone fields and hyperbolicity we have to introduce

a more strict definition of invariant cone fields. As a motivation consider the identity
map of any compact set. The map is clearly non-hyperbolic, but any cone field is
invariant.

Definition 1.2.6 Let C1, C2 ⊆ A be two cones in a metric space. Assume that
C1 ⊆ C2. We say that C2 strictly contains C1 (C1 ≪ C2) if:

∂C2 ∩ C1 = {0}

Definition 1.2.7 Let T : M 7→ M be an endomorphism. A cone field {Cx}x∈M is
strictly invariant, (or in the hyperbolic setting unstable cone field), if T maps every
cone strictly inside the cone at the image point.

Dx T (Cx) ≪ CT x for every x ∈ M

The existence of a strictly invariant cone field implies the hyperbolicity, but it is not
a necessary condition. [13], [5]

Definition 1.2.8 Let T : M 7→ M an endomorphism. Let {Cx}x∈M be a strictly
invariant cone field. A curve γ(t) ∈ M, t ∈ I ⊆ R is an unstable curve, if the
tangent vector of γ is in the corresponding unstable cone.

∂

∂t
γ(t) ∈ Cγ(t) ∀t ∈ I

We can use these objects to approximate the unstable manifolds. Take a strictly
invariant cone field and apply T to the cones (in the above mentioned way) n times.
As n → ∞ the image of the cones are getting more and more narrow (because
they are mapped strictly inside themselves) and the limit gives the direction of the
unstable subspace in every point. More precisely, to get the unstable direction of
a point x one has to determine limn→∞ DT −nx T

n (CT −nx). To get an approximate
direction count DT −N x T

N (CT −N x) for a sufficiently largeN which gives a very narrow
cone around Eu

x . One can get the local shape of an unstable manifold by iterating
any unstable curve forward.

To get the stable directions one has to find a backward-invariant family of cones
and iterate them backwards. These can give the stable manifolds The (un)stable
manifolds are the limit objects of (un)stable curves.
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1.3 Billiards

Billiards are special dynamical systems. Let a point particle move freely in a
bounded domain (billiard table) Q, where usually Q is in some Euclidean space
or on a torus. The boundary ∂Q is piecewise smooth. The particle reflects from the
boundary according to the law of specular reflection (angle of incidence equals angle
of reflection). Thus billiard orbits are broken lines and the kinetic energy of the
particle is an integral of motion. The speed of the ball is assumed to be 1. Let us
define a Poincaré section: consider the moments, when the particle hits the bound-
ary, infinitesimally after the collision. This way the dynamics is two dimensional.
To introduce the phase space of the billiard map, we use two coordinates: the place,
x ∈ ∂Q (measured along the scatterer’s perimeter in arch length), and the angle of
the velocity vector, −π

2 ≤ φ ≤ π
2 (angle of reflection).

Billiards on two dimensional tables are quite in the focus of the current interest.
The behaviour of such a system is strongly determined by the shape of ∂Q. If the
table is a circle or a rectangle, then the system is integrable (for a definition see [1]).
If the boundary is piecewise concave (as viewed from the interior of Q), then the
system has strong chaotic properties. This kind of billiards are called Sinai billiards,
see [16]. Sinai billiards are known to have strong stochastic properties, see [5] for a
comprehensive discussion of the modern theory of Sinai billiards.

If the table has (partly) convex boundary then one could suspect that the system
does not have stochastic properties, since the wall of the table does not scatter the
trajectories, but focuses them. However one can construct ergodic, convex billiard
tables. The best known examples are stadia ([6]). In stadium billiards the CLT
typically does not hold. There is an equivalent condition for CLT in [2].

There are several possible ways to generalize billiard systems. For example when
considering n particles with various mass ratios. In this case the particles have a
non-zero volume (radius) to ensure that they collide with non-zero probability. This
system is the hard sphere gas model, and can be regarded as billiard in a higher
dimensional domain. [14] [18]
Another way of generalization is to place the table in an external field and give charge
to the particle. This way the inter-collisional trajectories are no longer straight line
segments. [10] [11] [19]

The system to be introduced below can be also regarded as a generalized billiard.
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Chapter 2

The Concrete System

The system of falling balls can be regarded as a billiard. The table is one dimen-
sional: a vertical half line bounded from below. In this line infinitesimally small
balls move up and down under the force of gravity (g traditionally denotes 9.81 m

s2 ).
They bounce and collide totally elastically with each other and with the floor. Our
system has only two particles of mass m1 and m2.

Figure 2.1:

h2

h1

m2

m1

v2

v1

"+"

gravity

The properties mentioned in this section have occurred in my Bsc thesis, and
they are known, though not all of them is explicitly mentioned in the literature. [13]
[15] [20]

Wojtkowski in [20] studied a general case: a system of n balls with different
masses mn. He proved hyperbolicity if the masses strictly decrease up the line.

m1 > m2 > . . . > mn

In [15] the hyperbolicity is proved under a weaker assumption: if the masses decrease
non-strictly up the line, but there are at least two different masses.
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From [13] we know that the system of two balls is ergodic in the case in which
the lower ball is heavier (m1 > m2). This case is the main subject of this work. The
second case is when the m1 = m2. In this case the balls exchange velocity which
makes the system completely integrable. The third case is when m1 < m2. In this
case one can observe KAM phenomena, which are also interesting but they are out
of the framework of chaotic behaviour.

2.1 Expressing the Dynamics Explicitly

Let us express the state of the balls with usual physical quantities: h1, h2 are the
hight of the lower and the upper ball, v1, v2 are the velocities. We neglect the air
resistance therefore the total energy of the system J := 1

2m1v
2
1 +m1gh1 + 1

2m2v
2
2 +

m2gh2 is an integral of motion. This motivates introducing the phase space M̂:{
(h1, v1, h2, v2) ∈ R4|0 < h1 < h2,

1
2
m1v

2
1 +m1gh1 + 1

2
m2v

2
2 +m2gh2 = J

}
The dynamics act on M̂ in continuous time. In order to use our notations it is useful
to discretize the system. Like Wojtkowski did in [20] we introduce the Poincaré
section M =

{
(h1, v1, h2, v2) ∈ M̂|h1 = 0, v1 > 0

}
. This means that we consider the

moments when the lower ball hits the floor infinitesimally after the collision. Now
we have a discrete map of a two dimensional phase space T : M 7→ M. The purpose
of the whole study is to understand the properties of this single map.

Instead of the usual moments we use the following coordinates of M (also from
[20]):

h := 1
2
m1v

2
1 the total energy of the lower ball, since h1 = 0

z := v2 − v1

These coordinates seem to be suitable because they make our formulas simpler. It is
also interesting to see that these quantities are invariants during the inter-collisional
motion. Now the phase space is the following:

M :=
{

(h, z) ∈ R2| (0 < h < J) ∧
(
J − h >

1
2
m2v2

2
)}

Where v2 can be expressed from our coordinates: v2 = v1 + z =
√

2h
m1

+ z

Notice that T is only piecewise continuous. Considering the collisions there are two
cases: when the two balls collide before the lower one returns to the floor and the
opposite.

M ⊇ M1 = {configurations in which the balls will collide}

M ⊇ M2 = {configurations in which the balls won’t collide}
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Figure 2.2: The phase space for different masses with J = 20

5 10 15 20 25 30
h

-15

-10

-5

5

10

15

z
m1<m2

5 10 15 20 25 30
h

-15

-10

-5

5

10

15

z
m1=m2

5 10 15 20 25 30
h

-15

-10

-5

5

10

15

z
m1>m2

(h′, z′) = T (h, z) =


F1(h, z) if (h, z) ∈ M1

F2(h, z) if (h, z) ∈ M2

I denoted the action of T by prime.

With these notations Fi is a smooth Mi 7→ M map. To determine the sets Mi

pretend for a while that the two balls move independently. To fall back to the floor
the lower ball would take t = 2v1

g
time, meanwhile the upper ball would reach the

height ht = h0 + v2t− 1
2gt

2 where h0 is the starting height, which can be calculated
from the potential energy of the upper ball: h0 = J−h− 1

2 m2v2
2

gm2
. After the substitutions:

ht =
m2m1z

(
2
√

2h
m1

− z
)

− 2h (m1 +m2) + 2Jm1

2gm1m2
(2.1)

I used Wolfram Mathematica for the substitution and also in the further
calculations therefore they are not detailed.

Whether the balls collide or not is determined by the sign of ht. Now the sets can
be determined:

M1 := {(h, z) ∈ M|ht < 0}

M2 := {(h, z) ∈ M|ht > 0}

We do not consider the case ht = 0 because it is an event with zero probability
and no matter how we define the map T in this non-typical case, it does not effect
the statistical properties of the system. Notice that, even though the gravity force
appears in the formula (2.1), it does not effect the sign of it.

Now we can determine the maps Fi, starting with the easier case of F2, when the
balls do not collide. As the individual energies are conserved h′ = h and consequently
v1

′ = v1. Since the balls accelerate equally v2
′ = v2 − 2v1 and z′ = v2

′ − v1
′ =

14



(v2 − 2v1) − v1 = z − 2v1. h′

z′

 = F2(h, z) =

 h

z − 2v1

 =

 h

z − 2
√

2h
m1


To determine F1 one has to express the following quantities in the terms of

h and z. The time when the particles reach the same height (and also the height
itself), count the velocities in that moment, apply the rules of an elastic collision and
calculate the additional time needed for the lower particle to hit the floor again. The
values of h′ and z′ can be determined from the new velocities and kinetic energies.
The result of this calculation is showed in the formula (2.2). For simplicity we make
the assumption: m1 +m2 = 1 because these parameters only scale the system. From
now on let m1 = m and m2 = 1 −m where 0 < m < 1. Also J is often assumed to
be 1

2 . h′

z′

 = F1(h, z) =

 m (2J + (1 − 3m+ 2m2) z2) − h

−2
√

2
√

− h
m

+ 2J + (1 − 3m+ 2m2) z2 − z

 (2.2)

It is interesting to notice that the gravity force does not occur in any of the formulas.
Finally let’s define the dynamics.

T (h, z) :=


F1(h, z) if (h, z) ∈ M1

F2(h, z) if (h, z) ∈ M2

Figure 2.3: J = 1
2 ,m = 0.4

M2

M1
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2.2 Properties of DF1 and DF2

The Jacobian of the maps can be calculated:

DF1(h, z) =

 −1 2mαz
√

2
m

√
1− h

m
+αz2

−1 − 2
√

2αz√
1− h

m
+αz2
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DF2(h, z) =

 1 0
−
√

2
hm

1


Where α := m2(m2 −m1) = (1 −m)((1 −m) −m) = 1 − 3m+ 2m2. The sign of α
plays an important role because, as I mentioned in section 2.1, it characterizes the
behavior of the system. α is determined by the mass ratio of the balls: if m1 > m2

then α < 0, if m1 = m2, then α = 0, otherwise α > 0. We are interested in the case
of negative α because this corresponds to ergodic dynamics.

As you look at the matrices DF1 and DF2 you can see that the Lebesgue measure
is preserved by the map T because both matrices have determinant 1. The map
T with the normalized Lebesgue measure on M (denoted by µ := λ

λ(M)) is an
endomorphism. (Actually, it is an automorphism) The normalized Lebesgue measure
is exactly the natural measure, induced by the Liouville measure of the continuous
dynamics.

In the following section we will prove that the following (constant) cone field is
invariant with respect to our system.

{Cx (e1,−e2)}x∈M where ei are the standard basis vectors in R2

Note that A = Cx (e1,−e2) is the union of the lower, right quarter and the upper,
left quarter of the plane.

Figure 2.4: The invariance of the cone field under F1 (M1)
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Let x = (x, y) ∈ A be a vector in the cone. We check the invariance for both F1,
and F2. Let us consider F1 first ((h, z) ∈ M1):

DF1 · x =

 2myzα − x
√

2(x−2myzα)
m

√
− h

m
+z2α+1

− y


Notice that α < 0 (ergodic case) and we will show with an indirect reasoning that
z < 0. Assume the contrary. As the balls do collide (DF1 should act on x) and z is
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positive. z > 0 should also hold in the moment infinitesimally before the collision,
since z is an integral of inter-collisional motion. But z = v2 − v1 > 0 means that
v2 > v1 and two particles cannot collide if the upper one moves faster upward. Hence
we can state: (h, z) ∈ M1 ⇒ z < 0.
Consider the coordinates of DF1 · x and notice that xy < 0 ⇔ x ∈ A. By checking
the signs of each term in the sum one can easily see that DF1 · x ∈ A. In the same
way DF2 · x ∈ A can be derived also.

DF2 · x =

 x

y −
√

2x√
hm


The only problem is that these cones are not mapped strictly inside themselves

(see definition 1.2.7). Considering DF2 we see that the cone field is invariant but 1 0
−
√

2
hm

1

 ·

 0
z

 =

 0
z


is fixed so the vertical side of the cone in M2 will not narrow down properly. The
strictly containing property is uniform hyperbolicity, detailed in section 3.2.2. In-
deed, the cones in M1 act properly since DF1 has two different eigenvalues separated
from 1. The cones in M2 are also mapped inside the corresponding cones but not
strictly, however, iterating T several times, sooner or later any point from M2 will
step into M1 so, eventually, every cone will narrow down properly. Actually, uni-
form hyperbolicity of F1 also fails, but only in the neighbourhood of a single point.
See sections 3.2.2, and 4.3.

2.3 The First Return Map and the Singularity
Stripes

Dealing with cones we saw an interesting phenomenon: take a point in M2, iterate
it by T and wait until it pops into M1. Physically this means that the lower ball
bounces for a while on the floor until it collides with the upper ball. This motivates
defining the first return map of the set M1 in a standard way (see [17]):

n∗ : M1 7→ N

nx := min{n ∈ N|F2
n (F1(x)) ∈ M1} the number if iterations needed to return

Rn := {x ∈ M1|nx = n} the sets where the recurrence time is constant

T̂ : M1 7→ M1

T̂ x := F2
nx (F1(x))

17



The invariant measure for T̂ is the normalized Lebesgue measure on M1 (a condi-
tional probability), denoted by µ̂.

Figure 2.5: J = 1
2 ,m = 0.7
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Starting from the set Rn the lower ball collides with the upped ball then hits
the floor n + 1 times until it collides again with the upper one. This phenomenon
hastens the decay of correlations in the new system and also causes bigger rates of
expansion in the Lyapunov exponents.

Notice that in the new dynamics the F1 acts on every point therefore there are
no neutral steps, when the matrix D T̂ does not stretch a vector. This property is
related to uniformly hyperbolicity.
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Chapter 3

The method of Chernov and
Zhang

3.1 A general scheme for proving polynomial mix-
ing

In order to prove that our system has polynomial (and summable) decay of cor-
relations, which is also the first step to prove CLT, we follow the method to be
introduced below.

In [9] Chernov and Zhang discuss a general method which allows to prove decay
of correlations with polynomial rate in hyperbolic systems. Their work is partly
based on the results of Young ([21], [23]).

Let T : M 7→ M be a mixing, non-uniformly hyperbolic dynamics with abso-
lutely continuous invariant measure µ. Also, let M1 ⊆ M be a subset such that the
first return map T̂ : M1 7→ M1 is uniformly hyperbolic. Let R(x, T,M1) denote
the time when the point x ∈ M reaches the set M1 ⊆ M at the first time by the
dynamics T .

R(x, T,M1) = min
{
i ≥ 1 : T ix ∈ M1

}
Similarly, R can denote hitting times for other maps and other sets.

The main ingredient of the method is the existence of a horseshoe-like set ∆0 ⊆
M1, which contains stable and unstable manifolds and has a Cantor structure.
Either by means of T or T̂ , returns to ∆0 are always understood in a Markov-
sense. This roughly means that ∆0 can be partitioned into subsets ∆0,i that extend
∆0 along the stable direction, the points of ∆0,i return simultaneously, and when
they return, they extend ∆0 along the unstable direction. The speed of mixing is
highly correlated with the return times. Young in [21] proved that if the distribution
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µ
{
x ∈ M|R

(
x,∆0, T̂

)
> n

}
has an exponential tail bound, then the map T̂ enjoys

exponential decay of correlations. Later in [23] she proved that the polynomial tail
bound implies polynomial mixing rate.

Let us consider first the uniformly hyperbolic map T̂ : M1 7→ M1. Following
the previous work in [8], Chernov and Zhang formulated in [9] a set of conditions
which guarantee the existence of ∆0 and exponential tail bound for R

(
x,∆0, T̂

)
(hence exponential decay of correlations for T̂ ). Beside uniform hyperbolicity the
essence is a Growth Lemma-like condition about the expansion rates of the unstable
manifolds. See section 3.2.7 for precise formulation.

Now let us consider the original map T : M 7→ M. If we have a ∆0 in the
set M1 ⊆ M which satisfies the conditions above, then we hope that, beside the
first return map, the original map also enjoys decay of correlations, however with
a slower rate (based on [23]). Chernov and Zhang proved that the same ∆0 also
satisfies a (slower) tail bound for the return times by the original dynamics if the
return times of the first return map satisfies a polynomial tail bound. Precisely: if
the set ∆0 ⊆ M1 satisfies that

µ(x ∈ M1|R(x,∆0, T̂ ) > n) ≤ const θn (for some θ < 1) and we know that

µ(x ∈ M1|R(x,M1, T ) > n) ≤ const n−a−1 (for some a > 0) then

µ(x ∈ M|R(x,∆0, T ) > n) ≤ const log na+1n−a

And this tail bound implies the decay of correlations for the original dynamics
T : M 7→ M.

Summarizing, if we have an ergodic and non-uniformly hyperbolic dynamics
T : M 7→ M and we can localize a set M1 ⊆ M where the first return dynamics
T̂ : M1 7→ M1 is uniformly hyperbolic, then the exponential mixing rate of T̂ and
the polynomial tail bound for the return times implies the polynomial mixing rate
(with a logarithms correction) in the original dynamics.

Basically we have two major conditions to check:

µ (x ∈ M1|R(x, T,M1) > n) ≤ const n−a−1 ∀n ≥ 1 (3.1)

For some a > 0 constant. Applied to our system, this requires to find the constant
a > 0 and a c > 0 (which may depend on the mass ratio m) such that

µ(Rn) ≤ c n−a−2 ∀n ≥ 1. (3.2)

And the second is to prove the existence of the ∆0 and prove that the return times
have exponential tail bound. These conditions imply the following for Hölder con-
tinuous observables f and g.

|E ((f ◦ T n)g) − E(f)E(g)| ≤ const · (log n)a+1n−a ∀n ≥ 1 (3.3)
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If we have a Young tower and a summable decay of correlations, then the CLT
follows (see [23]).

Since checking condition (3.2) in my Bsc thesis (with a = 2) there were several
results obtained as a joint work with Péter Bálint and András Némedy Varga. We
studied all the below described conditions and we made significant progress in order
to prove them, however the proof is unfinished yet. In chapter 4 I will detail the
results achieved and in chapter 5 the tasks left to solve.

3.2 Conditions for exponential mixing

Exponential decay of correlations has been proved for many systems by checking
the below formulated conditions (or their slight variants), for example [3]. These
conditions ensure the existence of the Young-tower and exponential mixing in certain
systems. The following part is a word-by-word copy from [9] with my additional
notes.
We suppose that the map T : M 7→ M preserves a mixing measure µ,
M is an open domain in a two-dimensional smooth compact Riemannian
manifold M with or without boundary, and T is hyperbolic. Here T :
M 7→ M can denote a general endomorphism, we will use this for T̂ : M1 7→ M1

3.2.1 Smoothness

The map T is a C2 diffeomorphism of M \ S onto T (M \ S), where S is
a closed set of zero Lebesgue measure. Usually, S is the set of points at
which T either is not defined or is singular (discontinuous or not differ-
entiable).
In the applications S is often a countable union of smooth compact curves.

3.2.2 Hyperbolicity

There exist two families of cones {Cu
x}x∈M (unstable) and {Cu

x}x∈M (sta-
ble) such that the unstable is strictly invariant and the stable is strictly
backward invariant: Dx T (Cu

x) ≪ Cu
T x and Dx T (Cs

x) ≫ Cs
T x if the tangent

map exists.
The expansions has to be uniformly bounded away from 1 in the following
way. There is a Λ > 1 such that ∥ Dx T (v)∥ ≥ Λ∥v∥ for every v ∈ Cu

x and
∥ Dx T

−1(v)∥ ≥ Λ∥v∥ for every v ∈ Cs
x (whenever the tangent map exists).

The angle between Cu
x and Cs

x is uniformly bounded away from zero. Tan-
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gent vectors to the singularity curves of Tm (which is ∪m−1
i=0 T−i(S) ) for

m > 0 must lie in stable cones, and tangent vectors to the singularity
curves of T−m (which is ∪m−1

i=0 T i(S) ) must lie in unstable cones.
The above conditions have the following standard consequences. For any T -

invariant probability measure µ′, almost every point x ∈ M has one positive and
one negative Lyapunov exponent. Also, almost every point x has one-dimensional
local unstable and stable manifolds, denoted by W u(x) and W s(x), respectively.

By local unstable manifolds (LUM for brevity) we mean a curve W u(x) on which
T−n is defined smoothly for all n > 0, and dist(T−nx, T−ny) → 0 as n → ∞ for
all y ∈ W u(x), exponentially. Local stable manifolds (LSM) are defined via the
shrinking in forward time.

3.2.3 SRB measure

The map T preserves an ergodic and mixing measure µ, whose conditional
distributions on unstable manifolds are absolutely continuous.

3.2.4 Bounded curvature

The curvature of unstable manifolds is uniformly bounded by a constant
B ≥ 0.

3.2.5 Distortion bounds

Let x ∈ M and W u(x) the unstable manifold of x and n ∈ N arbitrary,
choose W u so short that T n is defined and smooth on W u. Let Λ(x) denote
the expansion factor along W u in the point x. Let y ∈ W u be on the same
manifold. ∣∣∣∣∣log

n−1∏
i=0

Λ(T ix)
Λ(T iy)

∣∣∣∣∣ ≤ ψ (dist (T nx, T ny))

Where ψ is independent of W u and lims→0 ψ(s) = 0.
Notice that this statement is about the derivative of the function Λ(x). Let us

consider the case n = 1. ∣∣∣∣∣log Λ(x)
Λ(y)

∣∣∣∣∣ ≤ ψ (dist (Tx, Ty))

|log Λ(x) − log Λ(y)| ≤ ψ (dist (Tx, Ty))

In most applications the ψ function can be given explicitly, ψ usually has a form
c · zα, for some c > 0 and 0 < α < 1 constants. The choice of ψ will be similar in
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our case too. Let us manipulate the formula with this specified ψ.

log Λ(x) − log Λ(y) ≤ c · dist (Tx, Ty)α

log Λ(x) − log Λ(y)
dist (Tx, Ty)α ≤ c

We have a Hölder-like condition about the logarithm of Λ(x), which is much weaker,
then requiring uniform upper bound on the derivative.

3.2.6 Absolute continuity

If W1,W2 are two small unstable manifolds close to each other, then the
holonomy map h : W1 7→ W2 (defined by sliding along stable manifolds)
is absolutely continuous with respect to the Lebesgue measures νW1 , νW2 ,
and its Jacobian is bounded:

1
C

≤ νW2(h(W ′
1))

νW1(W ′
1)

≤ C

With some C > 0. W ′
1 ⊂ W1 denotes the subset where h is defined.

See figure 4.12.

3.2.7 One-step growth of unstable manifolds

The below detailed condition is a simplified one, compared to the original statement.
Chernov and Zhang built several sufficient conditions for checking the "one-step"
Growth Lemma, this is not the most general form.

They formalize a three-part-condition and also show that the last two of these are
satisfied easily in certain billiards, including ours. The third, and most interesting,
part of the condition is the following:

lim inf
δ0→0

sup
W :|W |<δ0

∑
i

Λ−1
i < 1

Here

• the supremum is taken over unstable manifolds

• i is indexing the connected components of W \ S

• Λi are the minimum local expansions in the connected components of W .

Let us define the expansion in a particular point (W = W u(x)).

Λ(x) = ΛW (x) = |Dx T · w|
|w|
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Where w ∈ TxM is a vector parallel to W at x. And the Λi is defined as

Λi = Λi,W = inf
x∈(ith component of W \S)

ΛW (x)

This condition is somehow a lower bound on the local expansion factors. The
essence of the Growth Lemma is the following: the unstable manifolds expand as
T acts on them, but the singularity set also cuts them apart, which makes them
shorter. The construction of the Young tower requires that the unstable manifolds
keep their length in average while we iterate them with T . The Growth Lemma,
which is reduced to this seventh condition in the method, ensures the sufficient
length.
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Chapter 4

Rigorous results

In section 4.1 I prove the tail bound condition (see formula (3.2)) for the first
return sets. This has been already done in my Bsc thesis, however it is included for
completeness. In the rest of the chapter I detail the new results about the conditions
3.2.1-3.2.7. In chapter 5 I collect the ingredients, that are not completely solved, as
of yet, and mention the directions along which we are trying to solve them.

Throughout the section C, c, c′, c′′, c1, c2, C1, C2, d1, d2 may denote some positive
constants (non-zero and non-infinity), that depend only on m, the exact values of
which are irrelevant.

4.1 Analysis of the first return sets

4.1.1 Bounding Functions

To estimate the measure of Rn I determined the curves bounding these sets. The
curve that defines the boundary of the whole M can be derived by solving the
equation:

J − h = 1
2
m2v

2
2

J − h = 1
2

(1 −m)

√2h
m

+ z

2

In section 2.1 we defined M via this quantity. Solving it for h defines a function
h = lm,J(z) and solving it for z would define a function z = lm,J(h). The former one
produces shorter formulas. Also assume that J = 1

2 .

lm(z) = 1
2
m
(

1 ± 2(1 −m)z
√

1 − (1 −m)mz2 + z2α
)

Since z < 0 ((h, z) ∈ M1) the "−" sign represents the greater quantity from the two
options thus we should use "−" to get the curve that bounds M from the right. See
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figure 4.1.
To express the curves separating the sets Rn and Rn+1 let

(h′(h, z), z′(h, z)) = F2
n(F1(h, z))

and test whether (h′, z′) is on the boundary of M1 by solving the following equation
for h.

ht =
m2m1z

′
(
2
√

2h′

m1
− z′

)
− 2h′

1︷ ︸︸ ︷
(m1 +m2) +

1︷︸︸︷
2J m1

2gm1m2
=

(1 −m)mz′
(
2
√

2h′

m
− z′

)
− 2h′ +m

2gm(1 −m)
= 0

⇕

(1 −m)mz′

2
√

2h′

m
− z′

− 2h′ +m = 0

Where ht is from the formula (2.1) which characterizes M1.
After the substitutions and some simplifications the equation to solve takes the
following form.

2
(

1 − h

m
+ z2α

)
− 1+

(1 −m)

2
√

2(n+ 1)
√

1 − h

m
+ z2α+ z

√
2(2n+ 4)

√
1 − h

m
+ z2α+ z

 = 0

Let F (h, z) denote the quantity
√

1 − h
m

+ z2α and solve the equation for F .

2F 2 − 1 + (1 −m)
(
2
√

2(n+ 1)F + z
) (√

2(2n+ 4)F + z
)

= 0

⇓

F =
(1 −m)(2n+ 3)z ±

√
m2z2 −m (4n2 + 12n+ z2 + 8) + (2n+ 3)2

√
2 (4m (n2 + 3n+ 2) − (2n+ 3)2)

We choose the "−" sign, in order to have a positive solution. One can show that
the other solution is negative. Now we can solve the following equation for h to
eliminate F .

F 2︷ ︸︸ ︷
1 − h

m
+ z2α =

(1 −m)(2n+ 3)z −
√
m2z2 −m (4n2 + 12n+ z2 + 8) + (2n+ 3)2

√
2 (4m (n2 + 3n+ 2) − (2n+ 3)2)

2

Let rn
m(z) denote the solution, the bounding curve of Rn.

rn
m(z) := m+mz2α− (4.1)

−m

(1 −m)(2n+ 3)z −
√
m2z2 −m (4n2 + 12n+ z2 + 8) + (2n+ 3)2

√
2 (4m (n2 + 3n+ 2) − (2n+ 3)2)

2

26



Figure 4.1: J = 1
2 ,m = 0.6
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Theoretically knowing these formulas would allow us to calculate the exact value
of µ(Rn). But the integrals seem impossible to calculate. For example finding the
intersection of rn

m(z) and lm(z) results a more than fourth order equation. Even
if one could calculate the integrals the formulas were too long to treat them. My
estimation is based on the asymptotic behaviour of rn

m(z).

4.1.2 A Simplified Model

As the figures 4.1 and 2.5 suggest, there is a limit where the functions rn
m tend to.

rm(z) := r∞
m (z) = lim

n→∞
rn

m(z) = m
(
1 + αz2

)
The figures also suggest that the sets Rn are shaped like parallel stripes and these
stripes accumulate on rm(z). We can make a strongly simplified model of the stripes.
Take a sequence of parallel and horizontal lines crossed by the graph of a specific
function f(x). The height of the nth line is an. f(x) simulates lm(z) and the an

(constant function) is an analogue of rn
m(z). First we will obtain an upper bound

on the areas in this simple case, and consider the relevance of this model in section
4.1.4.

Notice that the tail bound for µ(Rn) is strongly determined by the order of the
first non-vanishing derivative of f in 0. The higher the degree of the tangency, the
less rapidly the areas of Rn decrease. To maintain the concept of figure 4.2 we make
some restrictions on f . These restrictions are stronger requirements than what is
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Figure 4.2: A simplified model
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actually needed because we are interested in the behaviour of a concrete function
and we do not want to formulate a general theorem. Suppose that f is continuous,
and f is monotone decreasing for x < 0 and monotone increasing for x > 0 (consider
only a small neighbourhood of 0). Also suppose that the following limit exists.

lim
x→0

f(x)
xk

= D (4.2)

for some even number k and D > 0. This property implies that the first k derivatives
of f exist in 0 and the value of the first non-vanishing derivative is k! ·D. Another
consequence of these properties is that f(0) = 0 and f has a local minimum in 0,
therefore the equation f(x) = an has exactly two solutions (for a sufficiently large
n): xn,1 < 0 < xn,2.

Figure 4.3:
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With these notations:

(xn+1,2 − xn+1,1)(an − an+1) ≤ µ(Rn) ≤ (xn,2 − xn,1)(an − an+1)

Now let us estimate xn,2 − xn,1 from above.

f(xn,1) = an

(xn,1)k f(xn,1)
(xn,1)k

= an
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We are able to estimate the term f(x)
xk since the limit (4.2) exists. There exist

constants (depending on f) c1, c2 and an N0 ∈ N such that 0 < c1 ≤ D ≤ c2 and
c1 ≤ f(xn,1)

(xn,1)k ≤ c2 holds for n > N0 (notice that xn,1 → 0 as n → ∞).

(xn,1)k f(xn,1)
(xn,1)k

= an

(xn,1)kc1 ≤ an ≤ (xn,1)kc2

(xn,1)k ≤ an

c1

−xn,1 = |xn,1| ≤ k

√
an

c1

In the same way we can estimate xn,2. There exist other constants d1, d2 and an
M0 ∈ N such that 0 < d1 ≤ D ≤ d2 and d1 ≤ f(xn,2)

(xn,2)k ≤ d2 holds for n > M0.

(xn,2)k f(xn,2)
(xn,2)k

= an

(xn,2)kd1 ≤ an ≤ (xn,2)kd2

(xn,2)k ≤ an

d1

xn,2 ≤ k

√
an

d1

Hence

µ(Rn) ≤(xn,2 − xn,1)(an − an+1)

µ(Rn) ≤
(

k

√
an

d1
+ k

√
an

c1

)
(an − an+1) if n > max {N0,M0}

µ(Rn) ≤
(

k

√
1
d1

+ k

√
1
c1

)
k
√
an (an − an+1) let an = 1

nα

µ(Rn) = O
( 1
n

α
k

1
nα+1

)
= O

( 1
nα+1+ α

k

)
(4.3)

Notice that the bigger the k the slower the µ (Rn) tends to 0. It is also possible to
obtain a lower bound estimation with the same argument. Even through it is not
needed in our proof, in other studies, like in [2], a lower bound is necessary.

4.1.3 Straightening the Stripes

In the following section I will construct a map which distorts the plane in such a
way that the graphs of the rn

m(z) become the translated versions of the graph of
rm(z). This is the first step to transform the Rn into the form of figure 4.2. Notice
that to obtain a correct estimation I have to prove that the Jacobian of this map is
uniformly bounded away from both 0 and ∞.
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Let π denote the transformation that straightens the graphs of rn
m. We require

that π has the following properties (for motivation see figure 4.2 or 4.3).

π : Rm 7→
{
(h, z) ∈ R2|h ≤ rm(z)

}
π

 rn
m(z)
z

 =

 rm(z) − an

z

 if n ≥ n0(m)

I will define Rm later. In order to determine an let us calculate the following limits.

lim
n→∞

(rm(z) − rn
m(z)) = 0 (trivially)

lim
n→∞

n (rm(z) − rn
m(z)) = 0

lim
n→∞

n2 (rm(z) − rn
m(z)) =

m
(
−(1 −m)z +

√
1 −m

)2

8(1 −m)2

lim
n→∞

n3 (rm(z) − rn
m(z)) = ∞

I assumed that 1 > m > 0 and z < 0 during the calculations. Suggested by this fact
we make the choice an = 1

n2 . At the moment an could be any sequence tending to
0, but this particular choice will guarantee that the transformation does not distort
the area in a degenerate way, see section 4.1.4. We could also choose any other
sequence an as long as limn→∞

an

1/n2 = const ̸= 0,∞.
One can see that π transforms only the h coordinate and the action of π depends

only on n. Pretend for a while that the parameter n is continuous, as the formula
of rn

m allows to substitute n with any positive number. This kind of generalisation
implies that the curves {rν

m(z)}ν∈[0,∞) cover the set ∪n∈N+ Rn. Moreover they cover
the region {(h, z) ∈ R2|r0

m(z) ≤ h < rm(z)} (see figure 4.1). The domain of π will
be derived from this set.

Even through the graphs rν
m(z) cover the above mentioned region, they do not

foliate that. To see this note that, for example, r1
m(−6) = r2

m(−6), if m > 5
6 . It can

be checked that the curves rν
m(z) do foliate the region

Rm := {(h, z) ∈ M1|zmin < z < 0 ∧ rν0
m (z) ≤ h ≤ rm(z)}

for ν0 large enough (the value of ν0 depends on m). zmin is the height of the lower,
horizontal side of the bounding rectangle of M1. One can determine zmin by checking
the domain of lm(z).

lm(z) = 1
2
m
(

1 − 2(1 −m)z
√

1 − (1 −m)mz2 + z2α
)

1 − (1 −m)mz2 > 0

zmin = −1√
m(1 −m)
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Figure 4.4: Rm

Thus any point x ∈ Rm can be represented with two coordinates: z, the coor-
dinate we have already used, and the above introduced ν which labels the graph
on which x lies. To determine π we introduce a function which determines the ν
coordinate.

ν : Rm 7→ [0,∞)

rν(h,z)
m (z) = h

With this notation π can be formalized easily:

π

 h

z

 =

 rm(z) − 1
ν(h,z)2

z

 (4.4)

Notice that π is undefined if ν(h, z) = 0 ⇔ r0
m(z) = h. Also one can define π if

h = rm(z) ⇔ ν(h, z) = ∞ in a continuous way: π(rm(z), z) := (rm(z), z).

π : Rm 7→
{
(h, z) ∈ R2|h ≤ rm(z)

}

π(h, z) =


(rm(z), z) if ν(h, z) = ∞(
rm(z) − 1

ν(h,z)2 , z
)

otherwise

We can express the function ν explicitly by solving the following equation (de-
rived from (4.1.1)) for ν.

rν
m(z) = h

⇕√
1 − h

m
+ αz2 =

(1 −m)(2ν + 3)z −
√
m2z2 −m (4ν2 + 12ν + z2 + 8) + (2ν + 3)2

√
2 (4m (ν2 + 3ν + 2) − (2ν + 3)2)

This equation has two solutions, choose the positive one again. This is the function
ν(h, z).

ν(h, z) =
√

2
(√

(1 −m) (1 − 2F 2m) − (1 −m)z
)

− 6F (1 −m)
4F (1 −m)
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Where F is a short notation for
√

1 − h
m

+ z2α as previously.

Figure 4.5: The transformed stripes
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As the second step in straightening the stripes we apply a translation-like trans-
formation.

ϕ

 h

z

 :=

 −(h− rm(z))
z


Notice that

ϕ

π
 h

z

 =

 1
ν(h,z)2

z


The transformation ϕ ◦ π distorts the figure 4.1 into the figure 4.6.

Figure 4.6: ϕ ◦ π|Rm
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4.1.4 Overview

In section 4.1.3 we constructed a transformation which maps the sets Rn into the
stripes of the simplified model. Now we have to prove the non-degeneracy of the
Jacobian in order to make sure that the Lebesgue measures of the sets Rn are
distorted only by constant. We also have to verify that the function ϕ(π(lm(z)))

32



satisfies the conditions in section 4.1.2, and substitute the quantities k and an into
formula (4.3).

We do not have to prove non-degeneracy in the whole set Rm, only in a neigh-
bourhood of (h0, z0) since we are interested in the asymptotic behaviour of Rn.
Let Jh,z denote the Jacobian of π, derived from formula (4.4). Notice that it differs
from the Jacobian of ϕ ◦ π only in it’s sign, since the derivative matrix of ϕ has a
determinant −1.

Jh,z = Det

 (
−1

ν(h,z)2

)′

h
∗

0 1

 =
(

−1
ν(h, z)2

)′

h

The formula of
(

−1
ν(h,z)2

)′

h
is too long to copy here. I simply calculated the following

limit.

lim
h→rm(z)

(
−1

ν(h, z)2

)′

h

= 8(1 −m)2

m
(
−(1 −m)z +

√
1 −m

)2

This limit is non-zero and the denominator is zero if z = 1√
1−m

, but this point
is outside of the phase space, since (h, z) ∈ M1 ⇒ z < 0. Therefore the non-
degeneracy holds in a small neighbourhood of the point (h0, z0). Here z0 can be
calculated from the equation of lm(z) and rm(z).

lm(z) = rm(z) ⇒ z0 = −1√
1 −m

To determine k we calculate the limit in formula (4.2).

lim
z→z0

ϕ(π(lm(z))) = 0 (trivially)

lim
z→z0

ϕ(π(lm(z))) (z − z0)−1 = 0

lim
z→z0

ϕ(π(lm(z)))(z − z0)−2 = 1 −m

lim
z→z0

ϕ(π(lm(z)))(z − z0)−3 = ∞

Hence k = 2 and we can state the following.

µ (Rn) ≤ const 1
nα+1+α/k

= const 1
n2+1+2/2 = const 1

n4

Hence we proceed the method of Chernov and Zhang by proving the existence
of the Young Tower in M1 to ensure that the dynamics T̂ : M1 7→ M1 mixes with
exponential rate. To simplify our notations we forget the dynamics T : M 7→ M
and concentrate on the first return map. From now on I denote the first return
dynamics with T : M 7→ M instead of the original notation T̂ : M1 7→ M1.
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4.2 Smoothness

The phase space is an open subset M ⊆ R2 bounded by a piecewise smooth, closed
curve, therefore it is automatically a Riemannian manifold. The set of singularities
is the union of the boundaries ∂Rn, that is the graphs of the functions rn

m. This
is a countable collection of smooth curves, which is, in particular, closed and zero-
measured. Piecewise diffeomorphism is also true, the map T |Rn = F n

2 ◦ F1 is non-
degenerate for any fixed n.

4.3 Hyperbolicity

We saw in section 2.2 that we have an invariant cone field and the matrix Dx T is
hyperbolic everywhere.

DF1(h, z) =

 −1 2mαz
√

2
m

√
1− h

m
+αz2

−1 − 2
√

2αz√
1− h

m
+αz2


The problem is the uniformity. The Jacobian is not hyperbolic, if z = 0. The only
point in the closure of M where z = 0 is Z =

(
m
2 , 0

)
. One can directly check, that

Z is in R0.

DZ T = DZ F1 =

 −1 0
2
m

−1


which fails to be hyperbolic. Because of this matrix, the uniform expanding on
the invariant cone field fails. One can eliminate this problem by taking the second
iterate of T . From now on we consider T 2 as an M 7→ M dynamics. The
point Z is not a fixed point of T .

T (Z) = F1

(
m

2
, 0
)

=
(
m

2
,−2

)
Therefore the product Dx T

2 = Dx T · DT x T always contains a hyperbolic term even
if x ∈ ∂M. The map T 2 maps the unstable cones strictly, and uniformly, inside
themselves. That will give us the constant of the uniform hyperbolicity: Λ > 1.

4.4 SRB measure

We saw in section 2.2 that the normalized Lebesgue measure is preserved (which is
trivially absolutely continuous). From [13] we know ergodicity, and from [20] the
hyperbolicity, but mixing is also required. The method, with which Liverani and
Wojtkowski proved ergodicity, also proves that every power of T (T n : M 7→ M)
is ergodic, too. Then Pesin theory guarantees that such a hyperbolic system is
automatically mixing. See section 6.7 in [5].
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4.5 A technical lemma

In this section I will give a tail-bound for F = 1 − h
m

+ αz2, which occurs in many
formulas. It is very important to know the asymptotic behaviour of this quantity,
since the case F = 0 characterizes the accumulation point of the sets Rn. From now
on we denote this memorable point by G.

G :=
(

2m(1 −m), −1√
1 −m

)
∈ M

(h, z) → G ⇔ n → ∞ ⇔ F → 0

Let us consider F |Rn
, and search for extremum for a fixed n. We will show by

direct differentiation that there is no local extremum of F inside Rn. Also there
is no local extremum on the curves rn

m, r
n−1
m and lm, which bound the region Rn.

Therefore the global extremum must take place in one of the "corners".

Figure 4.7: The potential global extrema of F
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Let us check the gradient of F .

∂hF (h, z,m) = − 1
m

̸= 0

∂zF (h, z,m) = 2αz

Now let us check the derivative of F along the curves rn
m, lm.

∂zF (rn
m(z), z,m) = (positive term)·−(1 −m)(2n+ 3) + −(1 −m)mz√

m2z2 −m (4n2 + 12n+ z2 + 8) + (2n+ 3)2


∂zF (lm(z), z,m) =

−(1 −m)
(√

L(2m− 1)z − 2L+ 1
)

√
L

Where L = 1 − (1 −m)mz2, which is positive when z > −1√
m(1−m)

. We have already
seen this condition in section 4.1.3, this is the lower edge of the bounding rectangle
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of the phase space, see figure 4.4. Now we have to check the signs. I made the
simplification in Mathematica assuming the trivial conditions 1

2 < m < 1, z <

0, n > 0 and z > −1√
(1−m)m

.

−(1 −m)(2n+ 3) + −(1 −m)mz√
m2z2 −m (4n2 + 12n+ z2 + 8) + (2n+ 3)2

< 0

returns True with the additional assumption
√

(2n+3)2−4m(n2+3n+2)
(1−m)m > −z. This con-

dition is fulfilled if n → ∞ because the coefficient of the leading term (n2) is positive.
The following relations also returned True.

√
L(2m− 1)z − 2L+ 1 > 0 , with the additional assumption z <

−1√
1 −m

√
L(2m− 1)z − 2L+ 1 < 0 , with the additional assumption z >

−1√
1 −m

−1√
1−m

is the z coordinate of G, the accumulation point. According to the results
above we understood the increases and decreases of F along ∂Rn. Now we know

Figure 4.8: F decreases in the marked directions
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where the maximum and minimum of F are but we can not express the intersections
rn

m(z) = lm(z). However the derivatives can be analysed even if (h, z) is outside of
the phase space. Therefore to get upper and lower bounds on the value of F |Rn , we
may use the values of F in the following points.

An =

rn−1
m

 −1√
(1 −m)m

 , −1√
(1 −m)m


Bn = (rn

m(zn), zn)

where zn is such that rn
m(zn) = 1

2 . The solution of rn
m(z) = 1

2 can be explicitly
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Figure 4.9: The points used in the estimation
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calculated, the only thing to do is to calculate the following limits.

lim
n→∞

n2F (Bn,m) = 1 − 2
√

2m+ 2m
16m(1 −m)

lim
n→∞

n2F (An,m) = 1 +
√
m

8m (1 −
√
m)

As a consequence ∃ c1, c2 such that

c1

n2 ≤ F ≤ c2

n2 ∀n ≥ 1 (4.5)

4.6 Small distortion bound

In the original distortion bound on has to prove the following for all unstable man-
ifolds W u and two points on them, uniformly.∣∣∣∣∣log

n−1∏
i=0

Λ(T ix)
Λ(T iy)

∣∣∣∣∣ ≤ ψ (dist (T nx, T ny)) (4.6)

Where ψ is independent of W u and lims→0 ψ(s) = 0.
Instead of this, we will state and prove a more general statement. We will say,

that a curve γ is a regular unstable curve, if it is an unstable curve and has curvature
at most B (the constant in the to-be-proved bounded curvature property, see 3.2.4).
Let λγ(x) denote the expansion on such a curve, at the point x = γ(t) ∈ M.

λγ(x) = |Dx ·γ′(t)|
|γ′(t)|

The desired statement is the following.∣∣∣∣∣log
n−1∏
i=0

λγ(T ix)
λγ(T iy)

∣∣∣∣∣ ≤ ψ (dist (T nx, T ny)) (4.7)
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In particular, LUMs are special regular unstable curves. Let γ = W u(x) be the
unstable manifold of x, then

λW u(x)(x) = Λ(x)

Hence (4.7) would imply (4.6), but some ingredients (such as condition 3.2.4) of this
statement are not completed yet.

In this section we only prove (4.7) for the eigenvalues, instead of expansion rates
More precisely, in (4.8) we formulate a statement, which we call small distortion
bound, on the regularity of the unstable eigenvalues along the unstable curves. Let
λ(x) := |eig (Dx T )|, the unstable eigenvalue, then for every point x, y on the same
regular unstable curve, on which T n is smooth, the following holds.

∣∣∣∣∣log
n−1∏
i=0

λ(T ix)
λ(T iy)

∣∣∣∣∣ ≤ ψ (dist (T nx, T ny)) (4.8)

Notice that the only difference between the small and the original distortion bound is
the angle between the unstable directions and the direction of unstable eigenvectors.
We will consider this at section 5.2.

Now let us consider (4.8). As I mentioned in section 3.2.5 we will obtain ψ(z) =
c · zα. Let γ ∈ Rn for some n, and x, y ∈ γ. As the first step we prove the following.

∣∣∣∣∣λ(x)
λ(y)

− 1
∣∣∣∣∣ ≤ c · dist(x, y)α (4.9)

Notice that the function λ(x) is smooth on Rn, for a fixed n, therefore this property
automatically holds, but the constant depends on n. We have to concentrate on
the limit n → ∞, since the first finitely many constant can be merged into one
constant. We will use three estimations to conclude (4.9) (consider that x, y → G

and n → ∞).

∥Gradλ(x)∥ ≤ c · n4 ∀ x ∈ Rn (4.10)

c1 · n2 ≤ λ(x) ≤ c2 · n2 ∀ x ∈ Rn (4.11)

dist(x, y) ≤ c

n3 ∀ x, y ∈ γ ⊂ Rn (4.12)

Where γ is unstable curve.
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Let us check (4.11) for (h, z) ∈ Rn.

F n
2 (F1(h, z)) =

−h+m
(
1 + αz2

)
,−z − 2(n+ 1)

√
2
√

1 − h

m
+ αz2

 =

=
(
−h+m

(
1 + αz2

)
,−z − 2(n+ 1)

√
2
√
F
)

;

Tr = Trace (Dh,z F
n
2 (F1(h, z))) = −2 −

√
2(n+ 1)zα√

F
;

λ(h, z) =
∣∣∣∣12
(
Tr −

√
Tr2 − 4

)∣∣∣∣ =

= 1 +

√
2
(√

(n+ 1)zα
(√

2
√
F + (n+ 1)zα

)
+ (n+ 1)zα

)
√
F

=

= (n+ 1)2

 1
(n+ 1)2 +

√
2
(√

zα
(√

2F
n+1 + zα

)
+ zα

)
√
F (n+ 1)


λ(h, z)

(n+ 1)2 = 1
(n+ 1)2 +

√
2
(√

zα
(√

2F
n+1 + zα

)
+ zα

)
√
F (n+ 1)

Using the statement of the technical lemma (4.5) we can estimate this expression
from both above and below. Also using the asymptotic equality of n and n+ 1.

1
(n+ 1)2 +

√
2
(√

zα
(

c1·1/n
n+1 + zα

)
+ zα

)
c2

1
n
(n+ 1)

≤ λ(h, z)
(n+ 1)2 ≤

≤ 1
(n+ 1)2 +

√
2
(√

zα
(

c2·1/n
n+1 + zα

)
+ zα

)
c1

1
n
(n+ 1)

Now take n → ∞ ⇔ (h, z) → G.

C1 ≤ lim inf
n→∞

λ(h, z)
(n+ 1)2 ≤ lim sup

n→∞

λ(h, z)
(n+ 1)2 ≤ C2 for some 0 < C1 < C2 < ∞

⇕

d1 · n2 ≤ λ(h, z) ≤ d2 · n2 for some 0 < d1 < d2 < ∞

Which is exactly (4.11).
Now let us consider (4.10). Let x = (h, z) ∈ Rn again.

Gradλ(x)
λ(x)

=

(n+ 1)α

Fm

√
(n+ 1)zα

(√
2
√
F + (n+ 1)zα

)
 z

2

m− h
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One can see that the asymptotically important term is the following.

(n+ 1)α

Fm

√
(n+ 1)zα

(√
2
√
F + (n+ 1)zα

) (4.5)
≤

(n+ 1)α

c1 · 1/n2 ·m
√

(n+ 1)zα
(√

2c1 · 1/n+ (n+ 1)zα
) =

n2α

c1 ·m
√
zα
( √

2c1
n(n+1) + zα

)
As n → ∞ the leading term is n2.

∥Gradλ(x)∥
λ(x)

≤ c · n2

⇕ (4.11)

∥Gradλ(x)∥ ≤ c · n4

Which is exactly (4.10).
Now we have to prove (4.12), which is dist(x, y) ≤ c

n3 . By calculating the limit
limn→∞ n2 (rm(z) − rn

m(z)) in section 4.1.3 we have already proved a similar state-
ment. What we proved is that, for a fixed z, the horizontal slices of the sets Rn

decay in third order. Indeed, if a sequence an tends to 0 with 1
n2 rate, then the

sequence of differences an+1 − an tends to 0 with 1
n3 rate. Actually, one can also

calculate the following limit directly.

lim
n→∞

n3
(
rn+1

m (z) − rn
m(z)

)
=
m
(
1 −

√
1 −mz

)2

4(1 −m)

However one can construct a sequence of points xn, yn ∈ Rn, such that dist(xn, yn) ≥
c
n
, because 1

n
is the asymptotic width of Rn along the stable direction. Now we use

the condition, that the curve, on which x and y are, is an unstable curve. Since the
graphs rn

m are uniformly transversal to the unstable cone, the estimation c
n3 is only

distorted by a constant.
Finally we can combine (4.10)-(4.12) to get (4.9).

(4.10)

∥Gradλ(x)∥ ≤ c · n4 ∀ x ∈ Rn

⇓

|λn(x) − λn(y)| ≤ c · n4 dist(x, y) ∀ x, y ∈ Rn
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Hence for x, y ∈ γ, where γ ⊂ Rn is an unstable curve:

|λ(x) − λ(y)| ≤ c · n4 dist(x, y)

≤ c · n4 · c1

n3 = using (4.11) and (4.12)

= c2 · n

≤ C · λ(x)
1
2 using (4.11)

For any 0 < α < 1:

|λ(x) − λ(y)| = |λ(x) − λ(y)|α |λ(x) − λ(y)|1−α

≤

c1 · n4︸︷︷︸
c·λ(y)2

dist(x, y)


α (
c2 · λ(y)

1
2
)1−α

= c · λ(y)2α+(1−α) 1
2 dist(x, y)α

Let α be the solution of 2α+ (1 − α)1
2 = 1, which is 1

3 . Then dividing by λ(y).∣∣∣∣∣λ(x)
λ(y)

− 1
∣∣∣∣∣ ≤ c · dist(x, y)

1
3

Hence (4.9) is proved.
Now let us extend it for T 2, since the uniform hyperbolicity requirements forces

us to consider T 2 instead of T . The two-step-expansion is λ(T 2)(x) = λ(x)λ(Tx).∣∣∣∣∣λ(x)λ(Tx)
λ(y)λ(Ty)

− 1
∣∣∣∣∣ =

∣∣∣∣∣λ(x)λ(Tx)
λ(y)λ(Ty)

− λ(x)
λ(y)

+ λ(x)
λ(y)

− 1
∣∣∣∣∣ ≤∣∣∣∣∣λ(x)λ(Tx)

λ(y)λ(Ty)
− λ(x)
λ(y)

∣∣∣∣∣+
∣∣∣∣∣λ(x)
λ(y)

− 1
∣∣∣∣∣ ≤

∣∣∣∣∣λ(x)
λ(y)

∣∣∣∣∣
∣∣∣∣∣λ(Tx)
λ(Ty)

− 1
∣∣∣∣∣+

∣∣∣∣∣λ(x)
λ(y)

− 1
∣∣∣∣∣ ≤

C2

C1
c · dist(Tx, Ty)

1
3 + c · dist(x, y)

1
3

≤ c′ · dist(Tx, Ty)
1
3 ≤ c′ · dist(T 2x, T 2y)

1
3

as dist(x, y) ≤ dist(Tx, Ty), since x and y lie on some unstable curve.
Finally let us derive the small distortion bound (4.8). Because of the hyperbolic-

ity of T 2 we know that dist((T 2)k
x, (T 2)k

y) ≤ dist((T 2)n
x, (T 2)n

y) for any k < n.

Moreover dist((T 2)k
x, (T 2)k

y) 1
3 ≤ dist((T 2)n

x,(T 2)n
y)

1
3

3√Λ
n−k , as the minimal expansion of

T 2 on the unstable curves is Λ > 1. We also use that∣∣∣∣∣λ(x)
λ(y)

− 1
∣∣∣∣∣ ≤ c1 dist(x, y)α

⇕

|log (λ(x)) − log (λ(y))| ≤ c2 dist(x, y)α
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as by (4.11) we know that C1 ≤ λ(x)
λ(y) ≤ C2, if x, y ∈ Rn, independently of n.

Using the above properties, we plant the result into higher iterates of T 2.∣∣∣∣∣∣log
n−1∏
i=0

λ(T 2)((T 2)i
x)

λ(T 2)((T 2)i y)

∣∣∣∣∣∣ ≤

n−1∑
i=0

∣∣∣log
(
λ(T 2)((T 2)ix)

)
− log

(
λ(T 2)((T 2)iy)

)∣∣∣ ≤

n−1∑
i=0

dist
(
(T 2)ix, (T 2)iy

) 1
3 ≤

dist
(
(T 2)nx, (T 2)ny

) 1
3

n−1∑
i=0

3
√

Λ
−(n−i)

≤

c · dist
(
(T 2)nx, (T 2)ny

) 1
3

4.7 Involution

There is a commonly used technique in billiards, called involution, to express the
inverse of the dynamics (T−1) in terms of the forward dynamics (T ).

Definition 4.7.1 Let (T,M,Σ, µ) be an automorphism. An I : M 7→ M bijection
is an involution if I−1 = I and

I ◦ T ◦ I = T−1

In billiard maps there is a physically interesting manifestation of an involution. Let
I act the following way: reflect the velocity of the particle through a line which is
perpendicular to the scatterer, at the moment of the collision (φ′ = −φ). This gives
the incoming velocity vector with opposite orientation. Indeed, the preimage of a
point of the phase space can be given as acting the involution, let the particle fly
with the new velocity and when the particle hits a scatterer, then let the involution
act again. This is truly the inverse of the dynamics, since the laws of specular
reflection are the same in both forward and backward time.

We have also found an involution for our system, which has an analogous nice
physical manifestation. The action of I is the following: let F1 act on the point (h, z)
and then reverse the velocity of the upper particle. Reversing the velocity stands
for reversing time. If we want to find out the backward trajectory of a falling ball,
then we should reverse it’s velocity, let it fly according to the standard gravity laws,
and after the flight reverse it’s velocity once again. The velocity of the lower ball
should not be reversed, because it is always on the floor and we consider the moment
when it has already bounced and is moving upwards. Notice that the action of F1
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- which is needed to ensure I(x) ∈ M - makes this involution unique, compared to
the standard involution in billiards. Expressing the action of I in terms of h and z

gives.
I(h, z) :=

(
m
(
1 + αz2

)
− h, z

)
(4.13)

On the phase space this is a reflection through the curve 1
2m (1 + αz2), along the

vertical direction, therefore the property I−1 = I automatically holds.

Figure 4.10: The involution is a reflection on the phase space
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One can check that the formula (4.13) indeed satisfies

I ◦ T ◦ I ◦ T = IdM

But considering the physical meaning of the action of I (let the balls collide, wait
for the lower ball to hit the floor and reverse the velocity of the upper ball) is more
picturesque. See figure 4.11.

Figure 4.11: The involution

Hh, zL F1Hh, zL F2ëF1Hh, zL THh, zL
F1ëTHh, zL

IëTHh, zL
F1ëIëTHh, zLF2ëF1ëIëTHh, zL

TëIëTHh, zLIëTëIëTHh, zL

Using I we can express easily T−1 in terms of T , which has many useful con-
sequences. This way we can plant the results about the dynamics into backward-
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time-statements.

T−n = I ◦ T ◦ I ◦ I︸ ︷︷ ︸
Id

◦T ◦ I ◦ . . . ◦
T −1︷ ︸︸ ︷

I ◦ T ◦ I = I ◦ T n ◦ I

For example if one has an invariant cone field ({Cx}x∈M), and an involution (I), one
can construct a backward invariant cone field. Let us consider CI

Ix := Dx I · Cx ⊆
TIxM as a possible candidate, and let us check it’s invariance for T−1.

DIx T
−1 · CI

Ix =

DIx T
−1 · (Dx I · Cx) = DT x I · DI(Ix) T︸ ︷︷ ︸

Dx T

· DIx I · Dx I︸ ︷︷ ︸
Id

·Cx =

DT x I · Dx T · Cx︸ ︷︷ ︸
⊆CT x

⊆ DT x I · CT x =

CI
I(T x) = CI

IT IIx =

CI
T −1(Ix)

Hence the original cone field mapped by the involution is a backward-invariant cone
field.

We prove an other property of the involution, namely that it’s expansion and
contraction factors are uniformly bounded both from above and below. Let us take
any curve γ, let x = (h, z) = γ(t) and γ′(t) = (cosϕ, sinϕ). The expansion of the
involution, along γ, can be calculated.

JγI(x) = |Dx I · γ′(t)| =
√

(2mzα sin(ϕ) − cos(ϕ))2 + sin2(ϕ)

This function is clearly uniformly bounded away both form 0 and ∞ since it is
continuous and positive on the unit tangent bundle of M, which is apparently a
compact set.

4.8 Absolute continuity

We will show that the distortion bound and the properties of the involution together
imply the absolute continuity. This is a common technique in billiards.

Let T act on figure 4.12, then the curves T (W ′
1) and T (W2) get longer and also

closer to each other, since they are connected through stable manifolds. As T n acts
on W1 and W2, they get more and more close to each other as n increases. As
n → ∞ the holonomy map between them approaches the identity map. Therefore
the expansion (Jacobian) of h depends only on the expansions of T on the unstable
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Figure 4.12: Sliding along stable manifolds
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manifolds W1 and W2 (ΛW1 and ΛW2). This phenomena allows us to calculate the
Jacobian of the map h in the following form (see [5]).

J h(x) = lim
n→∞

JW1T
nx

JW2T
nh(x)

Let JΓFx denote the expansion factor of the map F along the curve Γ in the point
Γ(t) = x. We have already used this notation at the end of section 4.7.

JΓFx = |Dx F · Γ′(t)|
|Γ′(t)|

Let γ denote the stable manifold which connects x and h(x). As T n is area preserv-
ing, and the angle between the stable and unstable directions is uniformly bounded
away from 0, we have c1 ≤ JW1T

nx · JγT
nx ≤ c2. Hence it is enough to prove

C1 ≤ JγT nh(x)
JγT nx

≤ C2 for some constants and for all large n. At this point we can use
the involution (T = I ◦ T−1 ◦ I).

Jγ(I ◦ T−n ◦ I)h(x)
Jγ(I ◦ T−n ◦ I)x

=

(JT −nIγI) (T−nIh(x)) · (JIγT
−n) (Ih(x)) · (JγI) (h(x))

(JT −nIγI) (T−nIx) · (JIγT−n) (Ix) · (JγI) (x)
=

(JT −nIγI) (T−nIh(x))
(JT −nIγI) (T−nIx)

· (JIγT
−n) (Ih(x))

(JIγT−n) (Ix)
· (JγI) (h(x))

(JγI) (x)
Since we obtained uniform bounds of the expansion of I in section 4.7, it is enough
to consider only the middle part. In other words the desired inequality was reduced
to the following form.

C1 ≤ (JIγT
−n) (Ih(x))

(JIγT−n) (Ih(x))
≤ C2

The involution maps γ into an unstable manifold γ′ = Iγ, as we saw in section
4.7. γ′ connects the points Ix and Ih(x). T−n is smooth on γ′, since the unstable
manifolds stay connected in backward time. Therefore we may use the rule for
differentiating inverse functions.

(Jγ′T−n) (Ih(x))
(Jγ′T−n) (Ih(x))

= (JT −nγ′T n) (T−nIx)
(JT −nγ′T n) (T−nIh(x))
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T−nγ′ is an unstable manifold, on which T n is smooth, while T−nIx and T−nIh(x)
are two points on T−nγ′. Therefore the distortion bound (3.2.5) implies:

∣∣∣log (JT −nγ′T n)
(
T−nIx

)
− log (JT −nγ′T n)

(
T−nIh(x)

)∣∣∣ ≤

c · dist(T nT−nIx, T nT−nIh(x)) = c · dist(Ix, Ih(x))

⇓

C1 ≤ (JT −nγ′T n) (T−nIx)
(JT −nγ′T n) (T−nIh(x))

≤ C2

The estimation what we used is an easy consequence of the distortion bound.
Uniform hyperbolicity forces us to consider T 2, instead of T (see 4.3), however

we can easily replace T by T 2 in the formulas. All we need is that I is also an
involution of T 2.
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Chapter 5

Work in progress

If we could prove that the second iterate of the first return map, T 2 : M 7→ M,
satisfies all the conditions listed in chapter 3, then we could conclude that the
system of two falling balls has log3 n

n2 order of decay of correlations and satisfies
CLT. According to the analysis presented in chapter 4, there are two important
ingredients which we have not proved yet for a complete set of conditions: the
bounded curvature (3.2.4) and the one step growth of unstable manifolds (3.2.7). In
section 5.2 I mention that the bounded curvature (and other conditions too) would
imply distortion bound, while distortion bound would imply absolute continuity.
Even though we have not proved these conditions yet, we have made some progress,
which I summarize in this last chapter.

5.1 Bounded curvature

As in the case of distortion bound, instead of unstable manifolds we consider unstable
curves. In particular, we would like to show that the dynamics do not increase the
curvature of an unstable curve indefinitely. This can be formulated, for example,
in the following way. There exists B′ > B′′ > 0 such that if γ is an unstable curve
with curvature less than B′′, then all components of T nγ have a curvature less than
B′ (∀n). There are similar statements in [22] and [12]. Let us indicate why such a
property could imply 3.2.4.

Take a point x ∈ M, iterate it backward N times, take a line segment in that
point in the corresponding unstable cone (this is an unstable curve) and iterate that
line segment N times forward. We hope (still to be checked) that the sequence of
curves, constructed this way, converges in C2 norm. If they do, then the limit curve
is the unstable manifold in x, and the estimation of the curvature holds for the limit
curve, too.
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Hence we have to understand the action of T on unstable curves. Let γ be a
parametrized unstable curve γ(t) = (x(t), y(t)). At first we take F1. The curvature
of γ at a point (x, y) is

κ = x′y′′ − x′′y′

(x′2 + y′2)
3
2

=

⟨
γ′⊥, γ′′

⟩
∥γ′∥ 3

2

where (x, y)⊥ stands for a perpendicular vector (−y, x). Let us consider F1 as a two
dimensional map.

F1(h, z) = (f1(h, z), f2(h, z))

With these notations one can calculate the curvature of F1(γ).

(−∇(f2) · γ′)
(
∇(f1) · γ′′ + γ′⊤ ·Hf1 · γ′

)
+ (∇(f1) · γ′)

(
∇(f2) · γ′′ + γ′⊤ ·Hf2 · γ′

)
∥DF1 · γ′∥

3
2

(5.1)
Here ∇ is the gradient vector and γ′⊤ · Hf · γ is a quadratic form with the second
derivative matrix.

Hf =

 ∂2f
∂x∂x

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y∂y


Let us suppose, that γ is arc-length parametrized. ∥γ′(t)∥ = 1 and the curvature is
κ, which can be calculated easily. Consider a point (h, z) on the curve.

γ(t) = (h, z)

γ′(t) = (cosφ, sinφ)

γ′′(t) = κ(− sinφ, cosφ)

Substituting these into formula (5.1) results an expression, which gives the curvature
of F1(γ) at the point T (h, z).

GF1(h, z,m, φ, κ)

One can also calculate this curvature function for F2 or F n
2 . We have not analyzed

these functions yet. The picture is that the problematic point of GF1 is the accu-
mulation point G, and the problematic point of GF2 is h = 0. Separated away from
these points the curvature functions are nice and smooth. I calculated the limit
lim(h,z)→G GF1(h, z,m, φ, κ). Actually, I considered an iterated limit, from specific
direction. First I replaced 1 − h

m
+ (1 − 3m+ 2m2) z2 with F into the formula, and

took the limit F → 0 without considering h and z. After that I replaced h and z

with the coordinates of G. Surprisingly κ, the original curvature of γ, did not occur
in the formula. Furthermore, the value of the expression turned out to be constant
for all φ ∈

(
π
2 , π

)
(the direction of the unstable curves).
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Take a look at F n
2 . The curvature function GF n

2
was quite simple. I took the

limit h → 0.
lim
h→0

GF n
2

(h, z,m, φ, κ) = m

4n2

Notice that the h coordinate of F1(G) is 0, and n is infinity in G, therefore F2 acts
on F1(G) with h = 0 and n = ∞. We reasonably suspect that the curves, close
to the accumulation point, become flat under the action of T . At least these limits
give us a hope to prove the bounded curvature along the above sketched line.

5.2 Minimal expansion rate of unstable curves ver-
sus eigenvalues

In most of the estimations I used λ instead of Λ. It means that we supposed, that
the unstable manifolds have the same slope as the unstable eigenvectors, which is
not true. We have already obtained an estimation on the expansion in any direction
in the unstable cones with the eigenvalue and an additional constant.

|Dx T · v|
|v|

> c · λ(x) ∀v ∈ Cx

With a uniform constant 0 < c < 1, however we have no information on the mag-
nitude of c. We hope to ensure that c is close to 1 by using, instead of the original
cone field Cx, a narrower cone field:

Ĉx =
(
DT −N x T

N
)

(CT −N x)

For some N ≥ 1. Such a property would be important for the one step growth
lemma, see section 5.3.

Reducing the distortion bound from the small distortion bound

Let us discuss shortly how we would like to upgrade the small distortion bound to
the distortion bound.

Let t(x) denote the unit tangent vector of the unstable manifold in the point
x ∈ M. Let eu(x) and es(x) denote the unit (un)stable eigenvector of Dx T . Via
the uniqueness of the eigendecomposition one can define functions α, β : M 7→ R in
the following way.

t(x) = α(x)eu(x) + β(x)es(x)

With this decomposition

Λ(x) = |Dx T · t(x)| =
∣∣∣∣∣α(x)λ(x)eu(x) + β(x) 1

λ(x)
es(x)

∣∣∣∣∣
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We reduced the conditions, needed to prove distortion bound, into the Hölder con-
tinuity of the following quantities: α, β and the angle between eu(x) and es(x).
According to our calculations, es(x) and eu(x) are Hölder continuous in the neigh-
bourhood ofG, while smoothness of α(x) and β(x) along an unstable curve is directly
related to the boundedness of the curvature.

5.3 One-step growth of unstable manifolds

As a mentioned in section 3.2.7 one has to prove

lim inf
δ0→0

sup
W :|W |<δ0

∑
i

Λ−1
i < 1 (5.2)

Where W is an unstable manifold and Λi is the infimum of the expansion factor
along the connected components of W \ S. Notice that by the expansion I mean
the expansion of T 2. Let us pretend for a while that λ = Λ, where λ is the
unstable eigenvalue.

λn,k(x) = |eig (Dx T ) · eig (DT x T )|

Where x ∈ Rn and Tx ∈ Rk refers to the forward history of x. One can see that
the two step expansion is strictly bigger then the one step expansion, 1 < λn(x) <
λn,k(x). Also, λn,k > Λ > 1 because of the uniform hyperbolicity.

In the formula (5.2) there are two major phenomena to understand. The mag-
nitude of λn,k and the numbed of components, into which the singularities can chop
a small unstable curve. The n2 growth of λn (see formula (4.11)) ensures that this
sum is finite, independently of the range of the index. In particular, for any θ < 1
there exists a k0 ∈ N such that both ∑∞

n=1
∑∞

k=k0 λ
−1
n,k and ∑∞

n=k0

∑∞
k=1 λ

−1
n,k are less

than θ. Hence we only need to consider ∑k0
n,k=1 λ

−1
n,k.

The problems are the small indices, where λn is small. We have to treat two
issues simultaneously: obtain lower bounds for the expansion and understand the
structure of the singularity set of T 2. It is clear, that λn,k(x) > 2 should hold,
because arbitrary small unstable manifolds can be cut into two pieces. If W is cut
by one singularity, then the formula is the following.

1
λn,k

+ 1
λi,j

< 1

We have no exact calculations about λn,k(x), but the pictures show, that this prop-
erty fails if m is close to 1

2 . Plotting the function λnx(x) · λnT x
(Tx), for a small m,

we can see points, where T 2 is discontinuous (cut by a singularity) and both of the
two nearby expansion factors are less than 2.
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At this point it is natural to restrict to a subinterval of the possible values m ∈(
1
2 , 1

)
. Now we think that there exist some m0 <

3
4 such that for m ∈

(
m0,

3
4

)
both

the expansions and the singularity structure of T 2 can be controlled, in particular:

• λn,k(x) > 2 ∀n, k. This is ensured by m > m0

• any sufficiently short unstable curve is partitioned into at most three pieces
by Rn ∩ T−1Rk for n, k ≤ k0. This is ensured by m < 3

4 .

• Moreover, whenever a (sufficiently short) curve is cut into three pieces, we
have

1
λn,k︸︷︷︸
>2

+ 1
λn+1,i︸ ︷︷ ︸

>4

+ 1
λn+1,i+1︸ ︷︷ ︸

>4

< 1

for the expansion factors.

We have to understand the singularity structure of T 2 better, and have more
precise estimations (not only asymptotic ones) of the expansion factors.

5.4 Summary

At the current point of the work it seems that there are two main conditions left. The
bounded curvature 3.2.4 and the one step growth 3.2.7. However the hoped proof
is only about a subinterval of the ergodic mass ratios (m0 < m < 3

4). Some rough
simulations show that the summable decay of correlations do not fail for m > 3

4 , as
m ∈

(
1
2 ,m0

)
either.

I would like to thank the joint work with András Némedy Varga and Péter Bálint.
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