
Informatics 2, 3rd midterm (2018-05-14) 1 2 3 4 5
∑

The answers should fit next to the questions, if you used
a separate paper let us know clearly!

1. You can see an implementation of a binary tree. Imple-
ment a count and depth method which return the number
of elements in the tree and the depth (height) of the tree.

(4 points)

class Node(object):
def __init__(self, data):

self.data = data
self.left = None
self.right = None

def insert(self, data):
if self.data > data:

if self.left is None:
self.left = Node(data)

else:
self.left.insert(data)

elif self.data < data:
if self.right is None:

self.right = Node(data)
else:

self.right.insert(data)

2. Theoretical questions (4 points)

a) How to search in a sorted list with binary search? Write
the algorithm with your own words.

b) How to solve the tower of Hanoi with a recursive algo-
rithm? Write the algorithm with your own words.

c) What is the difference between the dynamic program-
ming and recursion?

d) When is a binary tree unbalanced? Give an example.



3. There is a text where everything between quotion marks
(") is a comment. Write a function which returns a string
with the comments removed. (4 points)

def erasecomment(text):

Example

>>> print erasecomment(’cat "dog puppy" python’)
cat python

4. Finish the implementation if the “paint bucket” function.
(4 points)

Suppose that the picture is 20 × 20 in size and contains
only # and . characters.

picture = []
with open(’picture.txt’) as f:

for line in f:
picture.append(list(line.strip()))

def fill(x, y):

fill(0,0)
for x in picture:

print ’’.join(x)

5. The code on the right hand side is the calculator ex-
ample. Write a representation function for printing the
expression. Build the string from the expression tree
recursively. (4 points)
Example:

print Node("2*(3+4)")
(2)*((3)+(4))

class Node(object):
def __init__(self, kappa):

i = -1
if kappa.find("+") != -1:

i = kappa.find("+")
elif kappa.find("-") != -1:

i = kappa.find("-")
elif kappa.find("*") != -1:

i = kappa.find("*")
elif kappa.find("/") != -1:

i = kappa.find("/")
if i != -1:

self.data = kappa[i]
self.left = Node(kappa[:i])
self.right = Node(kappa[i + 1:])

else:
self.data = float(kappa)
self.left = None
self.right = None

def __repr__(self):


