STLdoc
STLdocumentation
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
hashtable_policy.h
Go to the documentation of this file.
1 // Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-
2 
3 // Copyright (C) 2010-2013 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
31 namespace std _GLIBCXX_VISIBILITY(default)
32 {
33 namespace tr1
34 {
35 namespace __detail
36 {
37 _GLIBCXX_BEGIN_NAMESPACE_VERSION
38 
39  // Helper function: return distance(first, last) for forward
40  // iterators, or 0 for input iterators.
41  template<class _Iterator>
42  inline typename std::iterator_traits<_Iterator>::difference_type
43  __distance_fw(_Iterator __first, _Iterator __last,
44  std::input_iterator_tag)
45  { return 0; }
46 
47  template<class _Iterator>
48  inline typename std::iterator_traits<_Iterator>::difference_type
49  __distance_fw(_Iterator __first, _Iterator __last,
50  std::forward_iterator_tag)
51  { return std::distance(__first, __last); }
52 
53  template<class _Iterator>
54  inline typename std::iterator_traits<_Iterator>::difference_type
55  __distance_fw(_Iterator __first, _Iterator __last)
56  {
57  typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
58  return __distance_fw(__first, __last, _Tag());
59  }
60 
61  // Auxiliary types used for all instantiations of _Hashtable: nodes
62  // and iterators.
63 
64  // Nodes, used to wrap elements stored in the hash table. A policy
65  // template parameter of class template _Hashtable controls whether
66  // nodes also store a hash code. In some cases (e.g. strings) this
67  // may be a performance win.
68  template<typename _Value, bool __cache_hash_code>
69  struct _Hash_node;
70 
71  template<typename _Value>
72  struct _Hash_node<_Value, true>
73  {
74  _Value _M_v;
75  std::size_t _M_hash_code;
76  _Hash_node* _M_next;
77  };
78 
79  template<typename _Value>
80  struct _Hash_node<_Value, false>
81  {
82  _Value _M_v;
83  _Hash_node* _M_next;
84  };
85 
86  // Local iterators, used to iterate within a bucket but not between
87  // buckets.
88  template<typename _Value, bool __cache>
89  struct _Node_iterator_base
90  {
91  _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
92  : _M_cur(__p) { }
93 
94  void
95  _M_incr()
96  { _M_cur = _M_cur->_M_next; }
97 
98  _Hash_node<_Value, __cache>* _M_cur;
99  };
100 
101  template<typename _Value, bool __cache>
102  inline bool
103  operator==(const _Node_iterator_base<_Value, __cache>& __x,
104  const _Node_iterator_base<_Value, __cache>& __y)
105  { return __x._M_cur == __y._M_cur; }
106 
107  template<typename _Value, bool __cache>
108  inline bool
109  operator!=(const _Node_iterator_base<_Value, __cache>& __x,
110  const _Node_iterator_base<_Value, __cache>& __y)
111  { return __x._M_cur != __y._M_cur; }
112 
113  template<typename _Value, bool __constant_iterators, bool __cache>
114  struct _Node_iterator
115  : public _Node_iterator_base<_Value, __cache>
116  {
117  typedef _Value value_type;
118  typedef typename
119  __gnu_cxx::__conditional_type<__constant_iterators,
120  const _Value*, _Value*>::__type
121  pointer;
122  typedef typename
123  __gnu_cxx::__conditional_type<__constant_iterators,
124  const _Value&, _Value&>::__type
125  reference;
126  typedef std::ptrdiff_t difference_type;
127  typedef std::forward_iterator_tag iterator_category;
128 
129  _Node_iterator()
130  : _Node_iterator_base<_Value, __cache>(0) { }
131 
132  explicit
133  _Node_iterator(_Hash_node<_Value, __cache>* __p)
134  : _Node_iterator_base<_Value, __cache>(__p) { }
135 
136  reference
137  operator*() const
138  { return this->_M_cur->_M_v; }
139 
140  pointer
141  operator->() const
142  { return std::__addressof(this->_M_cur->_M_v); }
143 
144  _Node_iterator&
145  operator++()
146  {
147  this->_M_incr();
148  return *this;
149  }
150 
151  _Node_iterator
152  operator++(int)
153  {
154  _Node_iterator __tmp(*this);
155  this->_M_incr();
156  return __tmp;
157  }
158  };
159 
160  template<typename _Value, bool __constant_iterators, bool __cache>
161  struct _Node_const_iterator
162  : public _Node_iterator_base<_Value, __cache>
163  {
164  typedef _Value value_type;
165  typedef const _Value* pointer;
166  typedef const _Value& reference;
167  typedef std::ptrdiff_t difference_type;
168  typedef std::forward_iterator_tag iterator_category;
169 
170  _Node_const_iterator()
171  : _Node_iterator_base<_Value, __cache>(0) { }
172 
173  explicit
174  _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
175  : _Node_iterator_base<_Value, __cache>(__p) { }
176 
177  _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
178  __cache>& __x)
179  : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
180 
181  reference
182  operator*() const
183  { return this->_M_cur->_M_v; }
184 
185  pointer
186  operator->() const
187  { return std::__addressof(this->_M_cur->_M_v); }
188 
189  _Node_const_iterator&
190  operator++()
191  {
192  this->_M_incr();
193  return *this;
194  }
195 
196  _Node_const_iterator
197  operator++(int)
198  {
199  _Node_const_iterator __tmp(*this);
200  this->_M_incr();
201  return __tmp;
202  }
203  };
204 
205  template<typename _Value, bool __cache>
206  struct _Hashtable_iterator_base
207  {
208  _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
209  _Hash_node<_Value, __cache>** __bucket)
210  : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
211 
212  void
213  _M_incr()
214  {
215  _M_cur_node = _M_cur_node->_M_next;
216  if (!_M_cur_node)
217  _M_incr_bucket();
218  }
219 
220  void
221  _M_incr_bucket();
222 
223  _Hash_node<_Value, __cache>* _M_cur_node;
224  _Hash_node<_Value, __cache>** _M_cur_bucket;
225  };
226 
227  // Global iterators, used for arbitrary iteration within a hash
228  // table. Larger and more expensive than local iterators.
229  template<typename _Value, bool __cache>
230  void
231  _Hashtable_iterator_base<_Value, __cache>::
232  _M_incr_bucket()
233  {
234  ++_M_cur_bucket;
235 
236  // This loop requires the bucket array to have a non-null sentinel.
237  while (!*_M_cur_bucket)
238  ++_M_cur_bucket;
239  _M_cur_node = *_M_cur_bucket;
240  }
241 
242  template<typename _Value, bool __cache>
243  inline bool
244  operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
245  const _Hashtable_iterator_base<_Value, __cache>& __y)
246  { return __x._M_cur_node == __y._M_cur_node; }
247 
248  template<typename _Value, bool __cache>
249  inline bool
250  operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
251  const _Hashtable_iterator_base<_Value, __cache>& __y)
252  { return __x._M_cur_node != __y._M_cur_node; }
253 
254  template<typename _Value, bool __constant_iterators, bool __cache>
255  struct _Hashtable_iterator
256  : public _Hashtable_iterator_base<_Value, __cache>
257  {
258  typedef _Value value_type;
259  typedef typename
260  __gnu_cxx::__conditional_type<__constant_iterators,
261  const _Value*, _Value*>::__type
262  pointer;
263  typedef typename
264  __gnu_cxx::__conditional_type<__constant_iterators,
265  const _Value&, _Value&>::__type
266  reference;
267  typedef std::ptrdiff_t difference_type;
268  typedef std::forward_iterator_tag iterator_category;
269 
270  _Hashtable_iterator()
271  : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
272 
273  _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
274  _Hash_node<_Value, __cache>** __b)
275  : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
276 
277  explicit
278  _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
279  : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
280 
281  reference
282  operator*() const
283  { return this->_M_cur_node->_M_v; }
284 
285  pointer
286  operator->() const
287  { return std::__addressof(this->_M_cur_node->_M_v); }
288 
289  _Hashtable_iterator&
290  operator++()
291  {
292  this->_M_incr();
293  return *this;
294  }
295 
296  _Hashtable_iterator
297  operator++(int)
298  {
299  _Hashtable_iterator __tmp(*this);
300  this->_M_incr();
301  return __tmp;
302  }
303  };
304 
305  template<typename _Value, bool __constant_iterators, bool __cache>
306  struct _Hashtable_const_iterator
307  : public _Hashtable_iterator_base<_Value, __cache>
308  {
309  typedef _Value value_type;
310  typedef const _Value* pointer;
311  typedef const _Value& reference;
312  typedef std::ptrdiff_t difference_type;
313  typedef std::forward_iterator_tag iterator_category;
314 
315  _Hashtable_const_iterator()
316  : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
317 
318  _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
319  _Hash_node<_Value, __cache>** __b)
320  : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
321 
322  explicit
323  _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
324  : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
325 
326  _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
327  __constant_iterators, __cache>& __x)
328  : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
329  __x._M_cur_bucket) { }
330 
331  reference
332  operator*() const
333  { return this->_M_cur_node->_M_v; }
334 
335  pointer
336  operator->() const
337  { return std::__addressof(this->_M_cur_node->_M_v); }
338 
339  _Hashtable_const_iterator&
340  operator++()
341  {
342  this->_M_incr();
343  return *this;
344  }
345 
346  _Hashtable_const_iterator
347  operator++(int)
348  {
349  _Hashtable_const_iterator __tmp(*this);
350  this->_M_incr();
351  return __tmp;
352  }
353  };
354 
355 
356  // Many of class template _Hashtable's template parameters are policy
357  // classes. These are defaults for the policies.
358 
359  // Default range hashing function: use division to fold a large number
360  // into the range [0, N).
361  struct _Mod_range_hashing
362  {
363  typedef std::size_t first_argument_type;
364  typedef std::size_t second_argument_type;
365  typedef std::size_t result_type;
366 
367  result_type
368  operator()(first_argument_type __num, second_argument_type __den) const
369  { return __num % __den; }
370  };
371 
372  // Default ranged hash function H. In principle it should be a
373  // function object composed from objects of type H1 and H2 such that
374  // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
375  // h1 and h2. So instead we'll just use a tag to tell class template
376  // hashtable to do that composition.
377  struct _Default_ranged_hash { };
378 
379  // Default value for rehash policy. Bucket size is (usually) the
380  // smallest prime that keeps the load factor small enough.
381  struct _Prime_rehash_policy
382  {
383  _Prime_rehash_policy(float __z = 1.0)
384  : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
385 
386  float
387  max_load_factor() const
388  { return _M_max_load_factor; }
389 
390  // Return a bucket size no smaller than n.
392  _M_next_bkt(std::size_t __n) const;
393 
394  // Return a bucket count appropriate for n elements
396  _M_bkt_for_elements(std::size_t __n) const;
397 
398  // __n_bkt is current bucket count, __n_elt is current element count,
399  // and __n_ins is number of elements to be inserted. Do we need to
400  // increase bucket count? If so, return make_pair(true, n), where n
401  // is the new bucket count. If not, return make_pair(false, 0).
402  std::pair<bool, std::size_t>
403  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
404  std::size_t __n_ins) const;
405 
406  enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
407 
408  float _M_max_load_factor;
409  float _M_growth_factor;
410  mutable std::size_t _M_next_resize;
411  };
412 
413  extern const unsigned long __prime_list[];
414 
415  // XXX This is a hack. There's no good reason for any of
416  // _Prime_rehash_policy's member functions to be inline.
417 
418  // Return a prime no smaller than n.
419  inline std::size_t
420  _Prime_rehash_policy::
421  _M_next_bkt(std::size_t __n) const
422  {
423  const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
424  + _S_n_primes, __n);
425  _M_next_resize =
426  static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
427  return *__p;
428  }
429 
430  // Return the smallest prime p such that alpha p >= n, where alpha
431  // is the load factor.
432  inline std::size_t
433  _Prime_rehash_policy::
434  _M_bkt_for_elements(std::size_t __n) const
435  {
436  const float __min_bkts = __n / _M_max_load_factor;
437  const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
438  + _S_n_primes, __min_bkts);
439  _M_next_resize =
440  static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
441  return *__p;
442  }
443 
444  // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
445  // If p > __n_bkt, return make_pair(true, p); otherwise return
446  // make_pair(false, 0). In principle this isn't very different from
447  // _M_bkt_for_elements.
448 
449  // The only tricky part is that we're caching the element count at
450  // which we need to rehash, so we don't have to do a floating-point
451  // multiply for every insertion.
452 
453  inline std::pair<bool, std::size_t>
454  _Prime_rehash_policy::
455  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
456  std::size_t __n_ins) const
457  {
458  if (__n_elt + __n_ins > _M_next_resize)
459  {
460  float __min_bkts = ((float(__n_ins) + float(__n_elt))
461  / _M_max_load_factor);
462  if (__min_bkts > __n_bkt)
463  {
464  __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
465  const unsigned long* __p =
466  std::lower_bound(__prime_list, __prime_list + _S_n_primes,
467  __min_bkts);
468  _M_next_resize = static_cast<std::size_t>
469  (__builtin_ceil(*__p * _M_max_load_factor));
470  return std::make_pair(true, *__p);
471  }
472  else
473  {
474  _M_next_resize = static_cast<std::size_t>
475  (__builtin_ceil(__n_bkt * _M_max_load_factor));
476  return std::make_pair(false, 0);
477  }
478  }
479  else
480  return std::make_pair(false, 0);
481  }
482 
483  // Base classes for std::tr1::_Hashtable. We define these base
484  // classes because in some cases we want to do different things
485  // depending on the value of a policy class. In some cases the
486  // policy class affects which member functions and nested typedefs
487  // are defined; we handle that by specializing base class templates.
488  // Several of the base class templates need to access other members
489  // of class template _Hashtable, so we use the "curiously recurring
490  // template pattern" for them.
491 
492  // class template _Map_base. If the hashtable has a value type of the
493  // form pair<T1, T2> and a key extraction policy that returns the
494  // first part of the pair, the hashtable gets a mapped_type typedef.
495  // If it satisfies those criteria and also has unique keys, then it
496  // also gets an operator[].
497  template<typename _Key, typename _Value, typename _Ex, bool __unique,
498  typename _Hashtable>
499  struct _Map_base { };
500 
501  template<typename _Key, typename _Pair, typename _Hashtable>
502  struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
503  {
504  typedef typename _Pair::second_type mapped_type;
505  };
506 
507  template<typename _Key, typename _Pair, typename _Hashtable>
508  struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
509  {
510  typedef typename _Pair::second_type mapped_type;
511 
512  mapped_type&
513  operator[](const _Key& __k);
514  };
515 
516  template<typename _Key, typename _Pair, typename _Hashtable>
517  typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
518  true, _Hashtable>::mapped_type&
519  _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
520  operator[](const _Key& __k)
521  {
522  _Hashtable* __h = static_cast<_Hashtable*>(this);
523  typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
524  std::size_t __n = __h->_M_bucket_index(__k, __code,
525  __h->_M_bucket_count);
526 
527  typename _Hashtable::_Node* __p =
528  __h->_M_find_node(__h->_M_buckets[__n], __k, __code);
529  if (!__p)
530  return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
531  __n, __code)->second;
532  return (__p->_M_v).second;
533  }
534 
535  // class template _Rehash_base. Give hashtable the max_load_factor
536  // functions iff the rehash policy is _Prime_rehash_policy.
537  template<typename _RehashPolicy, typename _Hashtable>
538  struct _Rehash_base { };
539 
540  template<typename _Hashtable>
541  struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
542  {
543  float
544  max_load_factor() const
545  {
546  const _Hashtable* __this = static_cast<const _Hashtable*>(this);
547  return __this->__rehash_policy().max_load_factor();
548  }
549 
550  void
551  max_load_factor(float __z)
552  {
553  _Hashtable* __this = static_cast<_Hashtable*>(this);
554  __this->__rehash_policy(_Prime_rehash_policy(__z));
555  }
556  };
557 
558  // Class template _Hash_code_base. Encapsulates two policy issues that
559  // aren't quite orthogonal.
560  // (1) the difference between using a ranged hash function and using
561  // the combination of a hash function and a range-hashing function.
562  // In the former case we don't have such things as hash codes, so
563  // we have a dummy type as placeholder.
564  // (2) Whether or not we cache hash codes. Caching hash codes is
565  // meaningless if we have a ranged hash function.
566  // We also put the key extraction and equality comparison function
567  // objects here, for convenience.
568 
569  // Primary template: unused except as a hook for specializations.
570  template<typename _Key, typename _Value,
571  typename _ExtractKey, typename _Equal,
572  typename _H1, typename _H2, typename _Hash,
573  bool __cache_hash_code>
574  struct _Hash_code_base;
575 
576  // Specialization: ranged hash function, no caching hash codes. H1
577  // and H2 are provided but ignored. We define a dummy hash code type.
578  template<typename _Key, typename _Value,
579  typename _ExtractKey, typename _Equal,
580  typename _H1, typename _H2, typename _Hash>
581  struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
582  _Hash, false>
583  {
584  protected:
585  _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
586  const _H1&, const _H2&, const _Hash& __h)
587  : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
588 
589  typedef void* _Hash_code_type;
590 
591  _Hash_code_type
592  _M_hash_code(const _Key& __key) const
593  { return 0; }
594 
596  _M_bucket_index(const _Key& __k, _Hash_code_type,
597  std::size_t __n) const
598  { return _M_ranged_hash(__k, __n); }
599 
601  _M_bucket_index(const _Hash_node<_Value, false>* __p,
602  std::size_t __n) const
603  { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
604 
605  bool
606  _M_compare(const _Key& __k, _Hash_code_type,
607  _Hash_node<_Value, false>* __n) const
608  { return _M_eq(__k, _M_extract(__n->_M_v)); }
609 
610  void
611  _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
612  { }
613 
614  void
615  _M_copy_code(_Hash_node<_Value, false>*,
616  const _Hash_node<_Value, false>*) const
617  { }
618 
619  void
620  _M_swap(_Hash_code_base& __x)
621  {
622  std::swap(_M_extract, __x._M_extract);
623  std::swap(_M_eq, __x._M_eq);
624  std::swap(_M_ranged_hash, __x._M_ranged_hash);
625  }
626 
627  protected:
628  _ExtractKey _M_extract;
629  _Equal _M_eq;
630  _Hash _M_ranged_hash;
631  };
632 
633 
634  // No specialization for ranged hash function while caching hash codes.
635  // That combination is meaningless, and trying to do it is an error.
636 
637 
638  // Specialization: ranged hash function, cache hash codes. This
639  // combination is meaningless, so we provide only a declaration
640  // and no definition.
641  template<typename _Key, typename _Value,
642  typename _ExtractKey, typename _Equal,
643  typename _H1, typename _H2, typename _Hash>
644  struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
645  _Hash, true>;
646 
647  // Specialization: hash function and range-hashing function, no
648  // caching of hash codes. H is provided but ignored. Provides
649  // typedef and accessor required by TR1.
650  template<typename _Key, typename _Value,
651  typename _ExtractKey, typename _Equal,
652  typename _H1, typename _H2>
653  struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
654  _Default_ranged_hash, false>
655  {
656  typedef _H1 hasher;
657 
658  hasher
659  hash_function() const
660  { return _M_h1; }
661 
662  protected:
663  _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
664  const _H1& __h1, const _H2& __h2,
665  const _Default_ranged_hash&)
666  : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
667 
668  typedef std::size_t _Hash_code_type;
669 
670  _Hash_code_type
671  _M_hash_code(const _Key& __k) const
672  { return _M_h1(__k); }
673 
675  _M_bucket_index(const _Key&, _Hash_code_type __c,
676  std::size_t __n) const
677  { return _M_h2(__c, __n); }
678 
680  _M_bucket_index(const _Hash_node<_Value, false>* __p,
681  std::size_t __n) const
682  { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
683 
684  bool
685  _M_compare(const _Key& __k, _Hash_code_type,
686  _Hash_node<_Value, false>* __n) const
687  { return _M_eq(__k, _M_extract(__n->_M_v)); }
688 
689  void
690  _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
691  { }
692 
693  void
694  _M_copy_code(_Hash_node<_Value, false>*,
695  const _Hash_node<_Value, false>*) const
696  { }
697 
698  void
699  _M_swap(_Hash_code_base& __x)
700  {
701  std::swap(_M_extract, __x._M_extract);
702  std::swap(_M_eq, __x._M_eq);
703  std::swap(_M_h1, __x._M_h1);
704  std::swap(_M_h2, __x._M_h2);
705  }
706 
707  protected:
708  _ExtractKey _M_extract;
709  _Equal _M_eq;
710  _H1 _M_h1;
711  _H2 _M_h2;
712  };
713 
714  // Specialization: hash function and range-hashing function,
715  // caching hash codes. H is provided but ignored. Provides
716  // typedef and accessor required by TR1.
717  template<typename _Key, typename _Value,
718  typename _ExtractKey, typename _Equal,
719  typename _H1, typename _H2>
720  struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
721  _Default_ranged_hash, true>
722  {
723  typedef _H1 hasher;
724 
725  hasher
726  hash_function() const
727  { return _M_h1; }
728 
729  protected:
730  _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
731  const _H1& __h1, const _H2& __h2,
732  const _Default_ranged_hash&)
733  : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
734 
735  typedef std::size_t _Hash_code_type;
736 
737  _Hash_code_type
738  _M_hash_code(const _Key& __k) const
739  { return _M_h1(__k); }
740 
742  _M_bucket_index(const _Key&, _Hash_code_type __c,
743  std::size_t __n) const
744  { return _M_h2(__c, __n); }
745 
747  _M_bucket_index(const _Hash_node<_Value, true>* __p,
748  std::size_t __n) const
749  { return _M_h2(__p->_M_hash_code, __n); }
750 
751  bool
752  _M_compare(const _Key& __k, _Hash_code_type __c,
753  _Hash_node<_Value, true>* __n) const
754  { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
755 
756  void
757  _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
758  { __n->_M_hash_code = __c; }
759 
760  void
761  _M_copy_code(_Hash_node<_Value, true>* __to,
762  const _Hash_node<_Value, true>* __from) const
763  { __to->_M_hash_code = __from->_M_hash_code; }
764 
765  void
766  _M_swap(_Hash_code_base& __x)
767  {
768  std::swap(_M_extract, __x._M_extract);
769  std::swap(_M_eq, __x._M_eq);
770  std::swap(_M_h1, __x._M_h1);
771  std::swap(_M_h2, __x._M_h2);
772  }
773 
774  protected:
775  _ExtractKey _M_extract;
776  _Equal _M_eq;
777  _H1 _M_h1;
778  _H2 _M_h2;
779  };
780 _GLIBCXX_END_NAMESPACE_VERSION
781 } // namespace __detail
782 }
783 }
bool operator==(const exception_ptr &, const exception_ptr &) _GLIBCXX_USE_NOEXCEPT __attribute__((__pure__))
namespace std _GLIBCXX_VISIBILITY(default)
Definition: hashtable_policy.h:31
bool operator!=(const exception_ptr &, const exception_ptr &) _GLIBCXX_USE_NOEXCEPT __attribute__((__pure__))
const _Tp & max(const _Tp &__a, const _Tp &__b)
Equivalent to std::max.
Definition: base.h:150
__SIZE_TYPE__ size_t
Definition: stddef.h:212
__PTRDIFF_TYPE__ ptrdiff_t
Definition: stddef.h:147
void swap(exception_ptr &__lhs, exception_ptr &__rhs)
Definition: exception_ptr.h:160