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1 Vectors
Vectors naturally arise when dealing with real-life quantities what cannot be expressed with a single number.
Namely: displacement, velocity, force.

Here we mostly deal with 2 dimensional vectors (plane), or 3 dimensional vectors (space), but it is interesting
to mention 4 dimensional spaces, such as space-time. In mathematics, abstract vector spaces can have any
dimension, even more than finite.

Some of the figures are from Ferenc Wettl’s lecture notes.

1.1 Basic definitions
Definition 1.1. A vector is a directed line segment, it encodes the relative position between its end and starting
points.

A vector is uniquely determined by its length and direction. Two vectors are the same if and only if they
have the same length, they are parallel and have the same orientation. This means that if one translates a
vector (both starting and end points), then it stays the same. The null-vector has length 0 and its direction is
irrelevant, its staring and end points coinside (starting point = end point).

Let us choose an origin point in the space: O. Then the points in the space can be associated with their
position vectors:

P ↔
−−→
OP

The null vector represents the origin.
Notations:

• A vector: −→v or v

• From starting to end point: −−→AB

• length, also called norm: ‖v‖

• angle of vectors: ∠(a,b) ∈ [0, π]

• parallel or collinear (same direction, maybe opposite orientation): a ‖ b

• perpendicular: a ⊥ b

Note that the null-vector is parallel and perpendicular to every vector.

1.2 Operations and their properties
Definition 1.2 (Sum of two vectors). Let a and b two vectors, to calculate a + b we translate the starting
point of b to the endpoint of a, and the start point of a + b is the start point of a and its end point is the end
point of the translated b. In other word: −−→AB +−−→BC = −→AC.

Theorem 1.3 (Commutativity).
a + b = b + a

Proof. By parallelogram law. See Figure 1a

(a) commutativity and
parallelogram law (b) Associativity

Figure 1

Theorem 1.4. One can get a + b by parallelogram law. In particular, if a parallelogram has two neighbouring
sides a and b, then its diagonal is a + b.
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Proof. By parallelogram law. See Figure 1a.

Theorem 1.5 (Associativity).
a + (b + c) = (a + b) + c

Proof. See figure 1b

Definition 1.6 (Scalar multiplication). Let c ∈ R a scalar number and a a vector, we define c ·a by taking the
direction of a and multiply its length by c, reverse the orientation if c < 0.

Note that 0 · a = 0 for any a. In particular, multiplying with −1 (negation) reverses the orientation:
−
−−→
AB = −−→BA. One can subtract vectors as adding its negate. See Figure 2.

Figure 2: Subtracting vectors

Theorem 1.7 (Properties of the operations). For any vector a,b and c and scalar numbers r, s the following
holds.

commutativity a + b = b + a

associativity a + (b + c) = (a + b) + c

additive identity a + 0 = a

additive inverse a + (−a) = 0

compatibility r · (s · a) = (r · s) · a

distributivity I r · (a + b) = r · a + r · b

distributivity II (r + s) · a = r · a + s · a

scalar identity 1 · a = a and 0 · a = 0

Definition 1.8 (dot product). Let a,b two vectors, then their dot product is the following number.

a · b = ‖a‖ · ‖b‖ · cos∠(a,b)

If any of the vectors is a null-vector, then the length is 0 so the angle is irrelevant.

Theorem 1.9. The dot product is symmetric and linear, i.e.

1. a · b = b · a

2. (c · a) · b = c · (a · b)

3. a · (b + c) = a · b + a · c

Proof. The 1. follows from the definition.
The 2. is trivial.
The 3. See Figure 3.

Theorem 1.10.
a ⊥ b⇔ a · b = 0

Proof. cos∠(a,b) = 0.

Theorem 1.11.
a · a = ‖a‖2

or equivalently √
a · a = ‖a‖

Proof. cos∠(a,a) = 1.
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b + c

a

b

∠(b, a)

c
∠(c, a)

‖b‖ · cos ∠(b, a)

‖c‖ · cos ∠(c, a)

‖b + c‖ · cos ∠(b + c, a)

Figure 3: The distributivity of the dot product

Theorem 1.12.
∠(a,b) = arccos a · b

‖a‖ · ‖b‖

Proof. a · b = ‖a‖ · ‖b‖ · cos∠(a,b) by definition.

a · b
‖a‖ · ‖b‖ = cos∠(a,b)

Theorem 1.13 (Projection).

1. If ‖e‖ = 1 and b is an other vector, then
(e · b)e

gives the projection of b to e. Note that the first product is a dot product and the second is a scalar
multiplication.

2. Also if a is any vector (except the null-vector), then

proja b := a · b
a · a a

gives the projection to the direction of a. Note that the fraction is a scalar divided by an other scalar.

3. For the projection proja b it is true that (b− proja b) ⊥ a.

Proof. For the first part, see Figure 4a.
The second part is as follows. Take a′ := a

‖a‖ . Then a′ has length 1, and we can apply the first part.

(a′ · b)a′ =
(

a
‖a‖ · b

)
a
‖a‖ =

(
a√
a · a

· b
)

a√
a · a

= a · b
a · a a

The third part can be explicitly calculated:

(b− proja b) · a = b · a −
(

a · b
a · a a

)
· a = b · a − a · b

a · a · (a · a) = b · a − a · b = 0

And they are perpendicular as Theorem 1.10 says.

Definition 1.14 (Right-hand rule). 3 vectors in a 3 dimensional space satisfy the right-hand rule if they fit on
ones right hand: thumb, index finger and middle finger as the first, second and third vector. See Figure 5
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(a) Projection with unit-length
vector

(b) Parallel and perpendicular
component via projection

Definition 1.15 (cross product). Let a,b two vectors in the 3-dimensional space, then their cross product is
the vector which

1. has length ‖a × b‖ = ‖a‖ · ‖b‖ · |sin∠(a,b)|

2. is perpendicular to both a and b and

3. its orientation is given by the right-hand rule. See Figure 5

Figure 5: The right-hand rule

Note that it is defined only in 3 dimensions. Also note that ‖a×b‖ is the area of the parallelogram spanned
by a and b.

Theorem 1.16. The cross product is anticommutative and linear, i.e.

1. a × b = −b× a

2. (c · a)× b = c · (a × b)

3. a × (b + c) = a × b + a × c

The proof is omitted.

Theorem 1.17. a and b are parallel if and only if a × b = 0.

Proof. sin∠(a,b) = 0.

In particular, a × a = 0.

Definition 1.18 (triple product). Let a,b and c be three vectors in 3 dimensional space. Then the scalar
valued triple product is the following.

(a b c) = a · (b× c)

Theorem 1.19. |(a b c)| is the volume of the Parallelepiped with edges a, b and c.

Proof. sketchsketch

Exercise 1.1. What is the volume of the tetrahedron with vertices A,B,C and D?

Theorem 1.20. The triple product is linear in all of its three variables, invariant under circular reordering and
anticommutative under non-circular reordering. i.e.

• ((a1 + a1) b c) = (a1 b c) + (a2 b c), and similarly in every variable.
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• ((x · a) b c) = x · (a b c), and similarly in every variable.

• (a b c) = (b c a) = (c a b)

• (a b c) = −(c b a)

Exercise 1.2. Prove the above theorem!

Theorem 1.21. For the triple product (a b c) te following holds.

• (a b c) = 0 if and only if a,b and c are co-planar, they are on the same plane.

• (a b c) > 0 if and only if the vectors obey the right-hand rule.

• (a b c) < 0 if and only if the vectors obey the left-hand rule.

1.3 Linear (in)dependence and basis
Definition 1.22 (linear combination). Let v1,v2, . . .vn be any vectors and c1, c2, . . . cn any scalar numbers.
We call the following a linear combination.

c1 · v1 + c2 · v2 + . . .+ cn · vn

We call the scalars coefficients.

Theorem 1.23. Lets take a non null-vector v. Every vector a which is parallel to v can be uniquely determined
in the form a = c · v.

Proof. If the vectors v and a have the same orientation, then

c = ‖a‖
‖v‖

without dividing by zero.
If they have opposite orientation, then c = −‖a‖‖v‖ .

Also c · a is parallel with a for every c ∈ R.

Theorem 1.24. Lets take two vectors a1 and a2 which are not parallel. Then every vector v in their plane
can be uniquely determined in the form

v = v1 · a1 + v2 · a2

Proof. To get the scalars v1 and v2, use the parallelogram as in Figure 6.

Figure 6: Decomposition of a vector in two dimensions

To get uniqueness, suppose the contrary, namely that

v = v1 · a1 + v2 · a2 = v′1 · a1 + v′2 · a2

Then one can get
(v1 − v′1) · a1 = (v2 − v′2) · a2

But a1 and a2 are not parallel, so the previous theorem says that the scalar coefficients can be only zero.

Finding of the coefficients v1 and v2 (with respect to the given vectors a1 and a2) is called decomposition.
Similarly, in 3 dimensions if one takes 3 vectors, which are not in the same plane, then every other vector

can be uniquely expressed as the linear combination of the former vectors, see Figure 7.
The former theorems motivates the following definition.
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Figure 7: Decomposition of a vector in three dimensions

Definition 1.25 (Linear independence). Let v1,v2, . . .vn be vectors from a vector space (2 or 3 dimensional,
or in any dimension). These vectors are called linearly independent if no linear combination produces the null-
vector, except the trivial one.
In other words:

c1 · v1 + c2 · v2 + . . .+ cn · vn = 0⇒ c1 = c2 = . . . = cn = 0

There is an equivalent definition, that no vector cannot be expressed as a linear combination of the others.

Definition 1.26 (Dimension). The dimension of a vector space is the maximum number of its independent
vectors.

For example on a plane, there is no more than two independent vectors, see Theorem 1.24. Or in a 3
dimensional space, there is no more than 3 independent vectors.

Theorem 1.27 (Unique decomposition). Lets take an independent set of vectors v1 . . .vn and one which is
not independent from the former ones: x. Then x can be expressed uniquely as the linear combination of the
others.

Proof. Being not independent from the others means that x can be expressed (decomposed) as

x = c1 · v1 + . . . cn · vn

So the only thing to prove is that the coefficients are unique. Let us suppose the contrary:

x = d1 · v1 + . . . dn · vn

then
0 = (c1 − d1) · v1 + . . . (cn − dn) · vn

and due to independence we get that all of the subtractions have to be 0.

Definition 1.28 (Basis). A maximal set of independent vectors is called a basis.

Theorem 1.29 (Coordinates). Given a basis {v1, . . .vn}, one can make a one-to-one correspondace between
the vectors and n-tuples of numbers, which are the coordinates.

Proof. As mentioned in Theorem 1.27, the coefficients c1, . . . cn are uniquely determined for any vector. Also,
given the coefficients, the linear combination is defined uniquely.

The n-tuple (c1, . . . cn) is called the coordinates of the vector (with respect to the basis {v1, . . .vn}). Note
that the coordinates are relative up to a given basis.

Exercise 1.3. Szép Gabriella’s example: determine the ratio AM : MF on Figure 8!

1.4 Standard basis
Let e1, e2 and e3 be the unit length coordinate vectors in the 3 dimensional space. Sometimes called i, j and k
respectively. Note that ‖i‖ = ‖j‖ = ‖k‖ = 1, any two of them are perpendicular and they are ordered according
to right-hand rule.

Note that the Theorem 1.29 yield for the standard basis that i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1).
Moreover, one can define Rn only with coordinates, without abstract vectors.

7



A Ba

b

D CE(1 : 1)

F (1 : 4)•

•

•
M

Figure 8

Definition 1.30 (Determinant). For 2 and 3 dimensions see https://en.wikipedia.org/wiki/Determinant.

Theorem 1.31 (Operations in the standard coordinates). Let a = (a1, a2, a3), b = (b1, b2, b3) and c =
(c1, c2, c3) be three vectors and their standard coordinates and x ∈ R a scalar. The operations can be calculated
as follows:

• x · a = (x · a1, x · a2, x · a3)

• a + b = (a1 + b1, a2 + b2, a3 + b3)

• a · b = a1 · b1 + a2 · b2 + a3 · b3

• ‖a‖ =
√

a · a =
√
a2

1 + a2
2 + a2

3

• a × b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
• (a b c) =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
Proof.

•
x · a = x · (a1 · i + a2 · j + a3 · k) = x · a1 · i + x · a2 · j + x · a3 · k = (x · a1, x · a2, x · a3)

•

a+b = (a1·i+a2·j+a3·k)+(b1·i+b2·j+b3·k) = ((a1+b1)·i+(a2+b2)·j+(a3+b3)·k) = (a1+b1, a2+b2, a3+b3)

•

a · b = (a1 · i + a2 · j + a3 · k) · (b1 · i + b2 · j + b3 · k) =
a1 · b1 · i · i + a1 · b2 · i · j + a1 · b3 · i · k+
a2 · b1 · j · i + a2 · b2 · j · j + a2 · b3 · j · k+
a3 · b1 · k · i + a3 · b2 · k · j + a3 · b3 · k · k = a1 · b1 + a2 · b2 + a3 · b3

the restthe rest

Theorem 1.32. Let a = (a1, a2, a3), b = (b1, b2, b3) and c = (c1, c2, c3) be three vectors in the space. They
are independent, in fact they form a basis, iff ∣∣∣∣∣∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ 6= 0

8

https://en.wikipedia.org/wiki/Determinant


1.5 Homeworks due to Sept. 15.
Exercise 1.4. Let A,B,C and D the vertices of the bottom side of a cube, and A1, B1, C1 and D1 the vertices
of the upper side of the cube. Determine the vector −−→AB +−−→AC1 +−−→BD1 +−−→C1B with starting and end points.

Exercise 1.5. Given three points A(1, 0, 1), B(0, 2, 1) and C(0, 1, 2)

1. Find the area of the triangle ABC!

2. Find the angle at the vertex A!

Exercise 1.6. Let ‖a‖ = 2, ‖b‖ = 3 and ∠(a,b) = 2π
3 . Calculate

‖(a + b)× (2a − b)‖ =?

1.6 Homeworks due to Sept. 22.
Exercise 1.7. Let u = (1, 2, 1), v = (0, 1,−1) and w = (1, 0, 0). Calculate

(w× v)× u

Exercise 1.8.

1. What is the angle of the vectors (2,−1) and (−1, 3)?

2. What is the right value of t where the angle of the vectors (1, t, 1) and (t,−1, 1) is exactly 60◦?

2 Analytic geometry
In this section we make use of the coordinates and we calculate all sorts of geometric problems with them.
These calculations can be done soloely with coordinates (numbers), without any actual geometry, this is why
the name analytical.

2.1 Equations of line and plane
Definition 2.1. A line can be defined by a point P on the line and a (non-zero) direction vector v. The
parametric vector equation of the line is

P + tv t ∈ R

The parametric coordinate equation of the line isP1 + t · v1
P2 + t · v2
P3 + t · v3

 t ∈ R

This means that for every number t ∈ R one can get a point on the line.xy
z

 =

P1 + t · v1
P2 + t · v2
P3 + t · v3


If v1 6= 0, v2 6= 0 and v3 6= 0 then

t = x− P1

v1

t = y − P2

v2

t = z − P3

v3
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Definition 2.2. The system of equations of the line is

x− P1

v1
= y − P1

v2
= z − P3

v3

If v1 = 0, then x = P1 and we exclude the first equation. If v2 = 0, then

x− P1

v1
= z − P3

v3
and y = P2

remains.

These formulas also work in 2 dimensions, except that there is no z and third coordinate.

Definition 2.3. A plane can be determined with a point P and two independent vectors on it: v1 and v2. The
parametric vector equation of the plane is

P + tv1 + sv2 t, s ∈ R

For every value of t and s one gets a point on the plane.

Definition 2.4. A plane can be determined with a point P and one normal vector n, a vector which is
perpendicular to the plane. The vector equation of the plane is

(x− P ) · n = 0

With coordinates, the coordinate equation of the plane is

(x− P1) · n1 + (y − P2) · n2 + (z − P3) · n3 = 0

This means that every point (x, y, z), which fulfills this equation, is on the plane.

Given two vectors v1 and v2, one can get a normal vector by the cross product.

n = v1 × v2

Also, −v1 × v2 = v2 × v1 is good as well.

Theorem 2.5 (Distance between point and line). Let e be a line through point P with direction v and an
other point Q anywhere. Then the distance between Q and e is the following.

distance(Q, e) = ‖(Q− P )− projv(Q− P )‖

Proof. At first, let us suppose that P = 0. Then we simply project the pont Q to the line, and then we calculate
the distance between the original and the projected point. See Figure 9.

‖Q− projv Q︸ ︷︷ ︸
projected point︸ ︷︷ ︸

original−projected

‖

For the second part, if P is not zero, then we translate both Q and the line e with −P and then we calculate

e the line
0
• v

Q

distance

projv Q
•

Figure 9: Distance from a line (P = 0)

like in the first part. The translated point is Q − P and the translated line has the same direction, but its
basepoint is P − P = 0. This means that we apply the above formula for Q− P :

‖(Q− P )− projv(Q− P )‖
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Theorem 2.6 (Distance between point and plane). Let S be a plane with basepoint P and normal vector n
and an other point Q anywhere. Then the distance between Q and S is the following.

distance(Q,S) = |(Q− P ) · n|
‖n‖

Note that there is a dot product and an absolute value in the enumerator.

Proof. See Figure 10.

S the plane
P
•

n

Q

Q
−
P

distance

Figure 10: Distance from a plane

The length of the projected vector gives the distance.

‖ projn(Q− P )‖ =
∥∥∥∥ (Q− P ) · n

n · n n
∥∥∥∥ =

∣∣∣∣ (Q− P ) · n
n · n

∣∣∣∣ · ‖n‖ =
∣∣∣∣ (Q− P ) · n
‖n‖2

∣∣∣∣ · ‖n‖ = |(Q− P ) · n|
‖n‖

Example 2.1. Take three points in the space A(1, 2, 3), B(2, 3, 4) and C(0, 1, 0). What is the plane through
these points?

Solution. For determining the plane, we give a basepoint and a normal vector. Lets choose A as a basepoint
(any of the three points are good). For the normal vector

n = −−→AB ×−→AC = (B −A)× (C −A) =

2
3
4

−
1

2
3

×
0

1
0

−
1

2
3

 =

=

∣∣∣∣∣∣
i j k
1 1 1
−1 −1 −3

∣∣∣∣∣∣ = i ·
∣∣∣∣ 1 1
−1 −3

∣∣∣∣− j ·
∣∣∣∣ 1 1
−1 −3

∣∣∣∣+ k ·
∣∣∣∣ 1 1
−1 −1

∣∣∣∣ =

−2
2
0


From these we can write

(x−A) · n = 0

which is
(x− 1) · (−2) + (y − 2) · 2 + (z − 3) · 0 = 0

or the same as
−2x+ 2y = 2 or − x+ y = 1

2.2 Homeworks due to Sept. 29.
Choose 3 out of 6!

Exercise 2.1. Determine the line with parametric equation and system of equations!

• The line which goes through the point A(−2, 5, 1) and has a direction v(−1, 2, 3).

• The line which is parallel to j(0, 1, 0) and goes through point A(5, 1, 4).

• The line which goes through points P (3, 1, 2) and Q(−1, 1, 3).
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Exercise 2.2. What is the basepoint and normal vector of the plane with the following equation?

x+ 2y + 2z = 13

What is the distance of the origin (the point (0, 0, 0)) from this plane?

Exercise 2.3.

• Determine the plane (with its equation) which goes through the origin and is perpendicular to the line

x− 1
2 = y − 2

3 = z + 3
4

• Determine the line (with both parametric equation and system of equations) which goes through the point
A(0, 7, 0) and is perpendicular to the plane

7x− y + 3z = 0

Exercise 2.4. Determine the plane, which goes through the points A(−1, 2,−3), B(6,−2,−3) and is parallel
to the line x−1

3 = y+1
2 = 3−z

5 !

Exercise 2.5.

• Are these points on the same line?

A(−2, 3, 1), B(0, 5, 2), C(−4, 1, 0)

• Are these points on the same plane?

A(−3, 0, 4), B(4, 1, 2), C(0, 0, 0), D(5, 2, 1)

Explain why!

Exercise 2.6. What are the coordinates of the point M on Figure 11?

A(0, 0) B(1, 0)

C(1, 1)D(0,1)
•1 : 1

•M

Figure 11

2.3 Relative positions
Theorem 2.7 (Line and plane). Let S be a plane and e be a line in the space. Let n be the normal vector of
the plane and v be the direction of the line. Their relative position can be one of the followings.

intersecting They have exactly one common point. Figure 12a.

parallel They have no common point. Figure 12b.

coinside The line is on the plane (they have infinitely many common points). Figure 12c.
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S

e

•

(a) intersecting

S

e

(b) parallel

S
e

(c) coinside

Figure 12: Possible positions of a line and a plane

The parallel and the coinside cases can occur only if the direction of e is perpendicular to the normal vector of
S. With formulas:

v · n = 0

To check whether they have a common point or not, one should try to solve the equation of the plane and the
system of equations of the line together.

Theorem 2.8 (Line and line). Let e and f be two lines in the space with direction vectors ve and vf . Their
relative position can be one of the followings.

intersecting They have exactly one common point. Figure 13a.

parallel They have no common point, but they are parallel. Figure 13b.

skew They have no common point, and they are not parallel either. Figure 13c.

coinside The two lines are actually the same.

The parallel and the coinside cases can occur only if the direction of e is parallel to the direction of f . With
formula:

ve = a · vf for some a ∈ R

To check whether they have a common point or not, one should try to solve the two system of equations together.

fe

•

(a) intersecting

e

f

(b) parallel

fe

(c) skew

Figure 13: Possible positions of a line and a plane

Theorem 2.9 (Plane and plane). Two planes in the space can have the following relative positions.

intersecting They have some common points.

parallel They have no common point, but they are parallel.

coinside They are actually the same.

The parallel and the coinside cases can occur only if the normal vectors are parallel. If they intersect then the
common part is a line. To get the intersection, one have to solve the two equations of the lines as a system of
equations.

Example 2.2. Let S : 2x + y − z = 3 and T : x + 2y + z = 2 be two planes. What is their relative position?
What is their intersection?

13



Solution. The normal vector of the first one is nS(2, 1,−1) and for the second one nT (1, 2, 1). Those two vectors
are clearly independent, so they are not on the same line. (you can check it by nS × nT 6= 0) This means that
the planes must intersect and the intersection must be a line. To determine the intersection one should solve
the following.

2x+ y − z = 3
x+ 2y + z = 2

If I add the two equations, then I get 3x+ 3y = 5 or x+ y = 5
3 . If I subtract them, then I get x− y − 2z = 1

or x− y = 1 + 2z.

x+ y =5
3

x− y =1 + 2z

If I add the latter two, then I get 2x = 5
3 + 1 + 2z or x = 4

3 + z. If I subtract them, then 2y = 5
3 − 1 − 2z or

y = 1
3 − z. So what I got is the following.

x = 4
3 + z

y = 1
3 − z

z ∈ R

This gives the parametric equation of the intersection:xy
z

 =

4/3
1/3
0

+ t ·

 1
−1
1



2.4 Homeworks due to Oct. 06.
You have to do at least 3 out of 6!

Exercise 2.7. Determine the distance between the following objects.

• The point (0, 0, 12) and the line x = 4t, y = −t, z = 2t.

• The point (0,−1, 0) and the plane 2x+ y + 2z = 4.

Exercise 2.8. Determine the intersection point of the following objects, if there is any.

• The line x = 3− t, y = 2− t, z = 3− t and the plane −2x+ y + 3z − 3 = 0.

• The line x+ 2 = y − 3 = z+1
3 and the plane x+ 2y − z + 2 = 0.

Exercise 2.9. Does the following lines intersect? If so, what is the angle between them? Also calculate the
plane through them! 1

2
3

+ t ·

0
1
2

 and

3
2
1

+ t ·

−1
0
1


Exercise 2.10. What is the angle between the following planes?

S : 2x+ y − z = 3 and T : x+ 2y + z = 2

Exercise 2.11. Determine the planes through the sides of the Tetrahedron with vertices

A(0, 0, 0), B(1, 0, 0), C(0, 1, 0), D(0, 0, 1)

The anwer is four equations, because the Tetrahedron has four sides!

Exercise 2.12. Determine the equidistant plane of the points A(1, 0, 2) and B(0, 1, 1)!

14
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3 Sequences
The following section deals with infinite sequences of numbers. In particular, we are interested in the behaviour
of these numbers at infinity. The study of these infinite kind is the first step in calculus and analysis.

Some parts of the material are from Attila Andai’s lecture notes.

3.1 Basic concepts

n ® ¥

?

20 40 60 80 100
n

0.1

0.2

0.3

0.4

0.5

0.6

an

Figure 14: We are interested in the behaviour of these numbers at infinity

Definition 3.1 (Sequence). A sequence is a N 7→ R function. For the function a : N 7→ R we usually denote
a(n) (spelled as "a of n") with an, the nth element in the sequence.

Definition 3.2 (Limit). We say that the sequence a : N 7→ R has the limit A ∈ R if

for any ε > 0 there exists an N ∈ N such that whenever n > N then |an −A| < ε also holds.

With formulas:
∀ε > 0 ∃N ∈ N such that ∀n(N < n⇒ |an −A| < ε)

The sequence’s limit is infinity (∞) if it grows beyond any finite number:

∀ε > 0 ∃N ∈ N such that ∀n(N < n⇒ an > ε)

The sequence’s limit is negative infinity (−∞) if it decreases below any number:

∀ε < 0 ∃N ∈ N such that ∀n(N < n⇒ an < ε)

If a sequence has a finite limit, then we say that it is convergent, otherwise divergent.

N20 40 60 80 100
n

-0.05

0.05

0.10

0.15

0.20

0.25

0.30

an

N20 40 60 80 100
n

-0.05

0.05

0.10

0.15

0.20

0.25

0.30

an

Figure 15: Limit

Example 3.1. Let an = 1
n then prove that limn→∞ an = 0.
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Proof. To check whether the definition 3.2 holds, one has to determine N for every ε > 0 number. Let us
suppose that ε > 0 is given and we want to determine when

|an −A| < ε

does hold. In this example: ∣∣∣∣ 1n − 0
∣∣∣∣ < ε

m
1
n
< ε / · n

ε
m

1
ε
< n

This concludes that for N = 1
ε the definition is satisfied. Actually N may not be an integer, so we should write

its rounded value instead: N = floor( 1
ε ).

Example 3.2. Let an = 1
n2 then prove that limn→∞ an = 0.

Proof. Like before, one has to solve
|an −A| < ε

for n with a given ε. In this example:∣∣∣∣ 1
n2 − 0

∣∣∣∣ < ε

m
1
n2 < ε / · n

2

ε
m

1
ε
< n2 /

√

m√
1
ε
< n

This concludes that for N =
√

1
ε the definition is satisfied.

Theorem 3.3 (Constant sequence). Let an = a ∈ R a constant sequence. Then limn→∞ an = a.

Proof. For any ε > 0 the index N = 0 is sufficient.

|an − a| = |a− a| = 0 < ε no matter what n is

Theorem 3.4.
lim
n→∞

an = 0⇔ lim
n→∞

|an| = 0

Proof. The convergence is equivalent to

|an − 0| < ε from a given number n > N

In which
|an − 0| = |an| =

∣∣|an| − 0
∣∣

Formally this means that limn→∞ an = 0 and limn→∞ |an| = 0 should be both true, or both false. In other
words they are equivalent.

In the following theorems I will use the so called triangle inequality, see the Theorem 4.1 in the Appendix.

Theorem 3.5 (Uniqueness of the limit). If limn→∞ an = A and limn→∞ an = B then A = B.
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This means that a convergent sequence has exactly one limit.

Proof. Let us suppose the contrary, namely that A 6= B. We will find that this is impossible. If A 6= B then
|A−B|

2 > 0, let ε := |A−B|
2 . By the definition of the limit, there should be an N ∈ N such that for every n > N

|an −A| < ε and |an −B| < ε

hold. If so, then the following reasoning should be true.

|A−B|
2 = |(an −B)− (an −A)|

2 ≤ |(an −B)|+ |(an −A)|
2 <

|A−B|
2 + |A−B|

2
2 = |A−B|2

This chain of inequalities would mean that |A−B|2 < |A−B|
2 , which is wrong  . This means that my original

assumption should be false: A 6= B is false, therefore A = B.

Definition 3.6. Let an be a sequence.
an is bounded from above if there exists a K ∈ R such that for every n ∈ N

an ≤ K.

In this case K is an upper bound.
The sequence is bounded from below if there exists a K ∈ R such that for every n ∈ N

an ≥ K.

In this case K is an lower bound.
The sequence is bounded if it is bounded from both above and below.

Theorem 3.7. If limn→∞ an = A then an is bounded.

Proof. Let ε = 1, for this ε one should be able to find an index N ∈ N such that

|an −A| < ε = 1

for all n > N . This means that
A− 1 ≤ an ≤ A+ 1 for n > N.

This means that an is bounded for indices n > N . What about 0 ≤ n ≤ N?

K1 := max
0≤n≤N

an

K2 := min
0≤n≤N

an

For these numbers it is true that

an ≤ max(K1, A+ 1) and
an ≥ min(K2, A− 1)

So there is an upper and a lower bound.

Note that if there is an upper and a lower bound, then one can come up with a common bound. If

an ≤ K1 and
an ≥ K2

then K := max(|K1|, |K2|) and then

−K ≤ an ≤ K
m

|an| ≤ K

Theorem 3.8. Let bn be a bounded sequence and we have a sequence limn→∞ an = 0. Then

lim
n→∞

an · bn = 0

17



Proof. bn is bounded, this means that there exists a K > 0 such that

|bn| ≤ K ∀n ∈ N

Let ε > 0 be any positive number, the convergence of an says that there is an N ∈ N such that |an| < ε
K for

n > N . Then we have that

|an · bn| = |an| · |bn| ≤ |an| ·K <
ε

K
·K = ε if n > N

Theorem 3.9. If limn→∞ an = A and limn→∞ bn = B then

lim
n→∞

an + bn = A+B

We say that the limit of the sum is the sum of the limits or the addition is continuous!

Proof. If both an and bn are convergent, then for every ε > 0 I can find an index N such that for every n > N
the followings hold.

|an −A| <
ε

2 and |bn −B| <
ε

2
With that I can conclude that

|an + bn − (A+B)| = |(an −A) + (bn −B)| ≤ |an −A|+ |bn −B| <
ε

2 + ε

2 = ε

In this way I could find the index N for any given ε for the sequence an + bn.

Theorem 3.10. If limn→∞ an = A and limn→∞ bn = B then

lim
n→∞

an · bn = A ·B

We say that the limit of the product is the product of the limits or the multiplication is continuous!

Proof. We assumed that both an and bn are convergent. Theorem 3.7 says that an is bounded:

∃K > 0 such that |an| ≤ K.

Also for every ε > 0 I can find an index N such that for every n > N the followings hold.

|an −A| <
ε

K + |B| and |bn −B| <
ε

K + |B|

With these I can conclude that

|an · bn −A ·B| = |an · bn − an ·B + an ·B −A ·B| = |an · (bn −B) + (an −A) ·B| ≤

|an · (bn −B)|+ |(an −A) ·B| = |an| · |bn −B|+ |an −A| · |B| ≤

K · |bn −B|+ |an −A| · |B| < K · ε

K + |B| + |B| · ε

K + |B| = ε

In this way I could find the index N for any given ε for the sequence an · bn.

Theorem 3.11. If limn→∞ an is convergent and c ∈ R is a number, then

lim
n→∞

c · an = c · lim
n→∞

an

Theorem 3.12. If an is convergent and the limit is not zero, then

lim
n→∞

1
an

= 1
limn→∞ an

We can say that the division is continuous, as long as the denominator is not zero.

This also concludes that one can divide two convergent sequences and their limits as long as the denominator
is not zero.

lim
n→∞

an
bn

= limn→∞ an
limn→∞ bn

18



Theorem 3.13. If limn→∞ an = A and p ∈ N then

lim
n→∞

(an)p = Ap

We can say that the pth power is continuous.

Theorem 3.14. If limn→∞ an = A and q ∈ N, q ≥ 2 and A > 0 then

lim
n→∞

q
√
an = q

√
A

We can say that the qth root is continuous.

Theorem 3.15. If the sequence an is monotone increasing and bounded from above, then it is convergent.

Proof.

Theorem 3.16 (Monotonity). Let an and bn are two convergent sequences, then

an ≤ bn ∀n ∈ N ⇒ lim
n→∞

an ≤ lim
n→∞

bn

Proof. Let us suppose the contrary, namely that A > B. In this case I will get a contradiction. If A > B then
ε := A−B

2 and choose N ∈ N such that

|an −A| < ε and |bn −B| < ε for n > N

Then

A− ε < an < A+ ε

B − ε < bn < B + ε

And

A− ε = A− A−B
2 = A+B

2 < an

bn < B + ε = B + A−B
2 = A+B

2
Which means that

bn <
A+B

2 < an

whish is a contradistion since we assumed that an ≤ bn  .
This means that my original assumption that A > B should be false, therefore

A ≤ B

Theorem 3.17 (Squeeze theorem). If there are three sequences an, bn and cn such that.

an ≤ bn ≤ cn

for all n ∈ N and
lim
n→∞

an = lim
n→∞

cn = x inR

then bn is also convergent and
lim
n→∞

bn = x

Proof. Let b′n := bn − an and c′n := cn − an then

0 ≤ b′n ≤ c′n
Since limn→∞ an = limn→∞ cn therefore limn→∞ c′n = 0. For any ε > 0 there exists an index N ∈ N such that
for n > N

c′n < ε

In this case
0 ≤ b′n ≤ c′n < ε

So I concluded that N is a good index for ε, which concludes that limn→∞ b′n = 0. From that I can say that

lim
n→∞

bn = lim
n→∞

(b′n + an) = lim
n→∞

b′n + lim
n→∞

an = 0 + x = x
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Theorem 3.18. If an ≤ bn are two sequences and limn→∞ an =∞ then

lim
n→∞

bn =∞

3.2 Homeworks due to Oct. 13.
You have to do at least 3 out of 6! Give an explanation (proof) how you came up with the answer, not just the
answer!

Example 3.3. Let an = 1 + 1
n what is the limit?

Example 3.4. Let an = 1
n + n, is it bounded from above or from below or neither or both?

Example 3.5. Let an = (−1)n

n , is it convergent? If so, what is the limit?

Example 3.6. Let an = sin(n)
n , is it convergent? If so, what is the limit?

Example 3.7. Let an = n2 − n, is it bounded from above or from below or neither or both?

Example 3.8. Let an be defined in the following way.

a0 = 0
a1 = 0.9
a2 = 0.99
a3 = 0.999
...

an = 0. 999 . . . 9︸ ︷︷ ︸
n times

Is it convergent, if so what is the limit?

3.3 Exercises for Oct. 20.
You don’t have to do any of them, it is for practicing!

Example 3.9. Calculate the limit of the followings

1. an = n
n2+1

2. an = n+1
n−1

You can find some exaples with solutions here:

Limits http://www.vitutor.com/calculus/sequences/problems_limit.html

Vectors

• http://math-exercises.com/analytical-geometry/analytic-geometry-of-the-straight-line-and-plane

• http://math-exercises.com/analytical-geometry/vectors

• http://math-exercises.com/analytical-geometry/relative-position-distance-and-deviation-between-points-lines-and-planes

They are not exactly the same as the homework exercises, but it can be useful.

4 Appendix
Here stand some common abbrevations and notations used in mathematics.
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Abbrevations

appendix supplement, addendum, postscript

iff if and only if, also denoted by ⇔

s.t. such that, something with the property that . . .

i.e. id est, latin for "that is"

q.e.d. quod erat demonstrandum, latin for "which is what had to be proven", marked as

e.g. exempli gratia, latin for "for example"

Mathematical symbols

∠ angle

∀ for all, every single one

∃ exists, there is one

∃! exists uniquely, there is exactly one, one and no more

:= define equals, the left-hand side is a new symbol or value, the right-hand side is a known thing which is the
definition of the new thing.

| • | absolute value of a number

‖ • ‖ norm or length of a vector

 this symbol marks contradiction.

The usual sets of numbers

N natural numbers: {0, 1, 2, . . .}

Z integers: {. . . ,−2,−1, 0, 1, 2, . . .}

Q rational numbers

R real numbers

C complex numbers

Basic theorems

Theorem 4.1 (Triangle inequality). For every real numbers a, b ∈ R the following holds.

|a+ b| ≤ |a|+ |b|

In particular, for −b:
|a− b| = |a+ (−b)| ≤ |a|+ | − b| = |a|+ |b|

This is also true for any vectors a,b:
‖a + b‖ ≤ ‖a‖+ ‖b‖
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