Functions

At any part of a Python code you can define a function with the def keyword. Mind the code block (identation) and colon.

In [1]:
def function_name(n):
    "... code ..."

A function and a calling a function

The following is a function definition, a recipe which tells what to do if the function is called.

In [2]:
def square(L):
    new_L = []
    for i in L:
        new_L.append(i*i)
    return new_L

After the def keyword there is the name of the function (how we would like to call it). After that the parameter(s), comma separated, in parenthesis. After the colon there is the function body, that part is executed when the function is called.

Inside the function body there is a return keyword which tells the function to stop and the result of the function will be the value after the word return.

To call a function write its name and the necessary parameters in a parenthesis (in the example: a single parameter which is a list):

In [3]:
square([4, 3, 5])
Out[3]:
[16, 9, 25]

One can call the function to operate on a previously defined variable.

In [4]:
numbers = [5, 1, 8]
squared_numbers = square(numbers)
print numbers, squared_numbers
[5, 1, 8] [25, 1, 64]

If the function is correct then the result is the list of squared numbers and nothing unexpected happens, but look what happens in the following solution.

In [5]:
def square2(L):
    i = 0
    while i < len(L):
        L[i] = L[i] ** 2
        i += 1
    return L

numbers = [5, 1, 8]
squared_numbers = square2(numbers)
print numbers, squared_numbers
[25, 1, 64] [25, 1, 64]

The function modified its parameter, the original list, and also returned the modified list.

We will detail on this issue later in the semester, but for now: write functions which do not modify their parameters.

Multivariate functions

Parameters are listed in a comma separated list.

In [6]:
def dot_product(v1, v2):
    result = 0
    for i in range(len(v1)):
        result += v1[i] * v2[i]
    return result
In [7]:
dot_product([2, 3, 5], [1, 5, 2])
Out[7]:
27

Parameters can be any objects with any type. A function can have any given number of parameters, even 0. One can think of a nullary function as a constant, but nevertheless the parenthesis is mandatory.

In [8]:
def empty_list():
    return []
In [9]:
L = empty_list()
L.append(5)
print L
[5]

Function and method

A function (at first glance) is called in this way:

  • name of the function
  • parenthesis
  • parameters

A method looks like this:

  • an object
  • a dot
  • name of the method
  • parenthesis
  • additional parameters if needed
In [10]:
L = [5, 2, 4]
L.sort()
print L
[2, 4, 5]

The sort is a built in method of lists (a number itself cannot be sorted). For example there is a similar function called sorted:

In [11]:
L = [5, 2, 4]
new_L = sorted(L)
print L, new_L
[5, 2, 4] [2, 4, 5]

The function sorted does not modify the list itself, but returns a new, sorted list.

This is a common practice with methods and functions, but not a law.

  • the function does not modify its parameters but returns a value
  • a method does modify its parameter, but does not return a value (returns None)

Later we will learn how to write methods.

Using return

The command return exits the function without processing any further parts of the function body. One can take advantage of this behaviour:

In [12]:
def is_a_prime(n):
    for divisor in range(2, n/2):
        if n % divisor == 0:
            return False
    return True
In [13]:
print is_a_prime(15)
print is_a_prime(23)
False
True

If the function arrives at a true divisor then returns immediately because there is no need to look further. The True value is returned only if neither of the numbers were true divisors.

Remark: break exits a loop (only a loop and only one of them), and return exits a function (only a function and only one of them, but breaks any loop in that function).

None

One can return None to represent "no value is returned".

If a function has no return command then the result will be None. For example is you forgot to write return or you wrote it to the wrong place.

Remark: the .sort() method results None, but it sorts the list as a side-effect.

In [14]:
L = [3, 2, 1, 4]
l = L.sort()
print l, L
None [1, 2, 3, 4]

Function called inside a function

You can call any function (once defined) inside other functions as well. It is not only possible but encouraged!

Best if you write no more than 4-5 line functions and put those functions together to solve bigger problem. This way you functions will be shorter and harder to make mistakes. The goal and the mechanism of the function should be clear by reading its name and its parameters.

An example:

Write a function which has one parameter, a list, and finds the smallest and greatest elements in the list. Also replace the extremal values with a 0 value!

How to solve the task?

  1. break down to easier subtasks
  2. solve the subtasks
  3. put those together in the final solution

For example in this task the subtasks are:

  • finding minimum in a list
  • finding maximum in a list
  • erasing given elements of a list

Lets solve these

In [15]:
def minimum(L):
    min_elem = float("inf")
    for e in L:
        if e < min_elem:
            min_elem = e
    return min_elem

def maximum(L):
    max_elem = -float("inf")
    for e in L:
        if e > max_elem:
            max_elem = e
    return max_elem

def erase(L, elem):
    newL = L[:]     # makes a copy of L (sublist from the beginning to the end)
    for i in range(len(newL)):
        if newL[i] == elem:
            newL[i] = 0
    return newL

Now you have everything to write the main function:

In [16]:
def min_max_erase(L):
    minelem = minimum(L)
    maxelem = maximum(L)
    newL = erase(L, minelem)
    newL = erase(newL, maxelem)
    return newL
In [17]:
min_max_erase([2, 3, 1, 4, 6, 2, 9, 3, 1, 3, 1, 9, 3, 9])
Out[17]:
[2, 3, 0, 4, 6, 2, 0, 3, 0, 3, 0, 0, 3, 0]
In [18]:
min_max_erase([])
Out[18]:
[]
In [19]:
min_max_erase([1, 1, 1, 2])
Out[19]:
[0, 0, 0, 0]
In [20]:
min_max_erase([1,1])
Out[20]:
[0, 0]

A shorter solution for the last part (last three lines of the main function):

return erase(erase(L, minelem), maxelem)

You can solve this in one big function:

In [21]:
def min_max_erase2(L):
    min_elem = float("inf")
    for e in L:
        if e < min_elem:
            min_elem = e
            
    max_elem = -float("inf")
    for e in L:
        if e > max_elem:
            max_elem = e
            
    newL = L[:]     # makes a copy of L (sublist from the beginning to the end)
    for i in range(len(newL)):
        if newL[i] == min_elem:
            newL[i] = 0
            
    for i in range(len(newL)):
        if newL[i] == max_elem:
            newL[i] = 0
            
    return newL
In [22]:
min_max_erase2([2, 3, 1, 4, 6, 2, 9, 3, 1, 3, 1, 9, 3, 9])
Out[22]:
[2, 3, 0, 4, 6, 2, 0, 3, 0, 3, 0, 0, 3, 0]

The first solution is

  • easier to read,
  • easier to modify,
  • easier to fix.
  • And you can use its components in further tasks.

The second solution works, too.

Nested loops, more complex algorithms

Sorting

Write a function which sorts a given list (a single parameter) but write it on your own, without using the builtin sort method or the sorted function!

A simple solution is the so-called bubble sort. See a musical and a dance performance of the algorithm.

In [23]:
def bubble(L):
    newL = L[:]
    for i in range(len(newL) - 1):
        for j in range(len(newL) - i - 1):
            if newL[j] > newL[j + 1]:
                temp = newL[j]
                newL[j] = newL[j + 1]
                newL[j + 1] = temp
    return newL
In [24]:
bubble([2, 3, 1, 4, 6, 2, 9, 3, 1, 3, 1, 9, 3, 9])
Out[24]:
[1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 6, 9, 9, 9]
In [25]:
bubble(range(10, 0, -1))
Out[25]:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Lets print the actual state during the algorithm:

In [26]:
def bubble_print(L):
    newL = L[:]
    for i in range(len(newL) - 1):
        for j in range(len(newL) - i - 1):
            print newL                      # print here 
            if newL[j] > newL[j + 1]:
                temp = newL[j]
                newL[j] = newL[j + 1]
                newL[j + 1] = temp
    return newL
In [27]:
bubble_print(range(10, 0, -1))
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
[9, 10, 8, 7, 6, 5, 4, 3, 2, 1]
[9, 8, 10, 7, 6, 5, 4, 3, 2, 1]
[9, 8, 7, 10, 6, 5, 4, 3, 2, 1]
[9, 8, 7, 6, 10, 5, 4, 3, 2, 1]
[9, 8, 7, 6, 5, 10, 4, 3, 2, 1]
[9, 8, 7, 6, 5, 4, 10, 3, 2, 1]
[9, 8, 7, 6, 5, 4, 3, 10, 2, 1]
[9, 8, 7, 6, 5, 4, 3, 2, 10, 1]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 10]
[8, 9, 7, 6, 5, 4, 3, 2, 1, 10]
[8, 7, 9, 6, 5, 4, 3, 2, 1, 10]
[8, 7, 6, 9, 5, 4, 3, 2, 1, 10]
[8, 7, 6, 5, 9, 4, 3, 2, 1, 10]
[8, 7, 6, 5, 4, 9, 3, 2, 1, 10]
[8, 7, 6, 5, 4, 3, 9, 2, 1, 10]
[8, 7, 6, 5, 4, 3, 2, 9, 1, 10]
[8, 7, 6, 5, 4, 3, 2, 1, 9, 10]
[7, 8, 6, 5, 4, 3, 2, 1, 9, 10]
[7, 6, 8, 5, 4, 3, 2, 1, 9, 10]
[7, 6, 5, 8, 4, 3, 2, 1, 9, 10]
[7, 6, 5, 4, 8, 3, 2, 1, 9, 10]
[7, 6, 5, 4, 3, 8, 2, 1, 9, 10]
[7, 6, 5, 4, 3, 2, 8, 1, 9, 10]
[7, 6, 5, 4, 3, 2, 1, 8, 9, 10]
[6, 7, 5, 4, 3, 2, 1, 8, 9, 10]
[6, 5, 7, 4, 3, 2, 1, 8, 9, 10]
[6, 5, 4, 7, 3, 2, 1, 8, 9, 10]
[6, 5, 4, 3, 7, 2, 1, 8, 9, 10]
[6, 5, 4, 3, 2, 7, 1, 8, 9, 10]
[6, 5, 4, 3, 2, 1, 7, 8, 9, 10]
[5, 6, 4, 3, 2, 1, 7, 8, 9, 10]
[5, 4, 6, 3, 2, 1, 7, 8, 9, 10]
[5, 4, 3, 6, 2, 1, 7, 8, 9, 10]
[5, 4, 3, 2, 6, 1, 7, 8, 9, 10]
[5, 4, 3, 2, 1, 6, 7, 8, 9, 10]
[4, 5, 3, 2, 1, 6, 7, 8, 9, 10]
[4, 3, 5, 2, 1, 6, 7, 8, 9, 10]
[4, 3, 2, 5, 1, 6, 7, 8, 9, 10]
[4, 3, 2, 1, 5, 6, 7, 8, 9, 10]
[3, 4, 2, 1, 5, 6, 7, 8, 9, 10]
[3, 2, 4, 1, 5, 6, 7, 8, 9, 10]
[3, 2, 1, 4, 5, 6, 7, 8, 9, 10]
[2, 3, 1, 4, 5, 6, 7, 8, 9, 10]
[2, 1, 3, 4, 5, 6, 7, 8, 9, 10]
Out[27]:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

There are more sophisticated (and faster) algorithms, you will learn those in the Theory of Algorithms class.

Min sort algorithm

  1. Find the minimum, put that in the first place.
  2. find the minimum out of the remaining elements (from 2 to the end)
  3. put that element into the 2nd place
  4. find the minimum out of the remaining elements (from 3 to the end)
  5. put that element into the 3rd place
  6. ...

First subtask is finding a minimum.

In [28]:
def armin(L):
    min_place = 0
    min_elem = L[0]
    for i in range(len(L)):
        if L[i] < min_elem:
            min_elem = L[i]
            min_place = i
    return min_place
In [29]:
armin([3,2,100,-1,1])
Out[29]:
3

Then solve the whole task.

In [30]:
def sort_min(L):
    newL = L[:]
    for i in range(0, len(newL)-1):
        j = armin(newL[i:])
        newL[i], newL[i + j] = newL[i + j], newL[i]
    return newL
In [31]:
sort_min([3,2,100,-1,1])
Out[31]:
[-1, 1, 2, 3, 100]
In [ ]: