
Turing machine
RAM-machine (random access machine)

Informatics 1
Lecture 2: Abstract machines

Gábor Borbély

Budapest University of Technology and Economics

2018-09-10

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

1 Turing machine

2 RAM-machine (random access machine)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where

Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",

Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",

b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),

Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",

q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"

F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),

δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Turing completeness

Church–Turing-thesis (30’s) every formalizable problem that
can be solved by any means with some algorithm, can be
solved with a Turing machine.

A computational/data manipulation system is Turing
complete if it can implement any Turing machine.

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Turing completeness

Church–Turing-thesis (30’s) every formalizable problem that
can be solved by any means with some algorithm, can be
solved with a Turing machine.
A computational/data manipulation system is Turing
complete if it can implement any Turing machine.

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}
b = 0 (empty symbol)
Σ = {1}
q0 = A (initial state)
F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}

Γ = {0, 1}
b = 0 (empty symbol)
Σ = {1}
q0 = A (initial state)
F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}

b = 0 (empty symbol)
Σ = {1}
q0 = A (initial state)
F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}
b = 0 (empty symbol)

Σ = {1}
q0 = A (initial state)
F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}
b = 0 (empty symbol)
Σ = {1}

q0 = A (initial state)
F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}
b = 0 (empty symbol)
Σ = {1}
q0 = A (initial state)

F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}
b = 0 (empty symbol)
Σ = {1}
q0 = A (initial state)
F = {HALT}

δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}
b = 0 (empty symbol)
Σ = {1}
q0 = A (initial state)
F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.

The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z
ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.

The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z
ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.

These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z
ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:

ri ← z
ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z

ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z
ri ← rn, ri ← rrn (same as ri ← r [r [n]]),

ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z
ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),

pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z
ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,

if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z
ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,

if ri > 0 pn: jump to the nth program line if ri > 0,

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z
ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,

every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonikokkal for the commands, there are three
types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.

ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonikokkal for the commands, there are three
types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonikokkal for the commands, there are three
types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),

we use mnemonikokkal for the commands, there are three
types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonikokkal for the commands, there are three
types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonikokkal for the commands, there are three
types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)

direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonikokkal for the commands, there are three
types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],

indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonikokkal for the commands, there are three
types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Controller commands
JUMP n jump to the nth command
JZERO n jump to the nth command if r0 = 0
JGTZ n jump to the nth command if r0 > 0
HALT stop

Arithmetic commands
direct indirect explicit op

ADD n r0 ← r0 + rn ADD* n r0 ← r0 + rrn ADD= n r0 ← r0 + n
SUB n r0 ← r0 − rn SUB* n r0 ← r0 − rrn SUB= n r0 ← r0 − n
MULT n r0 ← r0 ∗ rn MULT* n r0 ← r0 ∗ rrn MULT= n r0 ← r0 ∗ n
DIV n r0 ← r0/rn DIV* n r0 ← r0/rrn DIV= n r0 ← r0/n

Data manipulation, IO
direct indirect explicit op

LOAD n r0 ← rn LOAD* n r0 ← rrn LOAD= n r0 ← n
STORE n rn ← r0 STORE* n rrn ← r0
READ n reads n numbers from the input into r1, r2, . . . , rn
WRITE n writes n numbers to the output from r1, r2, . . . , rn

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Write a program to calculate (a, b) (greatest common divisor),
where a, b ∈ N0!
p command operand notes
0 LOAD = 12
1 STORE 1 r[1] <- a
2 LOAD = 16
3 STORE 2 r[2] <- b
4 JZERO 17
5 LOAD 1 r[0] <- r[1]
6 DIV 2 r[0] <- ba/bc
7 STORE 3 r[3] <- ba/bc
8 MULT 2
9 STORE 4 r[4] <- b*ba/bc

10 LOAD 1
11 SUB 4 r[0] <- a - b*ba/bc = a mod b
12 STORE 5
13 LOAD 2
14 STORE 1 r[1] <- b
15 LOAD 5 b <- a mod b
16 JUMP 3
17 LOAD 1
18 STORE 6 this is (a,b)
19 HALT 0

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

What about real machines?

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Machine code: binary sequence that the processor can directly
interpret.

Every code written in any programming language compiles
into machine code.
The closest language to machine code is assembly, it is a bit
similar to what we described as an example to the
RAM-machine. The compiler for assembly is called assembler.
Registers are special CPU memories with extremely fast
read-write speeds, but very limited capacity.

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Machine code: binary sequence that the processor can directly
interpret.
Every code written in any programming language compiles
into machine code.

The closest language to machine code is assembly, it is a bit
similar to what we described as an example to the
RAM-machine. The compiler for assembly is called assembler.
Registers are special CPU memories with extremely fast
read-write speeds, but very limited capacity.

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Machine code: binary sequence that the processor can directly
interpret.
Every code written in any programming language compiles
into machine code.
The closest language to machine code is assembly, it is a bit
similar to what we described as an example to the
RAM-machine. The compiler for assembly is called assembler.

Registers are special CPU memories with extremely fast
read-write speeds, but very limited capacity.

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Machine code: binary sequence that the processor can directly
interpret.
Every code written in any programming language compiles
into machine code.
The closest language to machine code is assembly, it is a bit
similar to what we described as an example to the
RAM-machine. The compiler for assembly is called assembler.
Registers are special CPU memories with extremely fast
read-write speeds, but very limited capacity.

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Questions

1 What are the basics of a Turing-machine?

2 What does the "busy beaver" do?
3 What’s the difference between the direct and the indirect

commands?
4 What is the machine code, assembly and the assembler?
5 What are the contents of the memory after issuing these

commands?
1 LOAD= 5
2 STORE 1
3 STORE* 1
4 JZERO 7
5 LOAD= 2
6 MUL 1
7 HALT

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Questions

1 What are the basics of a Turing-machine?
2 What does the "busy beaver" do?

3 What’s the difference between the direct and the indirect
commands?

4 What is the machine code, assembly and the assembler?
5 What are the contents of the memory after issuing these

commands?
1 LOAD= 5
2 STORE 1
3 STORE* 1
4 JZERO 7
5 LOAD= 2
6 MUL 1
7 HALT

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Questions

1 What are the basics of a Turing-machine?
2 What does the "busy beaver" do?
3 What’s the difference between the direct and the indirect

commands?

4 What is the machine code, assembly and the assembler?
5 What are the contents of the memory after issuing these

commands?
1 LOAD= 5
2 STORE 1
3 STORE* 1
4 JZERO 7
5 LOAD= 2
6 MUL 1
7 HALT

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Questions

1 What are the basics of a Turing-machine?
2 What does the "busy beaver" do?
3 What’s the difference between the direct and the indirect

commands?
4 What is the machine code, assembly and the assembler?

5 What are the contents of the memory after issuing these
commands?
1 LOAD= 5
2 STORE 1
3 STORE* 1
4 JZERO 7
5 LOAD= 2
6 MUL 1
7 HALT

Gábor Borbély Abstract machines

Turing machine
RAM-machine (random access machine)

Questions

1 What are the basics of a Turing-machine?
2 What does the "busy beaver" do?
3 What’s the difference between the direct and the indirect

commands?
4 What is the machine code, assembly and the assembler?
5 What are the contents of the memory after issuing these

commands?
1 LOAD= 5
2 STORE 1
3 STORE* 1
4 JZERO 7
5 LOAD= 2
6 MUL 1
7 HALT

Gábor Borbély Abstract machines

	Turing machine
	RAM-machine (random access machine)

