Informatics 1
Lecture 2: Abstract machines

Gabor Borbély

Budapest University of Technology and Economics

2018-09-10

Gabor Borbély Abstract machines

@ Turing machine

© RAM-machine (random access machine)

Gabor Borbély Abstract machines

Turing machine

@ A Turing machine can be defined by
M= (Q,T,b,X,d,qo, F), where

iA
\fin
2

Gabor Borbély Abstract machines

Turing machine

@ A Turing machine can be defined by
M= (Q,T,b,X,d,qo, F), where

@ @ is the non-empty set of "states",

i A
\in
=z

Gabor Borbély Abstract machines

Turing machine

@ A Turing machine can be defined by
M= (Q,T,b,X,d,qo, F), where

@ @ is the non-empty set of "states",

@ [the finite, non-empty "tape alphabet",

»

l\i

uiy
%
g

Gabor Borbély Abstract machines

Turing machine

@ A Turing machine can be defined by
M= (Q,T,b,X,d,qo, F), where

@ @ is the non-empty set of "states",

@ [the finite, non-empty "tape alphabet",

@ b eI the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),

Gabor Borbély Abstract machines

Turing machine

@ A Turing machine can be defined by
M= (Q,T,b,X,d,qo, F), where

@ @ is the non-empty set of "states",

@ [the finite, non-empty "tape alphabet",

@ b eI the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),

@ ¥ C T\ {b} the set of "input symbols",

Gabor Borbély Abstract machines

Turing machine

@ A Turing machine can be defined by
M= (Q,T,b,X,d,qo, F), where

Q is the non-empty set of "states",

I" the finite, non-empty "tape alphabet",

b €T the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),

Y C T\ {b} the set of "input symbols",

go € Q the "initial state"

Gabor Borbély Abstract machines

Turing machine

@ A Turing machine can be defined by
M= (Q,T,b,X,d,qo, F), where

Q is the non-empty set of "states",

I" the finite, non-empty "tape alphabet",

b €T the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),

Y C T\ {b} the set of "input symbols",

go € Q the "initial state"

F C Q the set of "final states" (this is when the machine
stops),

Gabor Borbély Abstract machines

Turing machine

@ A Turing machine can be defined by
=(Q,T,b,X,4,qo, F), where

@ @ is the non-empty set of "states", i; _?. -

.. _ " n H i = []
@ [the finite, non-empty "tape alphabet", :-5 -g\g}#
@ b T the "blank symbol" (the only g A

symbol allowed to occur on the tape

infinitely often),

Y C T\ {b} the set of "input symbols",

go € Q the "initial state"

F C Q the set of "final states" (this is when the machine
stops),

d:(Q\F)xT—= QxTI x{L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

Gabor Borbély Abstract machines

Turing machine

Turing completeness

o Church—Turing-thesis (30's) every formalizable problem that
can be solved by any means with some algorithm, can be
solved with a Turing machine.

Gabor Borbély Abstract machines

Turing machine

Turing completeness

o Church—Turing-thesis (30's) every formalizable problem that
can be solved by any means with some algorithm, can be
solved with a Turing machine.

@ A computational/data manipulation system is Turing
complete if it can implement any Turing machine.

Gabor Borbély Abstract machines

Turing machine

@ Busy beaver (Tibor Radé, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

start

1 A 00000[0/000000
2 B ~00000[0[100000
3 A 00001/1[000000
4 C 000110000000
5 B 001110000000
6 A 01111J0j0000O00O0
7 B 001111/100000
8 B 00011J1/110000
9 B 000011111000
10 B 00000J1/111100
11 B 00000f0j]111110
12 A 000011111100
13 C 000111111000
14 H 000111111000

Gabor Borbély Abstract machines

Turing machine

@ Busy beaver (Tibor Radé, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

o Q={A,B,C,HALT}

start

1 A 00000[0/000000
2 B ~00000[0[100000
3 A 00001/1[000000
4 C 000110000000
5 B 001110000000
6 A 01111J0j0000O00O0
7 B 001111/100000
8 B 00011J1/110000
9 B 000011111000
10 B 00000J1/111100
11 B 00000f0j]111110
12 A 000011111100
13 C 000111111000
14 H 000111111000

Gabor Borbély Abstract machines

Turing machine

@ Busy beaver (Tibor Radé, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

o Q= {A,B,C HALT}
o [=1{0,1}

start

1 A 00000[0/000000
2 B ~00000[0[100000
3 A 00001/1[000000
4 C 000110000000
5 B 001110000000
6 A 01111J0j0000O00O0
7 B 001111/100000
8 B 00011J1/110000
9 B 000011111000
10 B 00000J1/111100
11 B 00000f0j]111110
12 A 000011111100
13 C 000111111000
14 H 000111111000

Gabor Borbély Abstract machines

Turing machine

@ Busy beaver (Tibor Radé, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

e Q={A B,C,HALT}
o [=1{0,1}
e b =0 (empty symbol)

start

1 A 00000[0/000000
2 B ~00000[0[100000
3 A 00001/1[000000
4 C 000110000000
5 B 001110000000
6 A 01111J0j0000O00O0
7 B 001111/100000
8 B 00011J1/110000
9 B 000011111000
10 B 00000J1/111100
11 B 00000f0j]111110
12 A 000011111100
13 C 000111111000
14 H 000111111000

Gabor Borbély Abstract machines

Turing machine

@ Busy beaver (Tibor Radé, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q@ ={A,B,C,HALT}
r=4{0,1}

b = 0 (empty symbol)
Y ={1}

start

1 A 00000[0/000000
2 B ~00000[0[100000
3 A 00001/1[000000
4 C 000110000000
5 B 001110000000
6 A 01111J0j0000O00O0
7 B 001111/100000
8 B 00011J1/110000
9 B 000011111000
10 B 00000J1/111100
11 B 00000f0j]111110
12 A 000011111100
13 C 000111111000
14 H 000111111000

Gabor Borbély Abstract machines

Turing machine

@ Busy beaver (Tibor Radé, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q@ ={A,B,C,HALT}
r={0,1}

b = 0 (empty symbol)
Y ={1}

go = A (initial state)

start

1 A 00000[0/000000
2 B ~00000[0[100000
3 A 00001/1[000000
4 C 000110000000
5 B 001110000000
6 A 01111J0j0000O00O0
7 B 001111/100000
8 B 00011J1/110000
9 B 000011111000
10 B 00000J1/111100
11 B 00000f0j]111110
12 A 000011111100
13 C 000111111000
14 H 000111111000

Gabor Borbély Abstract machines

Turing machine

@ Busy beaver (Tibor Radé, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

e Q={A B,C,HALT}
[*] e
r {0’1} start

e b =0 (empty symbol)

o ¥ = {1}

@ qo = A (initial state)
1 A 000000000000

e F ={HALT} 2 B 00000[0[100000
3 A 00001[1/000000
4 C 00011[0/000000
5 B 00111[0/000000
6 A 01111[0/000000
7 B 00111[1[100000
8 B 00011[1[110000
9 B 00001[1[111000
10 B 00000[1/111100
11 B 000000111110
12 A 000011111100
13 C 00011[1/111000
14 H 00011[1/111000

Gabor Borbély Abstract machines

Turing machine

@ Busy beaver (Tibor Radé, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q@ ={A,B,C,HALT}
r={0,1}

b = 0 (empty symbol)
Y ={1}

go = A (initial state)

start

1 A ~00000[0[000000
F = {HALT} 2 B ~00000]0[100000
3 A TO0000I]I[000000

. 4 C ~000II0[000000

0 table: 5 B ~00III0[000000
6 A “O0IIII[0[000000

7 B “00ITI[100000

A B C 8 B “000III10000

9 B “0000III1000

0 1RB 1LA 1LB 10 B ~00000II1100
11 B ~00000/0IIII10

12 A T0000I[III100

1 1LC 1RB 1RH 13 ¢ —ooottariiooo
14 H “000II[[II1000

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.

@ The execution of the program starts with executing the
command in cell pp and ends with an empty command.

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.

@ The execution of the program starts with executing the
command in cell pp and ends with an empty command.

@ The contents of the ith cell of the data register (i € Np) is
denoted by r[i] or r;, these can only contain integers.

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.

@ The execution of the program starts with executing the
command in cell pp and ends with an empty command.

@ The contents of the ith cell of the data register (i € Np) is
denoted by r[i] or r;, these can only contain integers.

@ These are the possible commands, where z € Z, i, n € Ng:

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.

@ The execution of the program starts with executing the
command in cell pp and ends with an empty command.

@ The contents of the ith cell of the data register (i € Np) is
denoted by r[i] or r;, these can only contain integers.

@ These are the possible commands, where z € Z, i, n € Ng:
ri < Z

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.

@ The execution of the program starts with executing the
command in cell pp and ends with an empty command.

@ The contents of the ith cell of the data register (i € Np) is
denoted by r[i] or r;, these can only contain integers.

@ These are the possible commands, where z € Z, i, n € Ng:
ri < Z

ri < rn, ti < ry, (same as r; < r[r[n]]),

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.

@ The execution of the program starts with executing the
command in cell pp and ends with an empty command.

@ The contents of the ith cell of the data register (i € Np) is
denoted by r[i] or r;, these can only contain integers.

@ These are the possible commands, where z € Z, i, n € Ng:
ri < Z
ri < rn, ti < ry, (same as r; < r[r[n]]),
ri<—ritrn (ri<rixrn, ri< ri/r),

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.

@ The execution of the program starts with executing the
command in cell pp and ends with an empty command.

@ The contents of the ith cell of the data register (i € Np) is
denoted by r[i] or r;, these can only contain integers.

@ These are the possible commands, where z € Z, i, n € Ng:
ri < Z
ri < rn, ti < ry, (same as r; < r[r[n]]),
ri<—ritrn (ri<rixrn, ri< ri/r),

Pn: jump to the nth program line,

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.

@ The execution of the program starts with executing the
command in cell pp and ends with an empty command.

@ The contents of the ith cell of the data register (i € Np) is
denoted by r[i] or r;, these can only contain integers.

@ These are the possible commands, where z € Z, i, n € Ng:
ri <z
ri < rn, ti < ry, (same as r; < r[r[n]]),
ri<—ritrn (ri<rixrn, ri< ri/r),
Pn: jump to the nth program line,

if i =0 pp: jump to the nth program line if r; =0,

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.

@ The execution of the program starts with executing the
command in cell pp and ends with an empty command.

@ The contents of the ith cell of the data register (i € Np) is
denoted by r[i] or r;, these can only contain integers.

@ These are the possible commands, where z € Z, i, n € Ng:
ri 4z
ri < rn, ti < ry, (same as r; < r[r[n]]),
ri<—ritrn (ri<rixrn, ri< ri/r),
Pn: jump to the nth program line,
if i =0 pp: jump to the nth program line if r; =0,
if r; >0 pn: jump to the nth program line if r; > 0,

Gabor Borbély Abstract machines

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:

@ The program register and memory is finite,

Gabor Borbély Abstract machines

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
@ The program register and memory is finite,

@ every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.

Gabor Borbély Abstract machines

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
@ The program register and memory is finite,

@ every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.

ADD 12 means: ryg < rp+ ro

Gabor Borbély Abstract machines

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
@ The program register and memory is finite,

@ every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.

ADD 12 means: ryg < rp+ ro

@ every calculation is done with the Oth memory cell (and
sometimes another one),

Gabor Borbély Abstract machines

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:

@ The program register and memory is finite,

@ every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.

ADD 12 means: ryg < rp+ ro

@ every calculation is done with the Oth memory cell (and

sometimes another one),

@ we use mnemonikokkal for the commands, there are three
types:

Gabor Borbély Abstract machines

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:

@ The program register and memory is finite,

@ every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.

ADD 12 means: rg < g+ o

@ every calculation is done with the Oth memory cell (and
sometimes another one),

@ we use mnemonikokkal for the commands, there are three
types:

o explicit: the operand n is a number (denoted by an = at the
end of the expression)

Gabor Borbély Abstract machines

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:

@ The program register and memory is finite,

@ every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.

ADD 12 means: ryg < rp+ ro

@ every calculation is done with the Oth memory cell (and

sometimes another one),

@ we use mnemonikokkal for the commands, there are three
types:
o explicit: the operand n is a number (denoted by an = at the
end of the expression)
o direct: the operand n is a memory cell, the operation is done
with the contents of r[n],

Gabor Borbély Abstract machines

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
@ The program register and memory is finite,

@ every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second
byte contains the operand, i.e.

ADD 12 means: ryg < rp+ ro

@ every calculation is done with the Oth memory cell (and
sometimes another one),

@ we use mnemonikokkal for the commands, there are three
types:

o explicit: the operand n is a number (denoted by an = at the
end of the expression)

o direct: the operand n is a memory cell, the operation is done
with the contents of r[n],

e indirect: the operand n is the index of a memory cell, the
operation is done with r[r[n]] (denoted by a * at the end of
the expression)

Gabor Borbély Abstract machines

RAM-machine (random access machine)

Controller commands
JUMP n jump to the nth command
JZERO n jump to the nth command if rp =0
JGTZ n jump to the nth command if rp > 0

HALT stop
Arithmetic commands
direct indirect explicit op
ADD n r<+r-+nmn ADD* n < r+r, ADD= n r<rn-+n
SUB n rp<nrn—rn SUB* n rp<ro—r, SUB= n nrn<+rn-—n
MULT n rg<r*r MULT* n rg<rp*try, MULT=n rp<rx*n
DIV n ry<ro/r DIV¥ n ry< rp/ry, DIV= n ry< ro/n
Data manipulation, 10
direct indirect explicit op
LOAD n rg<r, LOAD* n ry < rp, LOAD=n rg<n
STOREn r,<n STORE*n r, < ny
READ n reads n numbers from the input into ry, ra, ..., 1,
WRITE n writes n numbers to the output from ri, r, ..., 1,

Gabor Borbély Abstract machines

RAM-machine (random access machine)

Write a program to calculate (a, b) (greatest common divisor),
where a, b € Ny!

P command operand notes

0 LOAD = 12

1 STORE 1 r[1] <- a

2 LOAD = 16

3 STORE 2 r[2] <- b

4 JZERO 17

5 LOAD 1 r[0] <- r[1]
6 DIV 2 r[0] <- |a/b]
7 STORE 3 r[3] <- |a/b]
8 MULT 2

9 STORE 4 r[4] <- bx|a/b|
10 LOAD 1

11 SUB 4 r[0] <- a - b*|a/b] = a mod b
12 STORE 5

13 LOAD 2

14 STORE 1 r[1] <- b

15 LOAD 5 b <- a mod b
16 JUMP 3

17 LOAD 1

18 STORE 6 this is (a,b)
19 HALT 0

Gabor Borbély Abstract machines

RAM-machine (random access machine)

What about real machines?

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ Machine code: binary sequence that the processor can directly
interpret.

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ Machine code: binary sequence that the processor can directly
interpret.

@ Every code written in any programming language compiles
into machine code.

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ Machine code: binary sequence that the processor can directly
interpret.

@ Every code written in any programming language compiles
into machine code.

@ The closest language to machine code is assembly, it is a bit

similar to what we described as an example to the
RAM-machine. The compiler for assembly is called assembler.

Gabor Borbély Abstract machines

RAM-machine (random access machine)

@ Machine code: binary sequence that the processor can directly
interpret.

@ Every code written in any programming language compiles
into machine code.

@ The closest language to machine code is assembly, it is a bit
similar to what we described as an example to the
RAM-machine. The compiler for assembly is called assembler.

@ Registers are special CPU memories with extremely fast
read-write speeds, but very limited capacity.

Gabor Borbély Abstract machines

RAM-machine (random access machine)

Questions

@ What are the basics of a Turing-machine?

Gabor Borbély Abstract machines

RAM-machine (random access machine)

Questions

@ What are the basics of a Turing-machine?
@ What does the "busy beaver" do?

Gabor Borbély Abstract machines

RAM-machine (random access machine)

Questions

@ What are the basics of a Turing-machine?
@ What does the "busy beaver" do?

© What's the difference between the direct and the indirect
commands?

Gabor Borbély Abstract machines

RAM-machine (random access machine)

Questions

@ What are the basics of a Turing-machine?
@ What does the "busy beaver" do?

© What's the difference between the direct and the indirect
commands?

@ What is the machine code, assembly and the assembler?

Gabor Borbély Abstract machines

RAM-machine (random access machine)

Questions

@ What are the basics of a Turing-machine?
@ What does the "busy beaver" do?
o

What's the difference between the direct and the indirect
commands?

@ What is the machine code, assembly and the assembler?

© What are the contents of the memory after issuing these
commands?

1 LOAD=
STORE
STOREx*
JZERO
LOAD=
MUL

HALT

~NOo O wWwN
= NN~ 2O

Gabor Borbély Abstract machines

	Turing machine
	RAM-machine (random access machine)

