Informatics 1 3rd lecture: Representing numbers and characters

Using Ferenc Wettl's presentation

Budapest University of Technology and Economics

2018-09-17

Conversion from base 2 to base 10:

$$b_n b_{n-1} \dots b_1 b_0 \dots b_{-1} \dots b_{-m} = \sum_{i=-m}^n b_i 2^i$$
.

....

3

同下 イヨト イ

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 =$

AP + 3 →

э

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$

伺▶ ∢ ∃▶

э

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

• for integers repeated division by 2,

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For example 106 in base 2: $106 = 2 \cdot 53 + 0$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For example 106 in base 2: $106 = 2 \cdot 53 + 0 \rightarrow 0$

Conversion from base 2 to base 10:

$$b_n b_{n-1} \dots b_1 b_0 \dots b_{-1} \dots b_{-m} = \sum_{i=-m}^n b_i 2^i$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

```
For example 106 in base 2:
```

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

 $53 = 2 \cdot 26 + 1$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

```
For example 106 in base 2:
```

$$106=2\cdot 53+0\,\rightarrow\,0$$

 $53=2\cdot 26+1 \rightarrow 1$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

```
For example 106 in base 2:
```

$$106=2\cdot 53+0\rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106=2\cdot 53+0\rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26=2\cdot 13+0\rightarrow 0$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \to 0$$

$$53 = 2 \cdot 26 + 1 \to 1$$

$$26 = 2 \cdot 13 + 0 \to 0$$

$$13 = 2 \cdot 6 + 1 \to 1$$

$$6 = 2 \cdot 3 + 0$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26=2\cdot 13+0\to 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

$$3=2\cdot 1+1$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

$$3=2\cdot \ 1+1 \rightarrow 1$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

$$3 = 2 \cdot 1 + 1 \rightarrow 1$$

$$1=2\cdot \ 0+1$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106=2\cdot 53+0\rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26=2\cdot 13+0\to 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

$$3=2\cdot 1+1\to 1$$

$$1=2\cdot \ 0+1 \rightarrow 1$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For example 106 in base 2:

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

$$3 = 2 \cdot 1 + 1 \rightarrow 1$$

$$1=2\cdot \ 0+1 \rightarrow 1$$

so the binary form is 1101010.

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For example 106 in base 2:

$$\begin{array}{l} 106 = 2 \cdot 53 + 0 \to 0 \\ 53 = 2 \cdot 26 + 1 \to 1 \\ 26 = 2 \cdot 13 + 0 \to 0 \end{array}$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

$$3=2\cdot 1+1 \rightarrow 1$$

$$1=2\cdot \ 0+1 \rightarrow 1$$

so the binary form is 1101010. Borbély Gábor

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2	
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0	
$26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1	
$13=2\cdot \ 6+1 \rightarrow 1$			
$6 = 2 \cdot 3 + 0 \rightarrow 0$			
$3=2\cdot 1+1 ightarrow 1$			
$1=2\cdot \ 0+1 \rightarrow 1$			
so the binary form is 1101010.	< □ >		

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For example 106 in base 2:

$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0
$26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1
$13 = 2 \cdot 6 + 1 \rightarrow 1$	13	0
$6 = 2 \cdot 3 + 0 \rightarrow 0$		
$3=2\cdot 1+1 ightarrow 1$		
$1=2\cdot \ 0+1 \rightarrow 1$		
so the binary form is 1101010.	< □ >	< 🗗 > <

Borbély Gábor

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0
$26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1
$13 = 2 \cdot 6 + 1 \rightarrow 1$	13	0
$6 = 2 \cdot 3 + 0 \rightarrow 0$	6	1
$3=2\cdot 1+1 ightarrow 1$		
$1=2\cdot \ 0+1 \rightarrow 1$		
so the binary form is 1101010.	< □ ►	< 🗗 🕨

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For examp	le	106	in	base	2:
-----------	----	-----	----	------	----

$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0
$26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1
$13 = 2 \cdot 6 + 1 \rightarrow 1$	13	0
$6 = 2 \cdot 3 + 0 \rightarrow 0$	6	1
$3=2\cdot 1+1 ightarrow 1$	3	0
$1=2\cdot \ 0+1 ightarrow 1$		
so the binary form is 1101010.	< • >	(a) (
Borbély Gábor	Representing numbers	and cha

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For	example	106	in	base	2:
-----	---------	-----	----	------	----

$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0
$26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1
$13 = 2 \cdot 6 + 1 \rightarrow 1$	13	0
$6 = 2 \cdot 3 + 0 \rightarrow 0$	6	1
$3 = 2 \cdot 1 + 1 \rightarrow 1$	3	0
$\begin{array}{c} 3 = 2 \\ 1 = 2 \\ \end{array} \begin{array}{c} 1 + 1 \\ 0 + 1 \\ \end{array} \begin{array}{c} 1 \\ \end{array}$	1	1
so the binary form is 1101010.	< 🗆 >	∢∄ ≻ ∢ ≣ ≻ :
Borbély Gábor	Representing numbers	and characters

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For example 106 in base 2:		
$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0
$26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1
$13 = 2 \cdot 6 + 1 \rightarrow 1$	13	0
$6 = 2 \cdot 3 + 0 \rightarrow 0$	6	1
$3 = 2 \cdot 1 + 1 \rightarrow 1$	3	0
$1 - 2$, $0 + 1 \rightarrow 1$	1	1
so the binary form is 1101010 .	. ∎0	

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For example 106 in base 2:		
$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0
$26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1
$13 = 2 \cdot 6 + 1 \rightarrow 1$	13	0
$6 = 2 \cdot 3 + 0 \rightarrow 0$	6	1
$3 = 2 \cdot 1 + 1 \rightarrow 1$	3	0
$1 - 2$, $0 + 1 \rightarrow 1$	1	1
so the binary form is 1101010 .	. ∎0	

How to convert a fractional number into binary?

3

伺 ト イヨト イ

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

э

ヨート

< E

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1.

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method: $0.3 \cdot 2 = 0.6$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method: $0.3 \cdot 2 = 0.6 \rightarrow 0$
How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method: $0.3 \cdot 2 = 0.6 \rightarrow 0$

 $0.6 \cdot 2 = 1.2$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method: $0.3 \cdot 2 = 0.6 \rightarrow 0$

 $0.6 \cdot 2 = 1.2 \rightarrow 1$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

 $0.3 \cdot 2 = 0.6 \rightarrow 0$ $0.6 \cdot 2 = 1.2 \rightarrow 1$ $0.2 \cdot 2 = 0.4$

Borbély Gábor Representing numbers and characters

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

- $0.3\cdot 2=0.6\rightarrow 0$
- $0.6\cdot 2=1.2\rightarrow 1$
- $0.2\cdot 2=0.4\,\rightarrow 0$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

 $\begin{array}{l} 0.3 \cdot 2 = 0.6 \to 0 \\ 0.6 \cdot 2 = 1.2 \to 1 \\ 0.2 \cdot 2 = 0.4 \to 0 \\ 0.4 \cdot 2 = 0.8 \end{array}$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

 $\begin{array}{l} 0.3 \cdot 2 = 0.6 \to 0 \\ 0.6 \cdot 2 = 1.2 \to 1 \\ 0.2 \cdot 2 = 0.4 \to 0 \\ 0.4 \cdot 2 = 0.8 \to 0 \end{array}$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

 $\begin{array}{l} 0.3 \cdot 2 = 0.6 \rightarrow 0 \\ 0.6 \cdot 2 = 1.2 \rightarrow 1 \\ 0.2 \cdot 2 = 0.4 \rightarrow 0 \\ 0.4 \cdot 2 = 0.8 \rightarrow 0 \\ 0.8 \cdot 2 = 1.6 \end{array}$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

 $\begin{array}{l} 0.3 \cdot 2 = 0.6 \rightarrow 0 \\ 0.6 \cdot 2 = 1.2 \rightarrow 1 \\ 0.2 \cdot 2 = 0.4 \rightarrow 0 \\ 0.4 \cdot 2 = 0.8 \rightarrow 0 \\ 0.8 \cdot 2 = 1.6 \rightarrow 1 \end{array}$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

 $\begin{array}{l} 0.3 \cdot 2 = 0.6 \to 0 \\ 0.6 \cdot 2 = 1.2 \to 1 \\ 0.2 \cdot 2 = 0.4 \to 0 \\ 0.4 \cdot 2 = 0.8 \to 0 \\ 0.8 \cdot 2 = 1.6 \to 1 \\ 0.6 \cdot 2 = 1.2 \end{array}$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

 $\begin{array}{l} 0.3 \cdot 2 = 0.6 \rightarrow 0 \\ 0.6 \cdot 2 = 1.2 \rightarrow 1 \\ 0.2 \cdot 2 = 0.4 \rightarrow 0 \\ 0.4 \cdot 2 = 0.8 \rightarrow 0 \\ 0.8 \cdot 2 = 1.6 \rightarrow 1 \\ 0.6 \cdot 2 = 1.2 \rightarrow 1 \end{array}$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

 $0.3 \cdot 2 = 0.6 \rightarrow 0$ $0.6 \cdot 2 = 1.2 \rightarrow 1$ $0.2 \cdot 2 = 0.4 \rightarrow 0$ $0.4 \cdot 2 = 0.8 \rightarrow 0$ $0.8 \cdot 2 = 1.6 \rightarrow 1$ $0.6 \cdot 2 = 1.2 \rightarrow 1$ So the binary form of 0.3 is 0.010011, we can even see that its infinite binary form is: 0.01001.

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

 $0.3 \cdot 2 = 0.6 \rightarrow 0$ $0.6 \cdot 2 = 1.2 \rightarrow 1$ $0.2 \cdot 2 = 0.4 \rightarrow 0$ $0.4 \cdot 2 = 0.8 \rightarrow 0$ $0.8 \cdot 2 = 1.6 \rightarrow 1$ $0.6 \cdot 2 = 1.2 \rightarrow 1$ So the binary form of 0.3 is 0.010011, we can even see that its infinite binary form is: 0.01001.

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$U_{1} \cdot Z \equiv U_{1} 0 \rightarrow U_{1}$		
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.3	2
$0.2 \cdot 2 = 0.4 \rightarrow 0$	0.6	C
$0.4 \cdot 2 = 0.8 \rightarrow 0$	1.2	1
$0.8\cdot 2=1.6 ightarrow 1$		
$0.6\cdot 2=1.2 ightarrow 1$		
So the binary form of 0.3 is		
0.010011, we can even see that its		
infinite binary form is: 0.01001.		

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$0.3 \cdot 2 \equiv 0.0 \rightarrow 0$		
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.3	2
$0.2 \cdot 2 = 0.4 \rightarrow 0$	0.6	(
$0.4 \cdot 2 = 0.8 \rightarrow 0$	1.2	-
$0.8 \cdot 2 = 1.6 \rightarrow 1$	0.4	(
$0.6 \cdot 2 = 1.2 ightarrow 1$		
So the binary form of 0.3 is		
0.010011, we can even see that its		
infinite binary form is: 0.01001.		
-		

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$0.3 \cdot 2 \equiv 0.0 \rightarrow 0$		
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.3	2
$0.2 \cdot 2 = 0.4 \rightarrow 0$	0.6	0
$0.4 \cdot 2 = 0.8 \rightarrow 0$	1.2	1
$0.8 \cdot 2 = 1.6 \rightarrow 1$	0.4	0
$\begin{array}{c} 0.6 \cdot 2 = 1.2 \rightarrow 1 \end{array}$	0.8	0
So the binary form of 0.3 is		
0.010011, we can even see that its		
infinite binary form is: 0.01001.		

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$0.3 \cdot 2 \equiv 0.0 \rightarrow 0$		
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.3	2
$0.2 \cdot 2 = 0.4 \rightarrow 0$	0.6	0
$0.4 \cdot 2 = 0.8 \rightarrow 0$	1.2	1
$0.8 \cdot 2 = 1.6 \rightarrow 1$	0.4	0
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.8	0
So the binary form of 0.3 is	1.6	1
0.010011, we can even see that its		
infinite binary form is: 0.01001.		

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$0.3 \cdot 2 \equiv 0.0 \rightarrow 0$		
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.3	2
$0.2 \cdot 2 = 0.4 \rightarrow 0$	0.6	0
$0.4 \cdot 2 = 0.8 \rightarrow 0$	1.2	1
$0.8 \cdot 2 = 1.6 \rightarrow 1$	0.4	0
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.8	0
So the binary form of 0.3 is	1.6	1
0.010011, we can even see that its	1.2	1
infinite binary form is: 0.01001		

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$0.3 \cdot 2 \equiv 0.0 \rightarrow 0$		
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.3	2
$0.2 \cdot 2 = 0.4 \rightarrow 0$	0.6	0
$0.4 \cdot 2 = 0.8 \rightarrow 0$	1.2	1
$0.8 \cdot 2 = 1.6 \rightarrow 1$	0.4	0
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.8	0
So the binary form of 0.3 is	1.6	1
0.010011, we can even see that its	1.2	1
infinite binary form is: 0.01001		

Hexadecimal numbers

Hexadecimal (base 16) numbers:

bin	hex	bin	hex
0000	0	1000	8
0001	1	1001	9
0010	2	1010	А
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	Е
0111	7	1111	F

向下 イヨト

э

Hexadecimal numbers

Hexadecimal (base 16) numbers:

bin	hex	bin	hex
0000	0	1000	8
0001	1	1001	9
0010	2	1010	А
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	Е
0111	7	1111	F

For example $00111100 11111010 = 0 \times 3 \text{CFA}$.

1's complement on *n*-bits: the first bit is the sign.

1's complement on *n*-bits: the first bit is the sign. The range of representable numbers: $-2^{n-1} + 1$ to $2^{n-1} - 1$.

1's complement on *n*-bits: the first bit is the sign. The range of representable numbers: $-2^{n-1} + 1$ to $2^{n-1} - 1$. For example on 4 bits: -7 to 7. $1001 \rightarrow -1$ $1100 \rightarrow -4$ $1111 \rightarrow -7$ $1000 \rightarrow -0$

 $0000 \rightarrow +0$

1's complement on *n*-bits: the first bit is the sign. The range of representable numbers: $-2^{n-1} + 1$ to $2^{n-1} - 1$. For example on 4 bits: -7 to 7. $1001 \rightarrow -1$ $1100 \rightarrow -4$ $1111 \rightarrow -7$ $1000 \rightarrow -0$ $0000 \rightarrow +0$

Disadvantage: There's +0 and -0.

on *n*-bits: we want a signed representation of numbers where there aren't +0 and -0.

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

on *n*-bits: we want a signed representation of numbers where there aren't +0 and -0.

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$.

$$ar{x} = \begin{cases} x & ext{if } x ext{ is non-negative,} \\ 2^n - |x| & ext{if } x ext{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$.

$$ar{x} = \begin{cases} x & ext{if } x ext{ is non-negative,} \\ 2^n - |x| & ext{if } x ext{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$. the form of -1 is

$$ar{x} = \begin{cases} x & ext{if } x ext{ is non-negative,} \\ 2^n - |x| & ext{if } x ext{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then $|x| = \text{complement of } \bar{x} + 1$. the form of -1 is $11 \dots 11_2$,

$$ar{x} = \begin{cases} x & ext{if } x ext{ is non-negative,} \\ 2^n - |x| & ext{if } x ext{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then $|x| = \text{complement of } \bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is

$$ar{x} = \begin{cases} x & ext{if } x ext{ is non-negative,} \\ 2^n - |x| & ext{if } x ext{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then $|x| = \text{complement of } \bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$,

$$ar{x} = \begin{cases} x & ext{if } x ext{ is non-negative,} \\ 2^n - |x| & ext{if } x ext{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is

$$ar{x} = \begin{cases} x & ext{if } x ext{ is non-negative,} \\ 2^n - |x| & ext{if } x ext{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is $11 \dots 01_2$.

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is $11 \dots 01_2$.

Példa

let
$$n=4, x=-5: -5 \rightarrow$$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is $11 \dots 01_2$.

Példa

let
$$n = 4$$
, $x = -5$: $-5 \rightarrow \bar{x} = 16 - 5$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is $11 \dots 01_2$.

Példa

let n = 4, x = -5: $-5 \rightarrow \bar{x} = 16 - 5 = 11$
$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is $11 \dots 01_2$.

Példa

let n = 4, x = -5: $-5 \rightarrow \bar{x} = 16 - 5 = 11 = 1011_2$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is $11 \dots 01_2$.

Példa

let
$$n = 4$$
, $x = -5$: $-5 \rightarrow \bar{x} = 16 - 5 = 11 = 1011_2$
with bit operations:
 $x = -5 \rightarrow |x| = 5$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is $11 \dots 01_2$.

Példa

let
$$n = 4$$
, $x = -5$: $-5 \rightarrow \bar{x} = 16 - 5 = 11 = 1011_2$

with bit operations:

 $x = -5 \rightarrow |x| = 5 \rightarrow 0101_2$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is $11 \dots 01_2$.

Példa

let
$$n = 4$$
, $x = -5$: $-5 \rightarrow \bar{x} = 16 - 5 = 11 = 1011_2$

with bit operations:

 $x = -5 \rightarrow |x| = 5 \rightarrow 0101_2 \rightarrow \bar{x} = 1010_2 + 1_2 = 1011_2$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is $11 \dots 01_2$.

Példa

let
$$n = 4$$
, $x = -5$: $-5 \rightarrow \bar{x} = 16 - 5 = 11 = 1011_2$

with bit operations:

 $x = -5 \rightarrow |x| = 5 \rightarrow 0101_2 \rightarrow \bar{x} = 1010_2 + 1_2 = 1011_2$

the reverse: $\bar{x} = 1011_2$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is $11 \dots 01_2$.

Példa

let
$$n = 4$$
, $x = -5$: $-5 \rightarrow \bar{x} = 16 - 5 = 11 = 1011_2$

with bit operations:

 $x = -5 \rightarrow |x| = 5 \rightarrow 0101_2 \rightarrow \bar{x} = 1010_2 + 1_2 = 1011_2$

the reverse: $\bar{x} = 1011_2 \rightarrow x = 0100_2 + 1_2 = 0101_2 = 5$.

2's complement representation

Borbély Gábor Representing numbers and characters

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

590

Floating point representation

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

э

- 4 ∃ →

向下 イヨト

Floating point representation

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

590

⊒ >

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

伺 ト イヨ ト イヨト

э

《口》《聞》《臣》《臣》

・ 同 ト ・ ヨ ト ・ ヨ ト

э

向下 イヨト

AP + 3 →

Convert -14.3 into IEEE 754 standard on 32 bits.

3

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Convert -14.3 into IEEE 754 standard on 32 bits.

Solution: $14 = 1110_2$, $0.3 = 0.01001..._2$, so the first 24 digit of the fractional part is 1110.01001100110011001100, the exponent is 3, omitting the first 1 the 23 bits of the *fraction* is 11001001100110011001100.

Convert -14.3 into IEEE 754 standard on 32 bits.

Convert -14.3 into IEEE 754 standard on 32 bits.

Convert -14.3 into IEEE 754 standard on 32 bits.

Convert -14.3 into IEEE 754 standard on 32 bits.

Convert -14.3 into IEEE 754 standard on 32 bits.

Solution: $14 = 1110_2$, $0.3 = 0.01001..._2$, so the first 24 digit of the fractional part is 1110.01001100110011001100, the exponent is 3, omitting the first 1 the 23 bits of the *fraction* is 11001001100110011001100. Add 127 to the exponent: 11 + 0111111 = 10000010, thus the representation of the number after rounding: 1100000101100110011001100110011001

Rounding: if the first omitted bit is 1, then we add 1 to the last bit of the fraction

There are many sites on the internet that provide converters like this or this.

ASCII code table

ASCII – American Standard Code for Information Interchange

0	00		<control></control>	59	3B	;	SEMICOLON
				60	3C	<	LESS-THAN SIGN
31	1F		<cont rol=""></cont>	61	3D	=	EQUALS SIGN
32	20		SPACE	62	3E	>	GREATER-THAN SIGN
33	21	1	EXCLAMATION MARK	63	3F	?	QUESTION MARK
34	22	н	QUOTATION MARK	64	40	0	COMMERCIAL AT
35	23	#	NUMBER SIGN	65	41	Α	LATIN CAPITAL LETTER
36	24	\$	DOLLAR SIGN				
37	25	%	PERCENT SIGN	90	5A	Ζ	LATIN CAPITAL LETTER
38	26	&	AMPERSAND	91	5B	[LEFT SQUARE BRACKET
39	27	,	APOSTROPHE	92	5C	\	REVERSE SOLIDUS
40	28	(LEFT PARENTHESIS	93	5D]	RIGHT SQUARE BRACKE
41	29)	RIGHT PARENTHESIS	94	5E	^	CIRCUMFLEX ACCENT
42	2A	*	ASTERISK	95	5F		LOW LINE
43	2B	+	PLUS SIGN	96	60	-	GRAVE ACCENT
44	2C	,	сомма	97	61	а	LATIN SMALL LETTER A
45	2D	-	HYPHEN-MINUS				
46	2E		FULL STOP	122	7A	z	LATIN SMALL LETTER Z
47	2F	/	SOLIDUS	123	7B	{	LEFT CURLY BRACKET
48	30	0	DIGIT ZERO	124	7C		VERTICAL LINE
				125	7D	j	RIGHT CURLY BRACKET
57	39	9	DIGIT NINE	126	7E	~	TILDE
58	3A	:	COLON	127	7F		Control> = occ
			Borbély Gábor	Represen	ting ni	umbers	and characters

ISO-8859-1 Latin1 (West European)

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)
- ISO-8859-5 Cyrillic

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)
- ISO-8859-5 Cyrillic
- ISO-8859-6 Arabic

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)
- ISO-8859-5 Cyrillic
- ISO-8859-6 Arabic
- ISO-8859-7 Greek

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)
- ISO-8859-5 Cyrillic
- ISO-8859-6 Arabic
- ISO-8859-7 Greek
- ISO-8859-8 Hebrew

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)
- ISO-8859-5 Cyrillic
- ISO-8859-6 Arabic
- ISO-8859-7 Greek
- ISO-8859-8 Hebrew
- ISO-8859-9 Latin5 (Turkish)
These are nearly history

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)
- ISO-8859-5 Cyrillic
- ISO-8859-6 Arabic
- ISO-8859-7 Greek
- ISO-8859-8 Hebrew
- ISO-8859-9 Latin5 (Turkish)
- ISO-8859-10 Latin6 (Nordic)

These are nearly history

ISO-8859-2, Microsoft CP1250 (Windows Latin2), CP852 (DOSLatin2)

+ E + < E +</p>

ISO-8859-2, Microsoft CP1250 (Windows Latin2), CP852 (DOSLatin2)

ISO-8859-1	C1	Á	U+00C1	LATIN CAPITAL LETTER A WITH ACUTE
ISO-8859-1	E1	á	U+00E1	LATIN SMALL LETTER A WITH ACUTE
ISO-8859-1	D5	Õ	U+00D5	LATIN CAPITAL LETTER O WITH TILDE
ISO-8859-1	DB	Û	U+00DB	LATIN CAPITAL LETTER U WITH CIRCUMFLEX
ISO-8859-1	F5	õ	U+00F5	LATIN SMALL LETTER O WITH TILDE
ISO-8859-1	FB	û	U+00FB	LATIN SMALL LETTER U WITH CIRCUMFLEX

-

ISO-8859-2, Microsoft CP1250 (Windows Latin2), CP852 (DOSLatin2)

ISO-8859-1	C1	Á	U+00C1	LATIN CAPITAL LETTER A WITH ACUTE
ISO-8859-1	E1	á	U+00E1	LATIN SMALL LETTER A WITH ACUTE
ISO-8859-1	D5	Õ	U+00D5	LATIN CAPITAL LETTER O WITH TILDE
ISO-8859-1	DB	Û	U+00DB	LATIN CAPITAL LETTER U WITH CIRCUMFLEX
ISO-8859-1	F5	õ	U+00F5	LATIN SMALL LETTER O WITH TILDE
ISO-8859-1	FB	û	U+00FB	LATIN SMALL LETTER U WITH CIRCUMFLEX
ISO-8859-2	D5	Ő	U+0150	LATIN CAPITAL LETTER O WITH DOUBLE ACU
ISO-8859-2	DB	Ũ	U+0170	LATIN CAPITAL LETTER U WITH DOUBLE ACU
ISO-8859-2	F5	ő	U+0151	LATIN SMALL LETTER O WITH DOUBLE ACUT
ISO-8859-2	FB	ű	U+0171	LATIN SMALL LETTER U WITH DOUBLE ACUTI

-

ISO-8859-2, Microsoft CP1250 (Windows Latin2), CP852 (DOSLatin2)

ISO-8859-1	C1	Á	U+00C1	LATIN CAPITAL LETTER A WITH ACUTE
ISO-8859-1	Ε1	á	U+00E1	LATIN SMALL LETTER A WITH ACUTE
ISO-8859-1	D5	Õ	U+00D5	LATIN CAPITAL LETTER O WITH TILDE
ISO-8859-1	DB	Û	U+00DB	LATIN CAPITAL LETTER U WITH CIRCUMFLEX
ISO-8859-1	F5	õ	U+00F5	LATIN SMALL LETTER O WITH TILDE
ISO-8859-1	FB	û	U+00FB	LATIN SMALL LETTER U WITH CIRCUMFLEX
ISO-8859-2	D5	Ő	U+0150	LATIN CAPITAL LETTER O WITH DOUBLE ACU
ISO-8859-2	DB	Ũ	U+0170	LATIN CAPITAL LETTER U WITH DOUBLE ACU
ISO-8859-2	F5	ő	U+0151	LATIN SMALL LETTER O WITH DOUBLE ACUT
ISO-8859-2	FB	ű	U+0171	LATIN SMALL LETTER U WITH DOUBLE ACUTI
CP1250	82	,	U+201A	SINGLE LOW-9 QUOTATION MARK
CP1250	84	,,	U+201E	DOUBLE LOW-9 QUOTATION MARK
CP1250	85		U+2026	HORIZONTAL ELLIPSIS
CP1250	91	,	U+2018	LEFT SINGLE QUOTATION MARK
CP1250	92	,	U+2019	RIGHT SINGLE QUOTATION MARK
CP1250	93	"	U+201C	LEFT DOUBLE QUOTATION MARK
CP1250	94	"	U+201D	RIGHT DOUBLE QUOTATION MARK
CP1250	96	-	U+2013	EN DASH
CP1250	97	—	U+2014	EM DASH

• U+0000 - U+007F ASCII

- U+0000 U+007F ASCII
- U+0080 U+00FF Latin-1

3

▲御▶ ▲臣▶ ▲臣▶

- U+0000 U+007F ASCII
- U+0080 U+00FF Latin-1
- U+0100 U+017F Latin Extended-A (latin1, hungarian ő, ű)

伺 ト イヨ ト イヨト

э

- U+0000 U+007F ASCII
- U+0080 U+00FF Latin-1
- U+0100 U+017F Latin Extended-A (latin1, hungarian ő, ű)
- U+0180 U+024F Latin Extended-B

向 ト イ ヨ ト

- U+0000 U+007F ASCII
- U+0080 U+00FF Latin-1
- U+0100 U+017F Latin Extended-A (latin1, hungarian ő, ű)
- U+0180 U+024F Latin Extended-B
- U+1E00 U+1EFF Latin Extended Additional

伺▶ ∢ ∃▶

UTF – Unicode Transformation Format

• UTF-8 every character is represented on 8, 16, 24 or 32-bits.

э

UTF – Unicode Transformation Format

- UTF-8 every character is represented on 8, 16, 24 or 32-bits.
- UTF-16 every character is represented on 16 or 32-bits.

UTF – Unicode Transformation Format

- UTF-8 every character is represented on 8, 16, 24 or 32-bits.
- UTF-16 every character is represented on 16 or 32-bits.
- UTF-32 every character is represented on 32-bits.

Unicode		UTF-8	a official name of the character
U+0020		20	SPACE
U+0030	0	30	DIGIT ZERO
U+0040	0	40	COMMERCIAL AT
U+0041	А	41	LATIN CAPITAL LETTER A
U+0061	а	61	LATIN SMALL LETTER A

< ロ > < 部 > < き > < き > ...

Unicode		UTF-8	a official name of the character
U+0020		20	SPACE
U+0030	0	30	DIGIT ZERO
U+0040	0	40	COMMERCIAL AT
U+0041	А	41	LATIN CAPITAL LETTER A
U+0061	а	61	LATIN SMALL LETTER A
U+00C1	Á	c3 81	LATIN CAPITAL LETTER A WITH ACUTE
U+00C9	É	c3 89	LATIN CAPITAL LETTER E WITH ACUTE
U+00CD	Í	c3 8d	LATIN CAPITAL LETTER I WITH ACUTE
U+00D3	Ó	c3 93	LATIN CAPITAL LETTER O WITH ACUTE
U+00D6	Ö	c3 96	LATIN CAPITAL LETTER O WITH DIAERESIS
U+00DA	Ú	c3 9a	LATIN CAPITAL LETTER U WITH ACUTE
U+00DC	Ü	c3 9c	LATIN CAPITAL LETTER U WITH DIAERESIS
U+00E1	á	c3 a1	LATIN SMALL LETTER A WITH ACUTE
U+00E9	é	c3 a9	LATIN SMALL LETTER E WITH ACUTE
U+00ED	í	c3 ad	LATIN SMALL LETTER I WITH ACUTE
U+00F3	ó	c3 b3	LATIN SMALL LETTER O WITH ACUTE
U+00F6	ö	c3 b6	LATIN SMALL LETTER O WITH DIAERESIS
U+00FA	ú	c3 ba	LATIN SMALL LETTER U WITH ACUTE
U+00FC	ü	c3 bc	LATIN SMALL LETTER U WITH DIAERESIS

Unicode		UTF-8	a official name of the character
U+0020		20	SPACE
U+0030	0	30	DIGIT ZERO
U+0040	0	40	COMMERCIAL AT
U+0041	А	41	LATIN CAPITAL LETTER A
U+0061	а	61	LATIN SMALL LETTER A
U+00C1	Á	c3 81	LATIN CAPITAL LETTER A WITH ACUTE
U+00C9	É	c3 89	LATIN CAPITAL LETTER E WITH ACUTE
U+00CD	Í	c3 8d	LATIN CAPITAL LETTER I WITH ACUTE
U+00D3	Ó	c3 93	LATIN CAPITAL LETTER O WITH ACUTE
U+00D6	Ö	c3 96	LATIN CAPITAL LETTER O WITH DIAERESIS
U+00DA	Ú	c3 9a	LATIN CAPITAL LETTER U WITH ACUTE
U+00DC	Ü	c3 9c	LATIN CAPITAL LETTER U WITH DIAERESIS
U+00E1	á	c3 a1	LATIN SMALL LETTER A WITH ACUTE
U+00E9	é	c3 a9	LATIN SMALL LETTER E WITH ACUTE
U+00ED	í	c3 ad	LATIN SMALL LETTER I WITH ACUTE
U+00F3	ó	c3 b3	LATIN SMALL LETTER O WITH ACUTE
U+00F6	ö	c3 b6	LATIN SMALL LETTER O WITH DIAERESIS
U+00FA	ú	c3 ba	LATIN SMALL LETTER U WITH ACUTE
U+00FC	ü	c3 bc	LATIN SMALL LETTER U WITH DIAERESIS
U+0150	Õ	c5 90	LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
U+0151	ő	c5 91	LATIN SMALL LETTER O WITH DOUBLE ACUTE

<ロト < 回 > < 回 > < 回 > < 回 >

Unicode		UTF-8	a official name of the character
U+0020		20	SPACE
U+0030	0	30	DIGIT ZERO
U+0040	0	40	COMMERCIAL AT
U+0041	А	41	LATIN CAPITAL LETTER A
U+0061	а	61	LATIN SMALL LETTER A
U+00C1	Á	c3 81	LATIN CAPITAL LETTER A WITH ACUTE
U+00C9	É	c3 89	LATIN CAPITAL LETTER E WITH ACUTE
U+00CD	Í	c3 8d	LATIN CAPITAL LETTER I WITH ACUTE
U+00D3	Ó	c3 93	LATIN CAPITAL LETTER O WITH ACUTE
U+00D6	Ö	c3 96	LATIN CAPITAL LETTER O WITH DIAERESIS
U+00DA	Ú	c3 9a	LATIN CAPITAL LETTER U WITH ACUTE
U+00DC	Ü	c3 9c	LATIN CAPITAL LETTER U WITH DIAERESIS
U+00E1	á	c3 a1	LATIN SMALL LETTER A WITH ACUTE
U+00E9	é	c3 a9	LATIN SMALL LETTER E WITH ACUTE
U+00ED	í	c3 ad	LATIN SMALL LETTER I WITH ACUTE
U+00F3	ó	c3 b3	LATIN SMALL LETTER O WITH ACUTE
U+00F6	ö	c3 b6	LATIN SMALL LETTER O WITH DIAERESIS
U+00FA	ú	c3 ba	LATIN SMALL LETTER U WITH ACUTE
U+00FC	ü	c3 bc	LATIN SMALL LETTER U WITH DIAERESIS
U+0150	Õ	c5 90	LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
U+0151	ő	c5 91	LATIN SMALL LETTER O WITH DOUBLE ACUTE
U+0170	Ũ	c5 b0	LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
U+0171	ű	c5 b1	LATIN SMALL LETTER U WITH DOUBLE ACUTE 🚊 🤟

UTF-8			
Range (number)	binary form	UTF-8	

▲ロト ▲御 ト ▲ 重 ト ▲ 重 ・ の へ ()・

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0 zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxx 10yyyyyy 10zz

<ロト < 部ト < 注ト < 注ト</p>

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0 zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxx 10yyyyyy 10zz

Á 00C1

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0 zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

Á 00C1→1100 0001

3

《曰》《聞》《臣》《臣》

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0 zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxx 10yyyyyy 10zzz

Á 00C1 \rightarrow 1100 0001 \rightarrow 00011 000001

(1日) (1日) (日)

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0 zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

Á 00C1 \rightarrow 1100 0001 \rightarrow 00011 000001 \rightarrow 11000011 1000001

(四) (日) (日)

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0 zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

Á 00C1 \rightarrow 1100 0001 \rightarrow 00011 000001 \rightarrow 11000011 1000001 \rightarrow C3 81

▲御▶ ▲理▶ ▲理▶

-

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0 zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

 $\begin{array}{c} \acute{A} \ 00C1 {\rightarrow} 1100 \ 0001 {\rightarrow} 00011 \ 000001 {\rightarrow} 11000011 \ 10000001 {\rightarrow} C3 \ 81 \\ \acute{O} \ 00D5 {\rightarrow} 1101 \ 0101 {\rightarrow} 00011 \ 010101 {\rightarrow} 11000011 \ 10010101 {\rightarrow} C3 \ 95 \end{array}$

伺 ト イヨ ト イヨ トー

э

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0 zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxx 10yyyyyy 10zzz

 $\begin{array}{l} \acute{A} \ 00C1 \rightarrow 1100 \ 0001 \rightarrow 00011 \ 000001 \rightarrow 11000011 \ 10000001 \rightarrow C3 \ 81 \\ \acute{O} \ 00D5 \rightarrow 1101 \ 0101 \rightarrow 00011 \ 010101 \rightarrow 11000011 \ 10010101 \rightarrow C3 \ 95 \\ \acute{O} \ 0150 \rightarrow 0001 \ 0101 \ 0000 \rightarrow 00101 \ 010000 \rightarrow 11000101 \\ 10010000 \rightarrow C5 \ 90 \end{array}$

伺 と く ヨ と く ヨ と …

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0 zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

Á 00C1→1100 0001→00011 000001→11000011 1000001→C3 81 Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95 Õ 0150→0001 0101 0000→00101 010000→11000101 10010000→C5 90 Byte Order Mark FEFF

伺 ト く ヨ ト く ヨ ト

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0 zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

Å 00C1 → 1100 0001 → 00011 000001 → 11000001 10000001 → C3 81<math>Õ 00D5 → 1101 0101 → 00011 010101 → 11000011 10010101 → C3 95 Õ 0150 → 0001 0101 0000 → 00101 010000 → 11000101 10010000 → C5 90Byte Order Mark FEFF → 11111110 1111111 → 11101111 10111011 1011111

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0 zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

Á 00C1→1100 0001→00011 000001→11000011 1000001→C3 81 Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95 Õ 0150→0001 0101 0000→00101 010000→11000101 10010000→C5 90 Byte Order Mark FEFF→1111110 1111111→ 11101111 10111011 10111111→EF BB BF (When viewing files written in UTF-8 formats on windows and reading with a latin-1 encoder)

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0 zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

Á 00C1→1100 0001→00011 000001→11000011 1000001→C3 81 Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95 Õ 0150→0001 0101 0000→00101 010000→11000101 10010000→C5 90 Byte Order Mark FEFF→1111110 1111111→ 11101111 10111011 10111111→EF BB BF (When viewing files written in UTF-8 formats on windows and reading with a latin-1 encoder)

Test questions

- Calculate the binary form of 13.4 and -12.6!
- \bigcirc Calculate the 2's complement form of -23 and -24 on 8 bits.
- What is the value of the number represented on 2's complement by 10101001?
- What is the IEEE 754 standard form of -23.4 and -12.6 on 32-bits?
- How to convert a character from unicode to utf-8?
- The unicode of the character € is U+20AC. Calculate its UTF-8 code in binary and hexadecimal!