
Informatics 2, 3rd midterm (2019-05-13)
1 2 3 4 5

∑
The answers should fit next to the questions, if you used

a separate paper let us know clearly!

1.

a) Implement the factorial function, but not recursively!
(2 points)

def factorial(n):

b) Write a function with two inputs: a list and a number.
In the input list, take the multiple of each element with
the given number. Don’t return anything, but modify
the original list. (2 points)

def multiply(l, n):

c) Write a function with three input numbers, one positive
(n) and two non-negative (i, j). The output should be
a n × n numpy matrix where the ith row has a 1 at the
jth column and the rest is zero. (2 points)

def E(n, i, j):

2. Theoretical questions (4 points)

a) How many ways can you partition 3 as a sum of positive
integers (ordering matters)?

b) What is the maximum number of steps for a binary
search to find an element in a sorted list of length n?

c) Name a non-reference type!

d) What is the prefix-notation (Polish notation)?



3. You can see the implementation of the basic calcula-
tor on the right-hand-side. There are some mistakes in it
(both algorithmic and syntactic), find those and correct
them! (4 points)
4. Write a function that decides whether a string contains
a well-formed expression with parenthesis. Return True if
yes, False if not. (3 points)
An expression is well-formed if you have no more closing

parenthesis than opening parenthesis at any point in the
string. Also the string should contain as much opening
parenthesis as closing ones.

def wellformed(s):

Example:

>>> wellformed("1/(3*(3-1))")
True
>>> wellformed("1/(3*2))-1(")
False

5. Implement the solution of the Hanoi towers recursively!
(3 points)

def hanoi(n, source, destination, auxiliary):

Example:

>>> hanoi(3,"A","B","C")
A ==> B
A ==> C
B ==> C
A ==> B
C ==> A
C ==> B
A ==> B

class Node(object):
def __init__(self, kappa):

i = -1
if kappa.find("+") != -1:

i = kappa.find("+")
elif kappa.find("-") != -1:

i = kappa.find("-")
elif kappa.find("*") != -1:

i = kappa.find("*")
elif kappa.find("/") != -1:

i = kappa.find("/")

if i != -1
self.data = kappa[i]
self.left = Node(kappa[:i])
self.right = Node(kappa[i + 1:])

else:
self.data = kappa
self.left = None
self.right = None

def calculate(self):
if self.data == "+":

return self.left.calculate() - \
self.right.calculate()

elif self.data == "-":
return self.left.calculate() + \

self.right.calculate()
elif self.data == "*":

return self.left.calculate() * \
self.right.calculate()

elif self.data == "/":
return self.left.calculate() / \

self.right.calculate()
else:

return self.data


