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Abstract

In this work we consider a certain class of continuous-time, uncertain systems having
the following properties

• quadratically constrained nonlinearity/uncertainty,

• non-accessible state space,

• external disturbances and

• quadratic cost function.

These specifications cover several frequently investigated types of uncertain systems.
We propose a nonlinear model predictive control (NMPC) and prove that the applied
control policy gives an upper bound of the cost function i.e. a cost guaranteeing
control is constructed. For a certain class of disturbances we show that the proposed
controller gives a closed-loop system with locally asymptotically stable equilibrium.

Due to the non-accessible state space, we use dynamic output feedback control
what we keep quadratically constrained. The abstract multiplier method is used
to obtain matrix inequalities that give necessary and sufficient condition for the
existence and the computation of a quadratic Lyapunov function. The matrix in-
equalities are converted into linear matrix inequalities (LMI) in order to obtain a
computationally much more effective way for the control design though this latter
inequalities provide only a sufficient condition for the existence of the Lyapunov
function. The application of the model predictive control makes it possible to im-
prove the quality of the controlled system. Namely, the speed of the convergence to
the equilibrium can be increased in comparison with the initially computed dynamic
output feedback. Simultaneously, the overall cost of the process is reduced, as well.

A novel element of the proposed method is the application of the NMPC tech-
nique with non-accessible state space.
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Kivonat

A dolgozat a folytonos idejű rendszerek egy bizonyos osztályával foglalkozik szere-
peltetve

• kvadratikusan korlátozott bizonytalanságokat,

• az állapot helyett egy output mérhetőségét,

• külső perturbációs függvényeket és

• kvadratikus célfüggvényt.

Ezek a tulajdonságok az irodalomban tárgyalt bizonytalan rendszerek széles körét
lefedik. Bemutatunk egy NMPC szabályzót és felső korlátot bizonyítunk a célfügg-
vényre, vagyis garantált költségű szabályzót konstruálunk. Megmutatjuk, hogy a
perturbációk egy osztálya esetén ez a szabályozó biztosítja az egyensúlyi helyzet
lokális aszimptotikus stabilitását is.

Feltételezük, hogy az állpot helyett csak egy output hozzáférhető a visszacsato-
láshoz, ezért dinamikus output-visszacsatolást alkalmazunk, mely kvadratikus kor-
látnak engedelmeskedik. Az absztrakt multiplikátor módszer használatával mátrix
egyenlőtlenségeket vezetünk le, amelyek kvadratikus Lyapunov függvény létezésének
szükséges és elégséges feltételeit adják. Ezen egyenlőtlenségeket átalakítjuk lineáris
mátrix egyenlőtlenségekké (LMI). Bár ezek az egyenlőtlenségek a Lyapunov függvény
létezésének csak elégséges feltételeit adják, de megoldásuk számításigénye kisebb. Az
NMPC technikának köszönhetően képesek vagyunk futás közben javítani a vezérelt
rendszer minőségét, nevezetesen gyorsabb konvergenciát tudunk elérni, mint ha csak
a kezdő időpillanatban kiszámított dinamikus visszacsatolást használnánk, egyben
csökkentjük a költség felső korlátját is.

A dolgozatban újdonságként szerepel az NMPC szabályzó nem állapot-vissza-
csatolással, hanem dinamikus output-visszacsatolással történő alkalmazása.
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Nomenclature

R+ is [0,∞), usually time

A> is the transpose of the real matrix A

A > 0 where A = A> ∈ Rn×n, means that A is positive definite

AB = A ·B every product is a matrix product of appropriate sized matrices

〈x; y〉 = x> · y scalar product of vectors with equal dimensions

(∗)AB = B>AB, where B ∈ Rn×m, A = A> ∈ Rn×n. In other words (∗) completes
the symmetric expression.

‖x‖A =
√
x>Ax where x ∈ Rn and A > 0

=z/<z is the imaginary/real part of z ∈ C

ImA is the range of A ∈ Rm×n i.e. {Ax ∈ Rm|x ∈ Rn}

KerA is the kernel of A ∈ Rm×n i.e. {x ∈ Rn|Ax = 0 ∈ Rm}

A⊥ where A ∈ Rm×n, is an orthonormal basis of KerA i.e. A⊥ ∈ Rn×k where
k = dim KerA and A · A⊥ = 0 ∈ Rm×k.

rankA = dim ImA ≤ min{m,n}, the rank of A ∈ Rm×n

row rank is the number of independent rows of A ∈ Rm×n. It is complete, if it is
equal to m.

column rank is the number of independent columns of A ∈ Rm×n. It is complete, if
it is equal to n.

Il is the identity matrix of dimension l. If the dimension is unequivocal then
the index l is omitted.

span(S) is the linear closure of a set S.
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X  A>XA is a congruence transformation on the symmetric matrix X, with the
invertible matrix A. Note that matrix positivity is invariant under this trans-
formation.

σ(A) ⊆ C is the spectrum of the square matrix A ∈ Rn×n.
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Chapter 1

Preliminaries

This work is devoted to a certain problem of control theory. In control theory
the object of interest is a system to be controlled. The system has well defined
dynamics (of its own) and we have some pre-defined ways to interfere (control). As
an optimization problem has an objective function, a control problem has a control
task. This can be a desired state of the system to reach, an objective function
(functional) to extremize or a given bound to regard.

In this work the system is usually described by a differential equation and the
control is the ability to change some parameters on the right-hand side.

ẋ(t) = f(t, x(t), u(t))

where X ⊆ Rn is the state space, x ∈ X is the state of the system and t ∈ R+

is the time. The control u comes from a given set u ∈ U ⊆ Rm. Once a function
u(·) : R+ 7→ Rm is given, the system behaves according to ẋ(t) = F (t, x(t)) =
f(t, x(t), u(t)). The solution operator is denoted by ξ(t; t0, x0, u(·)) i.e. the integral
curve starting from x(t0) = x0 controlled by the function u(·). Our task is to choose
or compute u with which the system behaves in the desired way.

The control function is restricted to a certain set of functions: ∆ ⊆ UR+ , u(·) ∈
∆. The control functions in ∆ are called admissible control. Usually ∆ is the set of
smooth or measurable functions.

From now on a control problem is defined with the above emphasized four com-
ponents.
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1.1 Introduction

1.1.1 Basic examples, stability

In this section one can see some well known control problems, see [7]. These examples
are here for the better understanding of the main phenomena.

One of the most basic examples in control theory is the stabilization of a linear
system. Let the system be described by

ẋ = Ax+Bu, (1.1)

where A ∈ Rn×n and B ∈ Rn×m are given matrices, x ∈ Rn is the state, u ∈ Rm

is the control. The control task is to find a matrix K ∈ Rm×n such that the linear
state-feedback control u = Kx asymptotically stabilizes the constant 0 solution. The
closed loop system can be obtained by substituting u.

ẋ = Ax+BKx︸︷︷︸
u

One can see that the task is to find K such that

σ(A+BK) ⊆ {z ∈ C|<z < 0} . (1.2)

There is an other problem, namely pole placement, when one wishes to control
the whole spectrum of A+BK.
Consider matrices A ∈ Rn×n, B ∈ Rn×m and a given set of n complex numbers
(paired by conjugation) Λ = {λi : i = 1 . . . n} = {λi : i = 1 . . . n} ⊆ C. The problem
is to find a K ∈ Rm×n such that

det(A+BK − λI) =
n∏
i=1

(λi − λ). (1.3)

If the pole placement can be solved for any spectrum, then (1.2) can be solved also.

Definition 1.1.1. Consider the linear system (1.1) with given matrices A,B. The
system is called completely controllable on the time interval [t0, t1], if for any
x0, x1 ∈ Rn a control function u : [t0, t1] 7→ Rm can be given such that the solu-
tion of (1.1) satisfies ξ(t1; t0, x0, u(·)) = x1.

In other words, one can steer the system from any state into any other state with
an admissible control.

Theorem 1.1.2. A system ẋ = Ax+Bu with given matrices A ∈ Rn×n, B ∈ Rn×m

is completely controllable on any time interval [t0, t1] with positive length, iff

rank
[
B,AB, . . . , ABn−1

]
= n. (1.4)

Moreover, the pole placement can be solved, iff (1.4) holds true.

9



Let us define the system

ẋ = Ax+Bu (1.5)

y = Cx

where x, u are the same as above and y ∈ Rp is the available output. In this case
one can only get information about x via y, typically p < n.

Definition 1.1.3. The system (1.5) with given matrices A,B,C is completely ob-
servable on the time interval [t0, t1], if the unknown initial condition x(t0) = x0 is
determined by the output and control functions: y : [t0, t1] 7→ Rp, u : [t0, t1] 7→ Rm.

Theorem 1.1.4. The linear system (1.5) with given matrices A,B,C is completely
observable on any time interval [t0, t1] of positive length, iff

rank



C

CA
...

CAn−1

 = n

no matter what B is.

An observer can be built to estimate the original state of a completely observable
system.

Definition 1.1.5. Consider the system (1.5) with given matrices A,B,C. Let us
define the system

ż = Fz +Gu+Hy (1.6)

where z ∈ Rn. The system (1.6) is called an observer of (1.5) if for any given initial
condition x(0) = x0, z(0) = z0 and any admissible control u(·) the corresponding
solutions x(·) and z(·)satisfy

lim
t→∞

x(t)− z(t) = 0.

This means that the observer can asymptotically reconstruct the state of an
observable system using only the output y. One way to build an observer of a
completely observable system is described in the following theorem.

Theorem 1.1.6 (Luenberger observer). Let us define the linear systems

ẋ = Ax+Bu, y = Cx (1.7)
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with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n satisfying Theorem 1.1.4 and

ż = (A−HC)z +Bu+Hy. (1.8)

Then exists a matrix H ∈ Rp×n such that (1.8) is an observer of (1.7). Moreover,
the choice of H is independent from B.

Let us consider the stabilization of completely observable systems, where the
state is not directly accessible.

Theorem 1.1.7 (Separation principle). Consider the completely controllable and
observable system ẋ = Ax + Bu, y = Cx with given matrices A ∈ Rn×n, B ∈
Rn×m, C ∈ Rp×n (satisfying the conditions of Theorem 1.1.2 and 1.1.4). Obtain The
Luenberger observer ż = (A−HC)z +Bu+Hy as given in Theorem 1.1.6 and the
stabilizing, linear state feedback control u = Kx, with K satisfying (1.2).
Then the closed loop system ẋ

ż

 =
 A BK

HC A−HC +BK

 x

z


is stable.

Notice, that the control u = Kz is used instead of the state feedback control u =
Kx. The separately built observer and control together stabilizes the system. The
Separation principle is valid only for linear systems. In general one has to treat the
observer and the control simultaneously.

1.1.2 Optimal control and Hamilton–Jacobi–Bellman equa-
tion

In the former section we focused on finding a stabilizing control. Now an optimal
control is sought. In order to talk about optimality, an objective is needed.

Consider the system
ẋ(t) = f(t, x(t), u(t)) (1.9)

where x ∈ X ⊆ Rn is the state space and the time t is in a given time interval
I = [t0, t1]. The control constraint is ∆ ⊆ UI where U ⊆ Rm is a given set. The
dynamics is defined by the function f : I × X × U 7→ Rn.

The solution operator is ξ i.e. ξ(t; t0, x0, u(·)) is the solution of (1.9) with initial
condition x(t0) = x0, with a given control u(·) ∈ ∆, at time t ∈ I.

The cost functional is given as

J(t0, t1, x, u(·)) := G (ξ(t1; t0, x, u(·)))︸ ︷︷ ︸
terminal penalty

+
∫ t1

t0
f0 (t, ξ(t; t0, x, u(·)), u(t))︸ ︷︷ ︸

running cost

dt (1.10)
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The control task is to find a control u ∈ ∆ which minimizes J .

arg minu∈∆

minu∈∆

 J(t0, t1, x0, u(·)) =?

Let us define the value function V : I × X 7→ R as

V (t, x) := inf
u∈∆

J(t, t1, x, u(·)) (1.11)

With this definition V (t, x) gives the optimal cost on [t, t1), starting from x(t) = x,
if an optimal control exists.

Within this setup, the Hamilton–Jacobi–Bellman equation (a PDE for V ) is in
the center of interest.

∂V
∂t

(t, x) = −min
u∈U

{f0(t, x, u) +∇xV (t, x) · f(t, x, u)}

V (t1, x) = G(x)

 (1.12)

With some regularity and convexity conditions (see [7]) the HJB equation is an
equivalent condition of the optimality.

Note that this formalism does not allow optimization over infinite time intervals,
such as [0,∞). The HJB equation can guarantee optimal control on a finite interval,
but we have no influence on the system after time t1. Therefore stabilizing is an
interesting question within this setup.

1.1.3 Lyapunov function

Theorem 1.1.8 (Lyapunov). Consider the system

ẋ = f(x) ∈ Rn.

Suppose that f(0) = 0. If there exists a continuously differentiable function V :
Rn 7→ R+ and a neighbourhood 0 ∈ N ⊆ Rn such that within N

• V (x) = 0⇔ x = 0

• x 6= 0→ 〈∇V (x); f(x)〉 < 0

then the equilibrium is asymptotically stable.

The neighbourhood N is called the basin of attraction. Our task is to find an
appropriate function V in order to prove stability.
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1.1.4 Uncertain systems

In some applications there are some unknown parameters on the right-hand side of
the differential equation, these are the uncertainties. There are two major types
of uncertainties: deterministic or stochastic. Stochastic uncertainty can be caused
by improper or noisy measurement data or any stochastic impacts. A deterministic
uncertainty can be nonlinearity or some neglected effects.

Dealing with uncertain systems some information about the uncertainty is always
necessary. This can be some norm bound, or bounded derivative, or some relation
between the unknown term and the state of the system.

Parameter uncertainty

Consider a simple uncertain system:

ẋ = (A+ ∆A)x+Bu (1.13)

where x ∈ Rn is the state, u ∈ Rm is the control (A ∈ Rn×n and B ∈ Rn×m are
given) and ∆A ∈ Rn×n is the parameter uncertainty. The uncertainty ∆A may
depend on x, u, on time or it can be a random noise. This means that the elements
of the coefficient matrix are known up to some error, suppose that ‖∆A‖ < δ with
a given matrix norm, and a given 0 < δ.

One possible way of stabilizing the above system is to find linear state feedback
control u = Kx withK ∈ Rm×n and a positive definite, quadratic Lyapunov function
V (x) = x>Px for the closed loop system. The closed loop system is

ẋ(t) = (A+ ∆A(t, x) +BK)x(t) =: f(t, x) (1.14)

and the system derivative of the Lyapunov function is

V̇ (x(t)) = ∇V (x(t)) · ẋ(t) = 2x(t)>Pf(t, x) =

x>

 I

f(t, x)

>0 P

P 0

 I

f(t, x)

x.
A sufficient condition can be derived for the stabilizing control by substituting (1.14)
into f(t, x).

∃ P > 0, Q > 0 and K s.t. ∀∆A

(A+BK + ∆A)>P + P (A+BK + ∆A) ≤ −Q

13



Nonlinearities

Take ẋ = f(x) + Bu with f(0) = 0. One can consider this nonlinear system as a
linear system with uncertainties, namely detach the nonlinear part:

ẋ = D0 f · x+ γ(x) +Bu (1.15)

where D0 f is the Jacobian of f at the origin and γ(x) = f(x) − D0 f · x is the
uncertainty.

Like in the previous section, a state feedback control and a quadratic Lyapunov
function is sought. A sufficient condition is

x>

 I

D0 f +BK

>0 P

P 0

 I

D0 f +BK

x+ 2x>Pγ(x) < 0

for all x 6= 0. Of course, the nonlinear function γ has to obey some restrictions in
order to control the above system.

Lure systems

Consider a nonlinear system of the following type (see e.g. [3]).

ẋ = Ax+Gγ(z) +Bu (1.16)

z = Hx (1.17)

where A ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×p and H ∈ Rp×n are given constant matrices,
γ : Rp 7→ Rp is a given, nonlinear function, which satisfies so called growth bounded
sector condition (

βz − γ(z)
)>
γ(z) ≥ 0 (1.18)

with β = diag{β1 . . . βp} ≥ 0.

Figure 1.1: Sector condition of Lure systems, for p = 1, from [3]

This type of uncertainty will also appear in section 1.3.
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1.2 Techniques and tools

In this section we state some well known theorems and tools, which are frequently
used in the literature of control theory and also in this work.

1.2.1 Linear Matrix Inequality

Linear Matrix Inequality (LMI) is a convex optimization problem. Let x ∈ Rn and
P (x)> = P (x) ∈ Rm×m be a symmetric matrix affinely depending on the elements
of x i. e. P (x) = P (x1, . . . , xn) = A0 + x1A1 + . . .+ xnAn with Ai> = Ai ∈ Rm×m.
The feasibility problem is to find a point in the set

F = {x ∈ Rn|P (x) < 0} . (1.19)

One can easily check the convexity of the set F . Let x1,x2 ∈ F , then P (x1) < 0
and P (x2) < 0. It is sufficient to show that

1
2
(
P (x1) + P (x2)

)
< 0

which means that

1
2
(
A0 + x1

1A1 + . . .+ x1
nAn + A0 + x2

1A1 + . . .+ x2
nAn

)
< 0.

This is equivalent to

A0 + x1
1 + x2

1
2 A1 + . . .+ x1

n + x2
n

2 An < 0

which is exactly x1+x2

2 ∈ F .
Supplementing the feasibility problem with a linear cost function turns it into a

convex optimization problem, called semidefinite programming (SDP):

min c> · x

subject to

P (x) ≤ 0

(1.20)

where x is the decision variable and c ∈ Rn is given.
The LMI problem can be polynomially solved to arbitrary precision ε with in-

terior point methods since the late 80’s. The development and the implementation
of this algorithm lasted almost a decade and had a great effect on the theory and
application of optimization.[2]
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1.2.2 Abstract multiplier method

In this section we discuss a certain type of matrix inequalities. In contrast to LMIs,
there are problems, where the negativity is required on a given set, not on the whole
linear space. If the set satisfies some regularity conditions, the problem can be
reformulated as an LMI.

Suppose that we have a matrix Ψ = Ψ> ∈ Rj×j which depends on some param-
eters in an affine way. As we have seen in Section 1.2.1, the matrix inequality

y>Ψy < 0 ∀y ∈ Rj \ {0}

can be efficiently solved. If we require negativity for a given subset Ω ⊂ Rj, then
the problem reads

sup
y∈Ω

y>Ψy < 0.

If the set Ω satisfy some regularity property, then the latter problem can be reduced
to a matrix inequality. In [8], this method is presented and used for a broad class
of robustness problems.

Suppose that B ⊂ RN is a linear subspace and matrices U ∈ Rj×N and V ∈ Rl×N

are fixed, where V has maximum rank (complete row rank). Let Q ⊂ Rl be given
and assume that

V B ∩ Q 6= ∅.

Definition 1.2.1 ([1]). A symmetric matrix M is called a multiplier matrix for Q
if ξ>Mξ ≥ 0 for all ξ ∈ Q.

If this inequality is strict, then M is called a positive multiplier matrix for Q.

Definition 1.2.2 ([1]). The set M+ of positive multiplier matrices for Q is called
a sufficiently rich set of positive multipliers for Q, if for any positive multiplier M
for Q there exists an element M ∈M+ such that M ≤M .

Introduce the following set

BQ = {y ∈ B : V y ∈ Q} .

Consider the problem of solving inequalities of the following type

y>U>ΨUy < 0 for all y ∈ BQ, y 6= 0. (1.21)

Let B0 be a maximal subspace where the negativity fails:

B0 ⊆
{
x ∈ B : x>U>ΨUx ≥ 0

}
⊆ B of maximal dimension. (1.22)

16



Assumption 1.

Q is a cone, (1.23)

B0 ∩ BQ = {0} ∀B0, (1.24)

and

either V B ⊃ Q or Q is closed. (1.25)

If the dimension of B0 is equal to zero, then U>ΨU < 0 is satisfied on B, thus
there is an ε > 0 such that (1.21) equivalent to

y>(U>ΨU + εV >V )y < 0 for all y ∈ B, y 6= 0.

Evidently, εIl ∈M+.
In [8], it was proved that, if dimB0 ≥ 1 for some B0 and

B0 ∩ BconeQ 6= {0},

then the strict inequality

y>(U>ΨU + V >MV )y < 0

is not satisfied for all 0 6= y ∈ B whatever multiplier matrix for Q is considered.
Therefore condition (1.24) in Assumption 1 is not a technical one. However, one do
not loose the generality with this condition.

Lemma 1.2.3 ([8]). Assume that Assumption 1 holds true, andM+ is a sufficiently
rich set of positive multipliers for Q. Then the following statements are equivalent.

1. Inequality
y>U>ΨUy < 0

holds true for all 0 6= y ∈ BQ (this is (1.21)).
2. There exists a M ∈M+ such that

y>(U>ΨU + V >MV )y < 0, y ∈ B, y 6= 0.

Remark 1.2.4. If the set of positive multipliers for Q is not sufficiently rich then
statement 2. is sufficient, however not necessary for 1. to hold.

1.2.3 Linearization Lemma

The following Lemma is essentially used to transform nonlinear matrix inequalities
into linear ones. Matrix inequalities (linear and nonlinear ones) occur frequently in
control theory, but for computational reasons we aim to derive LMIs whenever it is
possible.

17



Lemma 1.2.5 ([13]). Suppose that A and S are constant matrices, that B(v), Q(v) =
Q(v)> depend affinely on a parameter v, and that R(v) can be decomposed as
R(v) = T · U(v)−1 · T> with U(v) being affine.
Then the nonlinear matrix inequalities

U(v) > 0,
 A

B(v)

> ·
 Q(v) S

S> R(v)

 ·
 A

B(v)

 < 0 (1.26)

are equivalent to the linear matrix inequality A>Q(v)A+ A>SB(v) +B(v)>S>A B(v)>T
T>B(v) −U(v)

 < 0 (1.27)

.

Note that v is just for emphasise the dependencies. One can think of a parameter-
dependent matrix as a matrix with some unknown entries, these are the variables.

We remark that the statement can easily be deduced with Schur complement.

1.3 Nonlinear Model Predictive Control

In this section we introduce the Nonlinear Model Predictive Control (NMPC) tech-
nique from [3]. A comprehensive overview of the method can be found in [12].

System setup

The system is a Lure system, described by (1.16)-(1.17) with uncertainty condi-
tion (1.18).

Control constraints

A control u is constrained by the polytope

C =


 x

u

 ∈ Rn+m : cix+ diu ≤ 1, i = 1 . . . r

 (1.28)

with given (row) vectors ci ∈ R1×n, di ∈ R1×m. For every u(t) to be applied,
(
x(t)
u(t)

)
∈

C is required along the solution x(t).

Control task

Let 0 = t0 < t1 < . . . < tk < . . . be a sequence of sampling instants. For every time
instant tk a state feedback Kk ∈ Rm×n will be calculated and u(t) = Kkx(t) will be
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applied at time interval t ∈ [tk, tk+1). A cost functional (cost-to-go) is given with
positive definite matrices Q ∈ Rn×n, R ∈ Rm×m.

J(x(·), u(·)) =
∫ ∞
tk

‖x(τ)‖2
Q + ‖u(τ)‖2

Rdτ (1.29)

The task is to find matrices Kk such that the corresponding state-feedback con-
trol stabilizes the system, fulfills the control constraints and the cost J0(x(·), u(·))
is bounded. In this case, we shall talk about a cost guaranteeing control.

Lemma 1.3.1 ([3]). Consider the system (1.16)-(1.17) with uncertainty condition
(1.18). NMPC controller is designed by the repeated solution of the optimization
problem

min
αk,τ,Λk,Γk

αk (1.30)

subject to 1 x(tk)>

x(tk) Λk

 > 0 (1.31)


−∆k −∆>k −Sk ΛkQ

1
2 Γ>k R

1
2

−S>k αkτI 0 0
Q

1
2 Λk 0 αkI 0

R
1
2 Γk 0 0 αkI

 > 0 (1.32)

 1 ciΛk + diΓk
(ciΛk + diΓk)> Λk

 ≥ 0 (1.33)

i = 1, . . . , r

at the sampling instant tk based on the state x(tk), where

∆k = A · Λk +B · Γk and

Sk = Gαk + τ

2ΛkH
>β>.

The problem, with Pk = αkΛ−1
k and Kk = ΓkΛ−1

k , has the following properties:

1. The optimization problem is an LMI, aside from τ . Furthermore it is feasible
at the sampling instant tk+1 if it is feasible at tk.

2. The solution to the optimization problem minimizes the upper bound V k =
x(tk)>Pkx(tk) on the cost functional (1.29) at each sampling instant tk.

3. If the optimization problem is feasible at t0 = 0, the control law

u(t) = Kkx(t), t ∈ [tk, tk+1)

asymptotically stabilizes the origin of the system (1.16)-(1.18) and the control
constraints (1.28) are satisfied for time t ≥ 0.
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In [3] it is claimed, that τ is considered fixed and not an optimization variable.
A reasonable fixed value for τ can be determined off-line, the resulting performance
is only weakly sensitive towards it.

The above described result is invariant in time, precisely, if K0 would be applied
on [0,∞) then the stability and the cost are also guaranteed. However one wish to
improve the performance by re-calculating Kk at each time instant.

The matrix inequalities can be categorized into three groups.

• assuring stability (via the Lyapunov function P ) (1.32)

• assuring control constraints (1.33)

• assuring the coherence between the time intervals (1.31)

The un-updated control K0 applied on [0,∞) would also satisfy the control task.
However if one wish to improve the control as time evolves, then recalculation and
(1.31) is needed. The inequality (1.33) is needed to the control constraints, inde-
pendently on the sampling instants.
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Chapter 2

Main Result

In the following section we introduce a certain class of uncertain systems. Then
we propose a stabilizing, cost guaranteeing method with control constraints. In
the further sections the validity of the method is proven and some demonstrating
applications are presented.

2.1 Problem statement

The system

Consider the system

ẋ = Ax+Bu+ Ew +Hp, (2.1)

y = Cx, (2.2)

ζ =
 Cζx

Dζu

 , (2.3)

qi = Aqix+Bqiu+Gipi, (2.4)

i = 1 . . . s

where x ∈ Rnx is the state, u ∈ Rnu is the control and w : R+ 7→ Rnw is the
exogenous disturbance. The disturbance is an external time-dependent function
which perturbs our system, it is not explicitly known, but we will impose some
conditions/bounds later. The uncertainty/nonlinearity appears in p ∈ Rlp and it is
partitioned as

p =


p1
...
ps

 ∈ Rlp
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where 0 ≤ s, ∑s
i=1 lpi = lp. The uncertainties will be specified later. Furthermore,

q> =
(
q>1 , . . . , q

>
s

)
is the uncertain output where qi ∈ Rlqi and ∑s

i=1 lqi = lq.
The measured output is y ∈ Rny , this means that the state space is only available

via y. In many applications the matrix C has the following form.

C =


1 0 · · ·

1 0
1 0 . . .


This means that some coordinates are unmeasurable e.g. the positions are known,
but the velocities not.

We call ζ ∈ Rnx+xu the penalty output, and Dζ is assumed to be nonsingular.

system

exosystem

controller

Ζ

u

w

y

Figure 2.1: Schematic picture of system (2.1)-(2.3)

Uncertainty constraints

All nonlinearities/uncertainties are represented by functions pi possibly depending
on t, x and u. The only available information about p and q is that their values are
constrained by a given set Ω ⊂ Rlp+lq , which is defined by quadratic constrains:

Ω =


 p

q

 ∈ Rlp+lq

∣∣∣∣∣∣
 pi

qi

> Q0i S0i

S>0i R0i

 pi

qi

 ≥ 0, i = 1 . . . s

 (2.5)

where Q0i = Q>0i, R0i = R>0i ≥ 0 and S0i are given, constant matrices of appropriate
dimension. This partitioning allows multiple uncertainties (such as e.g. nonlineari-
ties, parametric uncertainties). We shall use the notation

Q0 = diag{Q01, . . . , Q0s}

R0 = diag{R01, . . . , R0s}

S0 = diag{S01, . . . , S0s}.
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This formulation covers several frequently investigated types of uncertainties
with s = 1. If Q0 = 0, S0 = I and R0 = 0, then one speaks about positive
real uncertainty, if Q0 = −I, S0 = 0 and R0 = I, then one has norm bounded
uncertainties, and if Q0 = 1

2(K>1 K2 +K>2 K1), S0 = 1
2(K1 +K2)> and R0 = I, then

one faces the case of sector-bounded uncertainties.
These matrices are assumed to satisfy the following conditions.

Assumption 2. Inequalities
R0 ≥ 0 (2.6)

and
Q0 + G>S>0 + S0G + G>R0G < 0 (2.7)

hold true with G = diag {G1, . . . , Gs} ∈ Rlq×lp.

We note that the positive semi-definiteness of R0 assures that the system (2.1)-
(2.4) is well posed, i.e. for any (x, u) there exists p such that

(
p>, q>

)>
∈ Ω.

Condition (2.7) of Assumption 2 implies that
(
p>, p>G>

)>
∈ Ω if and only if p = 0,

thus the origin is an equilibrium point of the unperturbed, uncertain/nonlinear
system. Moreover, the set of uncertain input vectors satisfying (p>, q>)> ∈ Ω is
bounded if q is defined by (2.4) and (x, u) comes from a bounded set, which is also
a reasonable requirement.

Control constraints

The control is quadratically constrained, i.e.

u>Quu = ‖u‖2
Qu ≤ 1 (2.8)

must be satisfied for a given matrix Qu = Q>u ≥ 0. If no control constraint is
required, then one can assign Qu = 0.

State constraints

The state is not directly known, but it is assumed that the initial condition is
explicitly known

x(0) = x0.

The method can be extended, when the initial state is known up to the norm
bound

‖x‖2 ≤ ρ

which is a weaker restriction, see [10].
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Constraints on disturbances

The disturbances to be investigated are restricted to one of the following classes.

Definition 2.1.1 (Class ∆I). The disturbances are produced by an exosystem, the
input of which is the penalty output ζ of the original system (2.1)-(2.3), the output
is w, and (ζ, w) satisfy the inequality

‖w‖2
SL
≤ γ∆‖ζ‖2 (2.9)

with some 0 ≤ γ∆ ≤ 1.

The above inequality means that the exosystem does not operate as an amplifier;
its output is bounded by the penalty output ζ.

Definition 2.1.2 (Class ∆II). The function w : R 7→ Rnw is in L2 (R,Rnw) and
∞∫
0

‖w(t)‖2
SL

dt ≤ η (2.10)

for some given positive constant η.

This means that the disturbances have finite energy.
We will prove different convergence properties for the different classes.

Control task

The control task is to construct a dynamic output feedback controller which asymp-
totically stabilizes a certain neighbourhood of the origin of (2.1). For the solution
of this task, we propose to use a variant of NMPC. Let 0 = t0 < t1 < . . . < tk < . . .

denote the sequences of sampling instants. At each sampling instant tk the cost
function

Jk(x(·), u(·), w(·)) =
∞∫
tk

L(x(t), u(t), w(t))dt (2.11)

is assigned where

L(x, u, w) = x>QLx+ u>RLu− w>SLw
(2.3)= ‖ζ‖2 − ‖w‖2

SL

with 0 < SL
> = SL ∈ Rnw×nw given and QL = C>ζ Cζ , RL = D>ζ Dζ . Thus, it

follows that QL, RL and SL are symmetric, QL is positive semidefinite, RL and SL
are positive definite matrices.

We look for the controller in the following form:

˙̂x = Akc x̂+ Lkcy, x̂(tk) = x̂k, x̂0 = 0 (2.12)

u = Kk
c x̂ (2.13)

on [tk, tk + 1)
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where x̂ ∈ Rnx . The unknown matrices Akc , Lkc , Kk
c vary with k, but we omit the

index k if it does not cause any confusion. In receding horizon feedback framework,
the idea is to find a controller (or a control policy) that gives the minimal, or
minimax value of the cost function. Being the system uncertain, the computation
of the minimal (or minimax) value would be an excessive task. Instead, one should
be satisfied at each sampling instant with an upper bound of this minimal value, in
other words, with a guaranteed cost controller.

2.2 Deriving the inequalities

In this section we derive certain matrix inequalities to find the matrices in the
above control task. The inequalities will be partitioned into three types, like in
Lemma 1.3.1.

In the next section it will be proven that the matrices, found with these inequal-
ities, indeed satisfy the control task.

2.2.1 The main LMI

In this section a Lyapunov function is sought. We do not concern the control con-
straints and the sampling instants yet.

The closed loop system

Let

z :=
 x

x̂

 ∈ R2nx (2.14)

A :=
 A BKc

LcC Ac

 ∈ R2nx×2nx (2.15)

E :=
 E

0

 ∈ R2nx×nw (2.16)

H :=
 H

0

 ∈ R2nx×lp (2.17)

Aq :=


Aq1 Bq1Kc

... ...
Aqs BqsKc

 ∈ Rlq×2nx (2.18)

25



then (2.1)-(2.2) is equivalent to

ż = Az + Ew +Hp (2.19)

q = Aqz + Gp (2.20)

and the running cost in the cost function (2.11) can be represented as

L(x, u, w) = L(z, w) = (∗)

Ξ:=︷ ︸︸ ︷
QL

RL

−SL



I

Kc

I



x

x̂

w

 . (2.21)

Guaranteed cost

Definition 2.2.1. Consider the nonlinear/uncertain system

ż = f(z, u, w, p)

q = g(z, u, p)

with cost function of the type (2.11) and with a given set of nonlinearities or uncer-
tainties Ω i. e.

(
p>, q>

)>
∈ Ω.

The state-feedback control u = k(z) is a guaranteeing cost robust minimax strategy
with a decay rate δ ≥ 0 if there exists a positive definite function V : Rnz → R+

such that

sup
( pq )∈Ω

{∇V>(z)f(z, k(z), w, p) + L(z, k(z), w)} ≤ −δV(z) (2.22)

holds for all z and w,
(
z>, w>

)
6=
(
0>, 0>

)
.

Note that the purpose of δ > 0 is the uniform decay rate. δ is considered to be
a given constant, it can be set to zero if there is no need to control the decay rate.

We will search V in the special quadratic form V(z) = z>Pz (P> = P ∈
R2nx×2nx). Therefore ∇V(z) = 2Pz and the first term in (2.22) becomes

∇V>(z) f(z, k(z), w, p)︸ ︷︷ ︸
f(z,w,p)

= 2z> · P · f(z, w, p) =

=
(
z>, f(z, w, p)>

) 0 P

P 0


︸ ︷︷ ︸

Φ⊗P

 z

f(z, w, p)



where Φ =
 0 1

1 0

 ∈ R2×2. P is a variable to be determined, we will include it in

the inequalities.
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Note that the use of Φ is unnecessary, however we want to point out that the
calculations can be adapted to discrete time systems. The system derivative and
the Lyapunov technique is slightly different, but the proof can be generalized by
altering the matrix Φ, see [9].

In our system (2.19)-(2.20), with uncertainty constraints (2.5) and cost func-
tion (2.21), inequality (2.22) takes the following form

sup
( pq )∈Ω

F (z, w, p) ≤ −δz>Pz (2.23)

where F (z, w, p) =

(∗)(Φ⊗ P )
 I 0 0
A E H



z

w

p

+ (∗)Ξ


 I 0

0 Kc

 0 0
0 0(

0 0
)

I 0



z

w

p

 .

Abstract multipliers

Note that inequality (2.23) is not a matrix inequality, since the positivity is required
only on a subset, not on the whole space. To transform it into a matrix inequality,
we will apply the abstract multiplier method described in section 1.2.2.

First let

Ψ = Ψ> = diag


δ · P P

P 0


︸ ︷︷ ︸

4nx

, Ξ︸︷︷︸
nx+nu+nw

, 0︸︷︷︸
lp+lq


, (2.24)

V =
 0 0 0 0 I 0

0 0 0 0 0 I


︸ ︷︷ ︸

∈R(4nx+nx+nu+nw+lp+lq)×(lp+lq)

, L1 =



I 0
A E I 0

0 Kc

 0

0 I

0 0
Aq 0


, L0 =



0
H
0
0
I

G


(2.25)

and

B1 := ImL1, B0 := ImL0 (2.26)

B := B1 ⊕ B0. (2.27)

Note that B1 ∩ B0 = {0}.
With these matrices we can reformulate (2.23). Mind the following product
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z

∗ w

p

I 0 0 z

A E H żI 0
0 Kc

 0 0 =
x
u


0 I 0 w

0 0 I p

Aq 0 G q

L1 L0 y

where y ∈ B and V y = ( pq ). Let BΩ := {y ∈ B : V y ∈ Ω}. Then y ∈ BΩ is equivalent
to ( pq ) ∈ Ω.

Now we can see that (2.23) is equivalent to

y>Ψy < 0 ∀y ∈ BΩ. (2.28)

and we are in the setup of section 1.2.2 with N = 5nx + nu + nw + lp + lq, Q = Ω
and U = IN . Notice that (2.28) is equivalent to

y>(αΨ)y < 0 ∀y ∈ BΩ (2.29)

for any α > 0.

αΨ = α diag


δ · P P

P 0

 ,Ξ, 0
 = diag


αδP αP

αP 0

 , αΞ, 0

 (2.30)

Since P is a variable and we have given constant matrices in Ξ, we simply call
Pα := αP a new variable and QL, RL, SL alter with a multiplier α.

The α multiplier gives us an additional degree of freedom in the decision vari-
ables.

Lemma 2.2.2 ([9]). For positive constants τi, εi > 0, i = 1 . . . s let

τ = diag
{
τ1Ilp1

, . . . , τsIlps

}
τ = diag

{
τ1Ilq1

, . . . , τsIlqs

}
ε = diag

{
ε1Ilp1

, . . . , εsIlps

}
ε = diag

{
ε1Ilq1

, . . . , εsIlqs

}
.

The set

M+ =

M =
 τQ0 + ε τS0

S>0 τ τR0 + ε

∣∣∣∣∣∣ τi, εi > 0, i = 1, . . . , s

 (2.31)

consists of positive multiplier matrices for Ω. If s = 1, thenM+ is sufficiently rich.
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We remark that Assumption 2 in the uncertainty constraints is necessary in
Lemma 2.2.2.

Hence Lemma 1.2.3 can be applied and the guaranteed cost problem is reduced
to finding matrices P,Ac, Kc, Lc,M (described above) and positive constants α, τi, εi
such that

Ψ + V >MV < 0 ∀y ∈ B

which is equivalent to

(∗) diag


αδP αP

αP 0

 , αΞ,M

 (L1,L0) < 0. (2.32)

Note that for s = 1 the inequality (2.32) is an equivalent condition of the exis-
tence of the quadratic Lyapunov function. If s > 1 then the condition is sufficient.

Linearization lemma and Schur complements

In this section we reformulate the nonlinear inequality (2.32), which is:

(∗)



δPα Pα 0 0 0 0 0
Pα 0 0 0 0 0 0
0 0 αQL 0 0 0 0
0 0 0 αRL 0 0 0
0 0 0 0 −αSL 0 0
0 0 0 0 0 τQ0 + ε τS0

0 0 0 0 0 S>0 τ τR0 + ε





I 0 0
A E H(
I 0

0 Kc

) 0 0
0 0

0 Ilw 0
0 0 Ilp

Aq 0 G


< 0.

Now exchange the subspaces by multiplying the middle block-diagonal matrix from
the right by L>L = I and from the left by and L · L> = I where

L =



I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 0 0 0 I 0
0 0 0 0 I 0 0
0 0 0 0 0 0 I

0 0 I 0 0 0 0
0 0 0 I 0 0 0


.
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This yields:

(∗)



δPα Pα 0 0 0 0 0
Pα 0 0 0 0 0 0
0 0 τQ0 + ε 0 τS0 0 0
0 0 0 −αSL 0 0 0
0 0 S>0 τ 0 τR0 + ε 0 0
0 0 0 0 0 αQL 0
0 0 0 0 0 0 αRL





I 0 0
A E H
0 0 Ilp

0 Ilw 0
Aq 0 G(
I 0

0 Kc

) 0 0
0 0


< 0.

Note that diag
{
τR0 + ε, αQL, αRL

}
is positive definite therefore the Linearization

Lemma in section 1.2.3 (partitioned according to the solid lines) can be applied to
obtain

φ11 ∗ ∗
∗E>Pα −αSL ∗

H>Pα + τS0Aq 0 τQ0+ε+
τS0G+G>S>0 τ

Aq 0 G −1
α

(
τR0 + ε

)−1
0 0

0 −1
α
Q−1
L 0

0 0 −1
α
R−1
L

I 0
0 Kc

 0 0
0 0


< 0

where φ11 = δPα+A>Pα+PαA. Let us use Schur complement, to remove −1
α

(
QL 0
0 RL

)−1

from the lower-right block. Then we obtain

φ′11 ∗ ∗
∗E>Pα −αSL ∗

H>Pα + τS0Aq 0 τQ0+ε+
τS0G+G>S>0 τ

Aq 0 G −
(
τR0 + ε

)−1

 < 0.
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with φ′11 = δPα + αQ + A>Pα + PαA, and Q :=
(
QL 0
0 K>c RLKc

)
. Now we move the

bottom-right block away with a similar technique:
φ′11 ∗ ∗
E>Pα −αSL ∗

H>Pα + τS0Aq 0 τQ0 + τS0G + G>S>0 τ

+


0
0
I

 ε (0 0 I
)

+


A>q
0
G>

(τR0 + ε
) (
Aq 0 G

)
=


φ′11 ∗ ∗
E>Pα −αSL ∗

H>Pα + τS0Aq 0 τQ0 + τS0G + G>S>0 τ

+

(∗)


ε 0 0
0 ε 0
0 0 τ




0 0 I

Aq 0 G
R

1
2
0Aq 0 R

1
2
0 G


This time, we use the Schur complement in the other direction and obtain:

φ′11 ∗ ∗ ∗ ∗ ∗
E>Pα −αSL ∗ ∗ ∗ ∗

H>Pα + τS0Aq 0 τQ0+
τS0G+G>S>0 τ

∗ ∗ ∗
0 0 I −ε−1 0 0
Aq 0 G 0 −ε−1 0

R
1
2
0Aq 0 R

1
2
0 G 0 0 −τ−1


< 0

Let us move back the matrix Q from φ′11 to the bottom-right corner and recall the
matrices Cζ , Dζ .

φ11 ∗ ∗ ∗ ∗ ∗
(
Cζ 0
0 DζKc

)>
E>Pα −αSL ∗ ∗ ∗ ∗ 0

H>Pα + τS0Aq 0 τQ0+
τS0G+G>S>0 τ

∗ ∗ ∗ 0
0 0 I −ε−1 0 0 0
Aq 0 G 0 −ε−1 0 0

R
1
2
0Aq 0 R

1
2
0 G 0 0 −τ−1 0(

Cζ 0
0 DζKc

)
0 0 0 0 0 − 1

α


< 0.
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Let us use the congruence transformation with diag {P−1
α , I, τ−1, I, . . . I}. Only the

first three columns are presented.

P−1
α A> +AP−1

α + δP−1
α ∗ ∗ · · ·

E> −αSL ∗ · · ·
τ−1H> + S0AqP−1

α 0 Q0τ−1+
S0Gτ−1+τ−1G>S>0

· · ·
0 0 τ−1 · · ·

AqP−1
α 0 Gτ−1 · · ·

R
1
2
0AqP−1

α 0 R
1
2
0 Gτ−1 · · ·(

Cζ 0
0 DζKc

)
P−1
α 0 0 · · ·


< 0 (2.33)

Changing the variables

One can see that the above inequality is not linear in Pα, Ac, Lc, Kc, therefore we
define new LMI variables (from [10], similar to [6]).

Let us suppose, that Pα (and P−1
α ) is partitioned as:

Pα =
 X N1

N>1 Z

 P−1
α =

 Y N2

N>2 W


with X = X> > 0, Y = Y > > 0. By substituting these into Pα · P−1

α = I one can
see that

I −X · Y = N1 ·N>2 (= N2N
>
1 ) (2.34)

We also define the matrices

F1 :=
 X I

N>1 0

 , F2 :=
I Y

0 N>2

 .
Using the condition Pα · P−1

α = I, the following identities can be easily derived.

P−1
α F1 = F2 F>1 P

−1
α F1 =

X I

I Y

 (2.35)

By including an additional inequalityX I

I Y

 > 0 (2.36)

we ensure that the matrix I − XY in (2.34) is invertible. As a consequence, N1

and N2 are invertible, independently of the decomposition. Furthermore, note that
P > 0 is equivalent with (2.36), since there is a congruence transformation between
them.
From now on, we refer to inequality (2.36) as invertibility.
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Now we apply a congruence transformation on (2.33) with

diag {F1, I, . . . I} .

The upper-left corner transforms according to

F>1 A · P−1
α · F1︸ ︷︷ ︸
F2

=
X N1

I 0

 ·
 A BKc

LcC Ac

 ·
I Y

0 N>2

 =

XA+N1LcC XAY +XBKcN
>
2 +N1LcCY +N1AcN

>
2

A AY +BKcN
>
2

 .
Let us introduce the notations

K̃ := KcN
>
2 , (2.37)

L̃ := N1Lc, (2.38)

Ã := XAY +XBK̃ + L̃CY +N1AcN
>
2 . (2.39)

The blocks in the first column of (2.33) transforms similarly. The matrix K̃ also
appears in AqF2 and in

(
Cζ 0
0 DζKc

)
F2. After the congruence transformation the

inequality is linear in X, Y, Ã, K̃, L̃ and ε−1
i but not in τ−1

i and α−1. Only the first
three columns are presented, except the top-left corner.

(· · · ) ∗ ∗ · · ·
E>F1 −αSL ∗ · · ·

τ−1H>F1 + S0AqF2 0 Q0τ−1+
S0Gτ−1+τ−1G>S>0

· · ·
0 0 τ−1 · · ·
AqF2 0 Gτ−1 · · ·

R
1
2
0AqF2 0 R

1
2
0 Gτ−1 · · ·(

Cζ 0
0 DζKc

)
F2 0 0 · · ·


< 0 (2.40)

The linearity fails because of the terms τ−1H>F1 and α.
In our calculations (similarly to Lemma 1.3.1), we eliminated the variable τ by

assigning the constant values τi = 1 for i = 1 . . . s. We give a sufficient condition of
(2.40) in order to eliminate α.

If 0 < α̂ ≤ α then
(· · · ) ∗ ∗
E>F1 −α̂SL ∗

... . . .

 < 0 implies


(· · · ) ∗ ∗
E>F1 −αSL ∗

... . . .

 < 0 (2.41)

since the additional negative semi-definite matrix −(α− α̂)SL does not violate neg-
ative definiteness if the whole matrix.
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The overall result of the transformations can be seen on Table 2.1. The negative
definiteness of this matrix will be refered to as main LMI.

Finally, a sufficient condition for the guaranteed cost problem is obtained as a
feasibility problem. Namely, find Ã, L̃, K̃,X, Y, ε−1, α−1, α̂ such that 0 < α̂ ≤ α, the
main LMI and invertibility hold.
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Obtain the original variables

In order to derive the original variables P,Ac, Lc, Kc from Ã, L̃, K̃,X, Y one has to
perform the following calculations:

from (2.34) compute N1, N2 via matrix decomposition,

from (2.37) compute Kc as K̃ ·
(
N>2

)−1
,

from (2.38) compute Lc as N−1
1 · L̃,

from (2.39) compute Ac as N−1
1

(
Ã−XAY −XBK̃ − L̃CY

) (
N>2

)−1
,

Z = −N>1 Y
(
N>2

)−1
⇒ P =

 X N1

N>1 Z

 · 1
α
.

By successfully solving the main LMI and invertibility one can find a Lyapunov
function and a dynamic feedback control which satisfies definition 2.2.1.

2.2.2 Control constraints

In this section we derive an LMI in order to fulfill (2.8).

z>Pαz ≥ u>Qu u︸︷︷︸
=Kc·x̂

∀z

m

Pα ≥

 0
K>c

Qu

(
0 Kc

)
m

Pα ≥

 0
K>c
√
Qu

 · (0 √
QuKc

)
m (Schur) Pα

 0
K>c
√
Qu


(
0
√
QuKc

)
I

 ≥ 0

Now we apply a congruence transformation with
(
P−1
α F1 0

0 I

)
(recall (2.35) and (2.37))

which results 
X I 0
I Y K̃>

√
Qu

0
√
QuK̃ I

 ≥ 0. (2.42)
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Requiring (2.42) reduces the control constraints to finding an upper bound for
z>Pαz = αV(z). From now on, the relation (2.42) will be refered to as control
inequality.

2.2.3 Subsequent time intervals

Now we consider the sampling instants tk. If one would redefine the stabilizing
feedback gains Kk

c at every time instant tk, then stability could break down. The
neighbouring time intervals have to inherit some global property.

Assume that one has solved the optimization problem at time tk, and the solution
is: Pk, αk, . . .. Let us introduce the following notations: xk := x(tk), yk := y(tk) and
zk := z(tk). In this section we derive some inequalities which ensure the decay of
the Lyapunov function between the time intervals. Formally, we require

z>k+1Pkzk+1 ≥ z>k+1Pk+1zk+1 (2.43)

for the new matrix Pk+1. From now on, we refer to the inequality (2.43) as ellipse
invariance.

zk

zk+1

Pk+1

Pk
-2 -1 1 2 x

-2

-1

1

2

x
`

Figure 2.2: Lyapunov function fails to be continuous, but it is monotonically
decreasing

In our system, the state is non accessible, therefore one cannot use zk+1, but the
output  yk+1

x̂k+1

 =
 Cxk+1

x̂k+1

 ∈ Rny+nx .
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Clearly, the artificial observation system x̂ is accessible, but the matrix C has usually
an incomplete column rank (ny < nx). In this section we will impose a sufficient
condition of ellipse invariance without using the state x.

We have some information about the state via the output. For a given y ∈ Rny

let
Xy :=

{
z = ( xx̂ ) ∈ R2nx

∣∣∣Cx = y and x̂ is given
}

(2.44)

an affine subspace of R2nx . This set contains all the possible states with respect to
the constraint Cx = y (and x̂ known). In other words, we use as much information
as we can. If the state is fully accessible, then C = Inx and the set Xy is a single
point. In general, the new ellipse should enclose a lower dimensional ellipse on an
affine subspace.

xk+1

C×x = yk+1

-2 -1 1 2

-2

-1

1

2

Figure 2.3: The new ellipse encloses the old ellipse on an affine object

What we will guarantee is that

z>Pk+1z ≤ z>Pkz ∀z ∈ Xyk+1 . (2.45)

Let us think of the problem in a bit more abstract way. Let

C :=
C 0

0 I

 S := Pk − Pk+1 η :=
y
x̂

 .
The set Xy can be parameterized as:

Cz = η ⇔ z = z0 + z̃
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where z0 is such that Cz0 = η and z̃ ∈ Ker(C). The vector z0 can be computed from
the given C (or C) and η. With these notations (2.45) is equivalent to:

(z0 + z̃)> S (z0 + z̃) ≥ 0 ∀z̃ ∈ Ker(C)

m

z0
>Sz0 + 2z0

>Sz̃ + z̃>Sz̃ ≥ 0 ∀z̃ ∈ Ker(C)

m

β2z0
>Sz0 + 2βz0

>Sz + z>Sz ≥ 0 ∀z̃ ∈ Ker(C) and β > 0

where z = β ·z̃. Note that Cz̃ = 0⇔ C (β · z̃) = 0. The latter inequality is equivalent
to z

β

> S Sz0

z0
>S z0

>Sz0

z
β

 ≥ 0 ∀z ∈ Ker(C) and β > 0.

m

∗

 S Sz0

z0
>S z0

>Sz0

C⊥ 0
0 1

λ
β

 ≥ 0 ∀λ ∈ Rnx−ny and β > 0 (2.46)

Recall the C⊥ notation for the orthogonal basis of the kernel.
Note, that requiring (2.46) makes the the very same inequality hold true for β ≤ 0
and requiring (2.46) for β ∈ R, trivially implies (2.46). Therefore the condition β > 0
can be neglected and the vector

(
λ>, β

)>
runs over the nx−ny+1 dimensional space.

Consequently, an equivalent form is

∗

 S Sz0

z0
>S z0

>Sz0

C⊥ 0
0 1

 ≥ 0

m(C⊥)>
z0
>

S
D:=︷ ︸︸ ︷(
C⊥ z0

)
≥ 0

m

D>(Pk − Pk+1)D ≥ 0 (2.47)

The matrix D =
(
C⊥ z0

)
∈ Rnx×(nx−ny+1) can be computed from known data:

x̂k+1, yk+1 and C.
The condition (2.47) is equivalent to (2.45) which is weaker than Pk+1 ≤ Pk on

the whole 2nx dimensional space, but stronger than ellipse invariance. The problem
is, that Pk+1 is not a decision variable in the k + 1th LMI (recall (2.30)).

Let us multiply the latter formula by αk+1 > 0 to obtain

D>(αk+1Pk − αk+1Pk+1)D ≥ 0. (2.48)
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If αk ≤ αk+1 then

D>(αkPk − αk+1Pk+1)D ≥ 0

implies (2.48). By Schur complement the latter is equivalent toαkD>PkD D>

D (αk+1Pk+1)−1

 ≥ 0.

Now we apply a congruence transformation with F1 (recall formula (2.35)) and we
also append the condition αk ≤ αk+1

αkD
>PkD D>F1 0

F1
>D

X I

I Y

 0

0 0 α−1
k − α−1

k+1

 ≥ 0 (2.49)

Note that X, Y and α−1
k+1 are truly the variables of the main LMI and αk, Pk, D

are known from the previous time segment. Also the matrix N1 becomes a decision
variable (N1 appears in F1). Hence, N2 is computed as N>2 = N−1

1 (I −XY ), when
we obtain the original variables.

The inequality N1 +N>1 > 0 guarantees detN1 6= 0, however we used the simpli-
fication that N1 = n1 · I with n1 > 0 for numerical reasons. Even if the matrix N1

only has one degree of freedom the feasibility of (2.49) does not break, and it has a
good effect on the condition numbers of the matrices Ac, Kc, Lc.

From now on, we refer inequality (2.49) as continuity condition.
Note that α̂ ≤ α0 was required on the first time step and αk ≤ αk+1 in the further
steps. Therefore, α̂ ≤ αk is maintained in the whole process.

2.3 Statement of result

In this section we assemble the matrices, what we found with the former inequalities,
into an applicable method and prove some convergence properties.

Theorem 2.3.1. Suppose that the main LMI and invertibility hold true for system
(2.1)-(2.4) with uncertainty constrains (2.5) where Ω satisfies Assumption 2.Let us
apply the un-updated version of the controller (2.12)-(2.13) on [0,∞). Then the
cost function (2.11) is bounded for any admissible initial state, disturbance and
uncertainty. If the disturbances are in Class ∆II (see definition 2.1.2), then the
upper bound is

z(0)>Pz(0) + η.

40



If the disturbances are in Class ∆I (see definition 2.1.1), then the upper bound
is z(0)>Pz(0) and the origin of the closed-loop uncertain system is asymptotically
stable and the ellipsoid

{
z ∈ R2nx

∣∣∣z>Pz ≤ z(0)>Pz(0)
}

is within the basin of attraction.

Proof. The main LMI gives us the Lyapunov function V(z) = z>Pz and the control
k(z) = Kc · x̂ which satisfy (2.23) (recall the definition 2.2.1). This means that

d
dtV(z(t)) + z(t)>

QL 0
0 Kc

>RLKc


︸ ︷︷ ︸

Q

z(t)− w(t)>SLw(t) ≤ −δV(z(t)) (2.50)

By neglecting the right-hand side and integrating from 0 to T > 0 it follows that

V(z(T ))− V(z(0)) +
∫ T

0
‖z(t)‖2

Q dt−
∫ T

0
‖w(t)‖2

SL
dt ≤ 0. (2.51)

Omitting the first nonnegative term on the left-hand side, we obtain that∫ T

0
L(z(t), w(t))dt ≤ V(z(0)) (2.52)

or alternatively ∫ T

0
‖z(t)‖2

Q dt ≤ V(z(0)) +
∫ T

0
‖w(t)‖2

SL
dt (2.53)

for all T > 0. If the disturbance is in Class ∆II then the integral on the right-hand
side converges as T →∞. Therefore the left-hand side is also bounded, consequently
it is convergent. Therefore the cost function is bounded by

V(z(0)) + η

which proves the statement for the Class ∆II case.
On the other hand one can rearrange (2.50) using the definition of the cost

function (2.11).

d
dtV(z(t)) + L(x(t), Kcx̂(t), w(t)) ≤ −δV(z(t))

If the disturbances are in Class ∆I (see definition 2.1.1), then L(x(t), Kcx̂(t), w(t)) ≥
0 and we can neglect it. This gives

d
dtV(z(t)) ≤ −δV(z(t)). (2.54)

41



We have required P > 0, therefore the function V is positive definite, and the
Lyapunov theorem can be applied. Hence, the origin is asymptotically stable with
a basin of attraction containing the ellipse{

z ∈ R2nx
∣∣∣ z>Pz ≤ z(0)>Pz(0)

}
.

From (2.52) one can see that the cost functional is bounded. From the Class ∆I

condition we know that the running cost is non-negative, thus the total cost∫ ∞
0
L(z(t), w(t))dt

is convergent and bounded by V(z(0)).

Statement 2.3.2. If the initial state x(0) = x0 is known, then the additional LMI
1 ∗ ∗

Xx0 X I

x0 I Y

 ≥ 0 (2.55)

ensures the following initial bound for the Lyapunov function.

α0V(z(0)) ≤ 1

Proof. We shall rewrite the inequality α0V(z0) = z>0 Pαz0 ≤ 1 in an equivalent form,
similarly to continuity condition.

1 ≥ z>0 Pαz0 ⇔

 1 z>0

z0 Pα
−1

 ≥ 0

m
1 z>0 F1

F1
>z0

X I

I Y


 ≥ 0.

By substituting z0 =
(
x0
>, 0

)>
into F>1 z0 one can get (2.55).

Corollary 2.3.3. If the disturbance is in Class ∆I then the control inequality, in
addition to the formers, guarantees the control constraint (2.8).
If the disturbance is in Class ∆II then the control inequality implies a weaker bound

‖u(t)‖2
Qu ≤ 1 + η.

Proof. The control inequality guarantees that

‖u(t)‖2
Qu ≤ z(t)>Pαz(t) ∀t ≥ 0.
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For Class ∆I :

z(t)>Pαz(t)
Theorem 2.3.1
≤ z(0)>Pαz(0)

Statement 2.3.2
≤ 1

which concludes (2.8).
The Class ∆II condition and (2.51) concludes

z(t)>Pαz(t) ≤ z(0)>Pαz(0) + η
Statement 2.3.2

≤ 1 + η.

Thus the weaker bound is also proved.

Now the time intervals will be concerned, recall the time dependent controller
(2.12)-(2.13). We can observe that the matrices Kc and P may vary in time, but the
main LMI does not. Therefore we need a suitable version of a Lyapunov theorem.

The original version of the following Lemma has been published in [5]. It has
been fitted to the present situation. Consider the system described by

ż = Akz + Ew +Hp

q = Aqkz + Gp

 t ∈ [tk, tk+1), (2.56)

where Ak and Aqk are constant matrices,
(
p>, q>

)>
∈ Ω, and Ω is defined by (2.5)

satisfying Assumption 2. Let

V(t, z) = z>Pkz
>, if t ∈ [tk, tk+1).

Lemma 2.3.4. Suppose that there exist positive numbers γ1, γ2, δ such that

γ1I ≤ Pk ≤ γ2I ∀t ∈ N. (2.57)

Let the function V : t 7→ V(t, z(t)) be continuous from the right for z(·) satisfying
(2.56), absolutely continuous for t 6= tk and satisfies

lim
t→t−

k

V (t) ≥ V (tk). (2.58)

(i) If along (2.56)

V̇ (t) + δV (t) ≤ 0 for almost all t (2.59)

then V (t) ≤ e−δtV (0) i.e. ‖z(t)‖2 ≤ γ2
γ1
e−δt‖z(0)‖2.

(ii) If along (2.56)

V̇ (t) + L(z(t), w(t)) ≤ −δV (t) for almost all t (2.60)

then

lim sup
t→∞

t∫
0

L(z(τ), w(τ))dτ ≤ V (0)

and the trajectory of (2.56) remains bounded on [0,∞).
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Proof.

(i) From (2.57) and (2.59) it follows that

γ1‖z(t)‖2 ≤ V (t) ≤ e−δ(t−tk)V (tk) t ∈ [tk, tk+1)

By taking into account (2.58), it follows that

e−δ(t−tk)V (tk) ≤ e−δ(t−tk−1)V (tk−1) ≤ . . . ≤ e−δtV (0) ≤ γ2e
δt‖z(0)‖2

and ‖z(t)‖2 ≤ γ2
γ1
e−δt‖z(0)‖.

(ii) Let N � 1 be given, and let us integrate (2.60) from 0 to t where t ∈ [tN−1, tN).
Then we obtain

V (t)− V (tN−1) + V
(
t−N−1

)
∓ . . .− V (0) +

t∫
0

L(z(τ), w(τ))dτ ≤ 0. (2.61)

Since V (t) ≥ 0 and (2.58) is supposed to be valid, we can conclude that

lim sup
t→∞

t∫
0

L(z(τ), w(τ))dτ ≤ V (0),

which means that V (0) is an upper bound of the cost functional. On the other
hand, (2.61) involves that

V (t) ≤ V (t) +
t∫

0

‖z(τ)‖2
Q

dτ ≤ V (0) +
t∫

0

‖w(τ)‖2
SL

dτ

therefore, for w ∈ ∆II , we get that

γ1‖z(t)‖2 ≤ V (0) + η, ∀t ≥ 0

thus the trajectory of (2.56) remains bounded.

Remark 2.3.5. If only the case (ii) is valid then function V (·) is no longer mono-
tonically decreasing within [tk, tk+1).

Remark 2.3.6. The ellipse invariance is exactly (2.58) for which continuity condi-
tion is a sufficient condition.

Lemma 2.3.4 is clearly applicable to our system and satisfies the control task.
Let us summarize the overall results in the following theorem.
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Theorem 2.3.7. Consider the system (2.1)-(2.4) where the uncertainties fulfill As-
sumption 2. If we apply the control policy (2.12)-(2.13) with requiring inequality
(2.55) and α̂ ≤ α0 the at the first time instant, continuity condition for the subse-
quent sampling instants, furthermore main LMI and invertibility for every sampling
instant then on can state the followings.

• For w ∈ ∆I the origin of the closed-loop uncertain system is asymptotically
stable, the ellipsoid

{
z ∈ R2nx

∣∣∣z>Pz ≤ z(0)>Pz(0)
}

is within the basin of attraction, and the cost functional (2.11) is bounded by
1
αk
.

• If w ∈ ∆II then the trajectories remain bounded and the cost functional (2.11)
is bounded by 1

α0
+ η.

Proof. See Lemma 2.3.4.

Remark 2.3.8. The control inequality in addition to the former ones also guaran-
tees the statement of Corollary 2.3.3.

Remark 2.3.9. The main LMI, invertibility and continuity condition are feasible
at the sampling instant tk+1 if it was feasible at tk, since the old solution (with
Pk, αk . . .) satisfy the new inequalities also.
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Chapter 3

Applications, simulations

In this section we apply the proposed method to control certain systems. We cite
the original example and the way we could improve them, or numerical problems,
where occured.

We will use our notations (see (2.1)-(2.4)) not the original notations of the cited
papers.
The simulations follow the following steps:

1. System setup, k = 0

• Assign the constant (given) matrices of the system.

• Assign the uncertainty and disturbance functions.

• Assign the initial condition x0.

2. Solve the main LMI, invertibility, (2.55) and control inequality

3. Simulate the augmented closed loop system for t ∈ [tk, tk+1) and increase k.

4. Solve the main LMI, invertibility and continuity condition using the previous
data, and control inequality

5. Go to step 3.

Note, that the purpose of the uniform decay rate δ is only theoretical. In the
following calculations we always choose δ = 10−4.
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3.1 Flexible link robotic arm [3]

The system is a Lure system.

ẋ = Ax+Bu+ Ew +Hp (3.1)

y = Cx

q = Aqx

ζ =
Cζx
Dζu

 (3.2)

where

A =


0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −16.7 0

 , B =


0

21.6
0
0

 , E =


0
0
0
0

 , H =


0
0
0

−3.33


C =

1 0 0 0
0 0 1 0

 , Aq =
(
0 0 1 0

)
and the cost matrices are chosen to be

QL = C>ζ Cζ =


1

0.1
1

0.1

 , RL = D>ζ Dζ = 0.1, SL = 1.

The uncertainty is a nonlinearity on the right-hand side:

p(x) = sin x3 + x3, q = Aqx = x3 (3.3)

In paper [3], it has been assumed that the whole state is available for feedback, i.e.
u = K · x can be used, which is a significantly simpler case. In this section one can
see simulations for constant zero, Class ∆I and Class ∆II disturbances. In [3] no
disturbance has been allowed.

The uncertainty (3.3) is sector bounded, sincep
q

>−1 1
1 0

p
q

 ≤ 0,

Thus it belongs to the class investigated in the previous section. The set Ω is given
by Q0 = −1, S0 = 1, R0 = 0 (and s = 1). We assign G = 0, because the uncertain
input does not appear in q, therefore Assumption 2 trivially holds true.

We require the control constraint −1.5 ≤ u ≤ 1.5 by assigning Qu = 1.5−2. The
initial state is x0 = (1.2, 0, 0, 0)> and the system was simulated for 6 seconds, by
dividing this interval into 10 equal time intervals.
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Without disturbance

In the first simulation the disturbance is w(t) ≡ 0.
The lower bound α̂ was initially assigned to 0.01. The result of the calculations

verified that indeed α̂ ≤ α0.
The results are shown on page 49. The black graphs are the NMPC, the grays

are the un-updated control. The gray and black graphs overlap on the first time
interval, but the update of the controller separates them later.

Disturbance of Class ∆I

For simulating a Class ∆I disturbance, we assigned E = (0.1, 0, 0, 0)> and

w(t, x(t)) = 0.05 · ‖x(t)‖

which clearly satisfies (2.9) with γ∆ = 0.5 (recall Cζ).
The lower bound α̂ was assigned to 0.001, smaller then in the previous simulation.

The decreasing of ˆalpha was necessary to obtain a feasible LMI.
The results are shown on page 50. One can see that the Lyapunov function on

Figure 3.2(d) decays monotonically, however not so sharply as on Figure 3.1(d).

Disturbance of Class ∆II

Let us re define the disturbance as

w(t) :=


100
t+1 if 0.1 ≤ {t1.5} ≤ 0.3

0 otherwise
(3.4)

without changing any of the other matrices and constants. The bracket {·} denotes
the fraction part. It can be checked that this predefined function is in Class ∆II .

The results are shown on page 52. One can see that the Lyapunov function on
Figure 3.4(d) is not monotonically decreasing, when the disturbance is active.
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Figure 3.1: Simulation of system 3.1, w ≡ 0

(a) ‖x(t)‖

(b) ‖x̂(t)‖

(c) u(t) = Kk
c · x̂(t)

(d) V (t) = z(t)>Pkz(t)
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Figure 3.2: Simulation of system 3.1, w ∈ ∆I

(a) ‖x(t)‖

(b) ‖x̂(t)‖

(c) u(t) = Kk
c · x̂(t)

(d) V (t) = z(t)>Pkz(t)
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Figure 3.3: Disturbance function w ∈ ∆II

3.2 Stabilization of Dynamically Positioned Ships

The below presented system is from [11], refered from [4]. The dynamics of the 6
dimensional system is described by the following, nonlinear ODE, with 3 dimensional
control u:

ṅ
ė
ψ̇
µ̇
v̇
ṙ

 =


0 0 0 cosψ − sinψ 0
0 0 0 sinψ cosψ 0
0 0 0 0 0 1

−0.0358 0 0 −0.0797 0 0
0 −0.0208 0 0 −0.0818 −0.1224
0 −0.0394 0 0 −0.2254 −0.2468

 ·
 n

e
ψ
µ
v
r

+
 0 0 0

0 0 0
0 0 0

0.9215 0 0
0 0.7802 1.4811
0 1.4811 7.4562

 · u
The control task is to stabilize the constant zero solution. Unlike in [11], the state
is known up to the output

y =


n

e

ψ

 =
(
I 0

)
︸ ︷︷ ︸
C:=

·

 n
e
ψ
µ
v
r

 . (3.5)

We want to separate the nonlinear effects, like in (1.15), therefore we define the
uncertain output q and the uncertainty p as:

q :=
µ
v

 (3.6)

p :=
(cosψ − 1) · µ− sinψ · v

sinψ · µ+ (cosψ − 1) · v

 (3.7)

The uncertain dynamics reads as:

ẋ = Ax+Bu+Hp

y = Cx

q = Aqx
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Figure 3.4: Simulation of system 3.1, w ∈ ∆II

(a) ‖x(t)‖

(b) ‖x̂(t)‖

(c) u(t) = Kk
c · x̂(t)

(d) V (t) = z(t)>Pkz(t)
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where the state is x = (n, e, ψ, µ, v, r)> and

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−0.0358 0 0 −0.0797 0 0
0 −0.0208 0 0 −0.0818 −0.1224
0 −0.0394 0 0 −0.2254 −0.2468

 B =
 0 0 0

0 0 0
0 0 0

0.9215 0 0
0 0.7802 1.4811
0 1.4811 7.4562



C =
( 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

)
Aq = ( 0 0 0 1 0 0

0 0 0 0 1 0 ) H =
 1 0

0 1
0 0
0 0
0 0
0 0


We assign the cost matrices as:

Cζ = I6 Dζ = I3.

We require ‖u‖2 ≤ 10 via Qu := 0.1 · I3. One can check that the uncertainty fulfills
‖p‖2 ≤ 4‖q‖2, therefore we let:

Q0 = −I, R0 = 4 · I, S0 = 0

in the definition of the uncertainty set Ω. In other words, the uncertainty is norm
bounded. We do not apply any disturbance, hence nw = 0.

The corresponding LMI, defined by the above matrices, was found infeasible, but
we shall describe an other approach to control the system.

Let us consider the uncertainty p as an exogenous disturbance w. Namely, let
lp = lq = 0, nw = 2 and

E :=
 0.01 0

0 0.01
0 0
0 0
0 0
0 0

 .
Since the nonlinear function p(x) is norm bounded, the corresponding disturbance
w(t) := 100 · p(x(t)) is in Class ∆I with SL := 0.01

4 · I2, recall (2.9):

‖w‖2
SL

= 0.01
4 ‖w‖

2 = 1
4‖p(x)‖2 ≤ µ2 + v2︸ ︷︷ ︸

‖q‖2

≤ ‖x‖2 + ‖u‖2 = ‖ζ‖2.

The matrices A,B,Cζ , Dζ and Qu remain the same as before, but Aq, G,H,R0, S0

and Q0 become obsolete.
With this trick, we managed to control the system, but we are unable to apply

a Class ∆II disturbance.
The initial state is x0 = (−2, 2,−π

4 , 0, 0, 0)> and we simulated the system for
15 seconds, by dividing this interval into 20 equal time instances. The auxiliary
variable α̂ was set to 10−3.

One can see the results on page 55. The black graphs are the NMPC, the
gray ones are the un-updated control. Since a Class ∆I disturbance is applied, the
Lyapunov function is monotonically decreasing with jumps.
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At 3 out of 20 times the LMI solver1 reported numeric instability and the update
of the controller failed. At these time instances the old controller was used from
the previous time interval. When the numerical stability regained, the update was
continued.

1SeDuMi 1.3, online available at http://sedumi.ie.lehigh.edu/

54



Figure 3.5: Simulation of system 3.2

(a) ‖x(t)‖

(b) ‖x̂(t)‖

(c) ‖u(t)‖ =
∥∥Kk

c

∥∥ · x̂(t)

(d) z(t)>Pkz(t)
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3.3 Double inverted pendulum

Consider a double pendulum with two masses, in 2 dimensions, hanging on two
limbs and moving freely under the force of gravity. The system has two degrees of
freedom φ1 and φ2, these the angles between the limbs and the vertical direction,
respectively. The limbs have zero mass and every resistance is neglected. There
control is torque applied in the lower pivot point. The φ1 = φ2 = 0 is an unstable

Φ1

Φ2

m1

m2

l1

l2

Figure 3.6: Double pendulum

equilibrium point of the system, what we will stabilize.
We will derive the equation of motion via Hamiltonian dynamics, then consider

the nonlinearity as an uncertainty.

The configuration space is a torus φ =
φ1

φ1

 ∈ T2. The Cartesian coordinates

of the masses (x1,x2 ∈ R2) can be expressed with the generalized coordinates:

x1(φ1, φ2) =
x1

1

x2
1

 = l1

sinφ1

cosφ1

 , x2(φ1, φ2) =
x1

2

x2
2

 = x1(φ1, φ2) + l2

sinφ2

cosφ2


The Lagrangian function can be obtained:

T (φ1, φ2, φ̇1, φ̇2, t) = 1
2m1

∥∥∥∇x1(φ1, φ2) · φ̇
∥∥∥2

+ 1
2m2

∥∥∥∇x2(φ1, φ2) · φ̇
∥∥∥2
,

V (φ1, φ2, φ̇1, φ̇2, t) = m1 · g · x2
1(φ1, φ2) +m2 · g · x2

2(φ1, φ2)− φ1u(t)︸ ︷︷ ︸,
L(φ1, φ2, φ̇1, φ̇2, t) = T (φ1, φ2, φ̇1, φ̇2, t)− V (φ1, φ2, φ̇1, φ̇2, t).

Note that the controlling torque is manifested as an explicitly time-dependent term
in the potential function V .
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The Hamiltonian function can be derived via Legendre transform2:

H(φ1, p1, φ2, p2, t) =gl1(m1 +m2) cosφ1−

+ l21p
2
2(m1 +m2)− 2l1l2m2p1p2 cos(φ1 − φ2) + l22m2p

2
1

l21l
2
2m2(2m1 +m2 −m2 cos(2φ1 − 2φ2)) +

+ gl2m2 cosφ2 − φ1u(t)

Note that m1 > 0 and m2 > 0 ensure that the denominator is uniformly bounded
away from 0 and consequently the Hamiltonian is smooth. Let us denote the coor-
dinates of the phase space with

Φ :=
(
φ1
p1
φ2
p2

)
. (3.8)

Using the Hamiltonian function, the dynamics of the system is described by the
following ODE:

Φ̇(t) =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ·


∂
∂φ1

H(Φ(t), t)
∂
∂p1
H(Φ(t), t)

∂
∂φ2

H(Φ(t), t)
∂
∂p2
H(Φ(t), t)


The parameters of the simulated system were the followings:

m1 = 1, l1 = 1, m2 = 1, l2 = 1, g = 9.81

The vector-valued function on the right-hand side is strongly nonlinear in the gen-
eralized coordinates and momenta, however linear in the control u(t).

Φ̇(t) = F (Φ(t)) +
( 0

1
0
0

)
u(t)

We separate the linear term from the right-hand side, like in (1.15).

F (Φ) = D0 F · Φ +
γ(Φ):=︷ ︸︸ ︷

F (Φ)−D0 F · Φ (3.9)

The γ function is the uncertainty in the system. We cannot obtain exact estimates
on γ but we know that

• γ is smooth,

• γ(0) = 0 and

• D0 γ = 0.
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Figure 3.7: Non-conic nonlinearity

Due to the quadratic terms in γ, we failed to enclose the nonlinearity into a cone.
However one can state, that for every r > 0, there exist a small neighbourhood
0 ∈ Nr ⊆ R4 such that following holds true for all Φ ∈ Nr.

‖γ(Φ)‖2 ≤ r · ‖Φ‖2

(3.10)

which is equivalent to γ(Φ)
Φ

>−I 0
0 r · I

γ(Φ)
Φ

 ≥ 0. (3.11)

One shall choose r as big as possible, to enlarge the set Nr. As r grows we have less
and less information about the uncertainty, therefore the feasibility breaks down.

Like in Section 3.2, the disturbance based approach is used, to treat the nonlin-
earity. The simulated system is the following.

Φ̇ = AΦ +Bu+ Ew (Φ)

y = CΦ

where w (Φ) = 1000 · γ(Φ) and

A =


0 1 0 −1
2g 0 0 0
0 −1 0 2
0 0 g 0

 ,

B =


0
1
0
0

 , E = 0.001 · I4, C =
1 0 0 0

0 0 1 0

 .

2The calculations for the Hamiltonian system was done with Wolfram Mathematica.
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Formally there is no uncertainty applied, therefore lp = lq = 0. The cost matrices
are

QL = I4, RL = 1, SL = 0.01 · I4

We do not require any control constraint (Qu does not appear).
The definition of the disturbance w (Φ) and E are motivated by numerical rea-

sons. The choice of SL is also intuitive. In (3.11) it can be seen, that no matter how
we choose r > 0, there will be a small neighbourhood of the origin, where

‖w‖SL
2 ≤ ‖x‖2 + ‖u‖2 = ‖ζ‖2

holds true. Consequently, the inequality in the definition of Class ∆I is satisfied
only in a well defined but unknown neighbourhood N . Thus, the inequality for the
running cost

L(z(t), w(t)) ≥ 0

is not a priori guaranteed. However, after a successful simulation, a monotonically
decreasing Lyapunov function indicates, that the system state did stay inside the
above mentioned neighbourhood. If an increasing Lyapunov function is experienced,
then the stabilization is not guaranteed and the feasibility can break down.

The auxiliary variable α̂ was set to 5 · 10−3. We chose the initial state x0 =
(0, 0,−0.2, 0)> and we simulated the system for 4 seconds, by dividing this interval
into 16 equal time instances. The numerical problems, mentioned in Section 3.2,
occured in some of the sampling instants. In these time instances we used the last
successful solution of the LMI.

One can see the Lyapunov function on Figure 3.8(d), which is increasing, however
the stabilization succeeded. By assigning a smaller multiplier term for SL the Class
∆I condition can be enforced. With such a vague knowledge about the nonlinearity,
the stabilization cannot be guaranteed, however some successful simulations can be
presented.
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Figure 3.8: Simulation of system 3.3

(a) ‖x(t)‖

(b) ‖x̂(t)‖

(c) u(t) = Kk
c · x̂(t)

(d) z(t)>Pkz(t)
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