Section Three 
Practice of Mathematics Education 
Mathematics teaching, taken at its extremes, can have two fundamentally different goals. One is that students become facile with prescribed rituals, some of which involve writing marks in various configurations, in response to commands to perform them. The other is that students develop insight into their natural world, their interactions with it, and their reasoning about it. The first goal typifies what we imagine as ‘traditional’ mathematics. The second goal is less common, and requires social systems that typically do not exist. The chapters in this section definitely exemplify issues surrounding the latter goal—that of transforming the mathematics education of school practice to one that fosters insight into significant mathematical ideas, coherence in students’ understandings of various topics, and dispositions that are propaedeutic for greater mathematical and scientific literacy. 

J.van den Brink (Ch. 9) shares with us an approach to teaching geometry that grows out of Freudenthal’s didactic realism. He illustrates an approach to mathematics education, shared in large extent by the other chapter authors in this section, that places mathematizing at the center of students’ and teachers’ activities. It is distinct among the three, however, in that Brink draws strongly from issues in mathematics to structure his thinking about interactions with students. Wright (Ch. 10) also emphasizes issues of mathematical understanding, but in a very different setting than the others. His chapter is about a recovery program for students who had been unsuccessful in other settings, and draws on the constructivist-based research of the Interdisciplinary Research on Number project. Cobb (Ch. 11) situates many of the issues addressed by Brink and Wright within a perspective that attempts to account for the social context of students’ emerging sophistication and how addressing it might bring it into service of mathematics education goals. 
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9 
Students’ Constructions: A Necessity for Formalizations in Geometry 
Jan van den Brink 
What contributions can Ernst von Glasersfeld’s epistemology make to the teaching of geometry and, in particular, to formalization in geometry? I have found a number of striking ideas described by Glasersfeld and, among them, a basic idea that is shared by radical constructivism and didactic realism, which was developed in The Netherlands. Both of these frameworks stress the ‘students’ constructions’. This chapter is a report of a didactic phenomenological investigation into spherical geometry in mathematics education for 16 year olds. The research demonstrates that the students’ intuitive constructions and viewpoints, which were inspired by various types of geometry (spherical geometry, plane geometry, solid geometry) contributed to the process of formalization. Without the students’ intuitive ideas no genuine formalization in geometry is possible. 

Geometry for Clarification in an Unfathomable ‘Reality’ 
Spherical geometry is the geometry of the surface of a sphere. This probably brings to mind the analytical measurement of spherical triangles and all sorts of theorems in goniometric 1 terms regarding such triangles. But that’s not the only thing that is involved in the study of spherical geometry. Quite the contrary. We can also study it in a non-analytical way, and there are a number of convincing arguments for a study of this type, which is a study of synthetic spherical geometry. 

In ‘daily life’, for instance, phenomena can be found which remain unclear and mysterious without interpreting them in terms of spherical geometry in general and great circles in particular. Take the fact that an airplane bound for Atlanta from Amsterdam does not depart in a southwesterly direction (which, given a world map, would seem logical), but, rather, in a northwesterly direction—as if taking a detour alongside the North Pole. ‘Strange,’ one might say. Why should this be? Another phenomenon which can be explained on an elementary geometrical level is the fact that the great circle indicates both the shortest distance between two points on earth and their initial direction. ‘The shortest distance?’ one might ask. But how can the fact be explained that one must constantly readjust one’s compass course while moving towards the destination in the shortest possible distance? How can one explain that the shortest distance 
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is on a great circle? Another question is, ‘Are there straight lines on the earth?’ What may they be on the curved surface of the earth? And, finally, consider parallel lines straight ahead around the earth. Do they exist? 

The answers to these questions depend on how one regards the world, because one’s knowledge about the world depends also on how one regards it. Geometrical knowledge can provide clarification of such phenomena and—as was the case in Antiquity—can include discussions about ‘the construction of paths of action and thinking that an unfathomable “reality” leaves open for us to tread’ (Glasersfeld, 1983, p. 2). 

Different Types of Geometry, Great Circles, Poles and Antipoles, and Map Projections 
A number of topics within spherical geometry are suitable for classroom use. For example: great circles, poles and antipoles, map projections, and different types of geometry. 

Great Circle 
The great circle is an important topic. In analogy, a great circle is to a two-dimensional spherical surface what a straight line is to a flat surface; it is the determinant of both the shortest distance and the shortest direction between two points. But it is also the greatest cross-section of a sphere in the three-dimensional space. So, the great circle can be defined in different ways depending upon the space (two-dimensional or three-dimensional) one has in mind. 2 
In the new mathematics curriculum for school children in The Netherlands, 3 great circles are found exclusively in the unit entitled ‘Mecca’ (Brink and Meeder, 1991; Brink, 1993a and 1993b). The unit is well suited to the curriculum, and forms a special topic in continuation of ‘solid geometry’ (cross-sections), ‘geometry of vision lines’, ‘orientation and location’ and ‘calculating in geometry’, which are the four main chapters in the geometry curriculum (Team W12-16, 1992, p. 14). 

Pole and Antipole 
Pole and antipole is another topic specific to spherical geometry. The North and South Poles serve as models. A geometric link can be made between poles, antipoles, the centre of the earth, and great circles. In addition to poles and antipoles, a sphere also contains ‘planes’ and ‘opposing planes’ (the hemispheres, for instance, or the time zones), and lines and ‘opposing lines’ (the prime meridian and the date line, for example). These ‘opposing’ concepts are characteristics of spherical geometry. 
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Map Projections 
The ‘representation’ of the spherical surface on a flat surface is the third of the topics which can make spherical geometry a fascinating subject for all students. Two map projections catch the eye—the Mercator projection 4 (a world map) and the central projection 5 (gnomic map, e.g. a polar map) are particularly appropriate for further investigation. What does a straight line drawn on a world map mean on the globe (a rhumb-line 6 with fixed compass direction, a loxodromic line)? And drawn on a polar map (a great circle: the shortest direction)? There are two different directions on the globe, according to the two map projections. 

Different Types of Geometry 
Spherical geometry, plane geometry and solid geometry are formalized backgrounds that can be used to appreciate the differences between students’ ideas (e.g. about what a great circle might be). To understand the meaning of a student’s remarks, one has to know differences among various types of geometry. These differences are not only differences in formal systems of axioms. Rather, they are also different ways of regarding the world and, accordingly, of constructing knowledge about it. We can see the world as a flat, two-dimensional surface close around us or as a spherical two-dimensional surface from the viewpoint of a satellite (a great circle is seen as a straight line). We can also see the world as a filled three-dimensional globe (a great circle may be a greatest secant circle cutting through the globe). 

The knowledge constructed from these different worldviews produces different geometrical laws. For example, in plane geometry for every two different points there is one and only one straight line that joins them. But in spherical geometry, a pole and its antipole are incident to an infinite number of straight lines (great circles). Glasersfeld points to the disturbance that can be generated by such seemingly contradictory experiences (Glasersfeld and Cobb, 1983). The disturbance not only engenders discussions, it engenders different formalizations in the classroom as well. These formalized systems produced by the students are related to Glasersfeld’s idea of ‘subjective environment’ (Glasersfeld, 1983): not only is the knowledge of a phenomenon constructed in an individual way, but so is the whole environment in which the phenomenon fits. 

Lessons in Spherical Geometry 
The topics of great circle, pole and antipole, map projection, and different types of geometry occupied six lessons in the school year. The sixth lesson was an exam. The lessons were given by one teacher, Wim Schaafsma, in three 10th grade MAVO 7 classes at the Greydanus school in Zwolle, The Netherlands. A 
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total of seventy-five 16-year old students participated in these lessons. They made use of globes, Styrofoam balls, a half-sphere of transparent plastic (Lénárt, 1993), an Islamic prayer rug, and a student’s textbook, entitled Mecca. 

Where is Mecca? 
I developed this textbook as an example of how mathematics can be enriched for all children by choosing topics from different cultures; for instance, from the Islamic culture. The book deals mainly with spherical geometry on the globe. 

There he was: the Imam, [so begins the textbook.] 
I asked him my question right away:
‘When you pray, you pray towards the East, don’t you?’
‘No, towards Mecca,’ he answered.
‘But how do you know where Mecca is? I can find the East, but Mecca….’ 

Figure 9.1 Mecca-meter at 250
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‘You can find Mecca in three ways,’ the Imam explained to me. ‘First of all, you can tell by the sun. But you don’t see the sun so often here in Holland. So there’s a second way.’ I was amazed when he told me that he could find the direction of Mecca with a sort of compass.
‘But when you can’t see the sun and you don’t have that compass,’ the Imam continued, ‘there’s also a third way: your feeling of solidarity with Mecca.’
‘But then a Muslim in Amsterdam prays in a different direction from a Muslim in, for instance, Turkey, Morocco or Indonesia,’ I interrupted him. The Imam nodded;
‘Yes.’ And as though he’d suddenly thought of something, he asked me to wait a moment, left the room, and returned carrying a beautiful rug. In the middle of this rug was indeed a compass, which we later called the ‘Mecca-meter’.
‘Kibla’ was written on the Mecca-meter. ‘The direction of Mecca,’ explained the Imam. But however the rug was turned, the needle of the compass naturally kept pointing to the North. What was to be done? From a pocket on the underside of the rug the Imam pulled out a little book full of cities and numbers. He leafed through it until he found: ‘250 Amsterdam’. He then turned the rug so that the needle of the Mecca-meter pointed to 250 (see Figure 9.1).
‘Kibla,’ he said, and laughed as he drew our attention to the minaret of the Mecca-meter that was now pointing towards Mecca. 

Was the Kibla Correct? The Perils of a Designer 
While designing the workbook, an emotional moment occurred when I realized that the Kibla, as shown in the Imam’s little book, was not correct. What should I do? My purpose was not to criticize the Kibla or Kibla constructions, but I couldn’t simply ignore it. According to the Imam’s book, from Havana you should pray compass direction due east; but the great circle, on the other hand, indicated the shortest direction northeast (Figure 9.2). 

Studying the history of Islam produced results. In the Islamic faith, the Kibla is a basic concept that indicates more than just geographical direction: ‘Kibla’ means in the first place solidarity with Mecca. Another reassuring fact was that determining the Kibla has been a major issue for Islamic scholars since the beginning of Islam. Most of the 200 Islamic manuals for astronomy that appear between AD 750 and AD 1750 devote at least one chapter to this subject. But—and this is the crux of the matter—a number of different constructions were available for determining the Kibla. In some of these constructions the earth was regarded as a flat surface in a small area surrounding Mecca. For certain locations, these ‘flat constructions’ provided a good approximation of the direction. Arab astronomers—none of whom ever assumed the earth to be flat—were also familiar at that time with great circles for indicating distance and direction according to the shortest route. In other words, exact constructions of the Kibla which were based on great circles generally indicated a different direction from the abovementioned flat constructions, which were indeed viewed by Arab scholars as mere approximations. 
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Figure 9.2 Havana-Mecca bow



To my astonishment, this historical issue for the Kibla of ‘flat constructions’ and ‘great circle constructions’ fitted precisely into what we had in mind for the workbook Mecca: comparing the flat map of the world with the globe as different models for the earth. 

In the Classroom 
I observed the given lessons and took detailed notes in order to improve the workbook. Teacher Wim and his students made striking comments that often shed new light on geometrical concepts. 
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Figure 9.3 A world map



‘Direction and Direction is Two’
During the third lesson, three students, Peter, Betrick and Bart are looking over each other’s work. Bart had missed the first two lessons due to illness and the other two are now explaining everything to him. Betrick is telling Bart about the prayer rug; about how the Mecca-meter (the compass on the rug) is used together with the Imam’s booklet. Then they turn to worksheet 1 (Figure 9.3). Bart draws straight arrows on this world map from various places (Amsterdam, Havana, Honolulu, Hong Kong) to Mecca. 8 
· Peter explains to him: ‘They’re looking from those places in different directions’. 

· Bart looks at him in amazement. ‘No, all in the same direction,’ he says, ‘all towards Mecca.’ 

· ‘No, that’s not the same direction,’ snaps Betrick. 

· ‘No, that’s obvious,’ replies Bart, irritated. ‘They’re looking at the same place but not in the same direction.’ 

Evidently, the students are already implicitly aware that ‘direction’ has various meanings: the direction straight to the city of Mecca (the shortest direction), but also the direction to Mecca in relation to another point—the North Pole, for instance (the compass direction). In the second case, the direction varies for different places, unless we (theoretically speaking) take Mecca itself as the North Pole, then continual course adjustment along a great circle to Mecca is not necessary. Obviously one of the ‘mysteries’ mentioned in the first section of the chapter (constantly readjusting the course) has been solved. 
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Great Circles on the Two-Dimensional Earth Surface 
A bunch of circles is presented in the workbook (Figure 9.4). Students are asked: 

· Draw new circles through points A and B 

· What is the smallest circle? 

· What is the greatest circle? 

Teacher Wim told me that a student (I shall call him Theo) said that if you started here on your paper, at this point B , and you moved to the right all the time, off the paper, underneath the earth, and then again coming up on the left side, to A ; that would be the greatest circle you could think of on earth, going through the two points A and B on your paper. 

Theo’s comments directly clarify that the ‘straight’ line AB on the paper is part of a great circle and that the great circle carries the shortest distance from 

Figure 9.4 A bunch of circles 




Figure 9.5 A bunch of circles and a straight line
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Figure 9.6 Two cross-sections of the earth



A to B on the spherical surface. I published Theo’s story in the textbook (Figure 9.5) and students are asked what they think about his idea. 

Great Circles through a Three-Dimensional Sphere 
A chapter in the textbook deals with cross-sections of the sphere. In it, students are asked: 

Which circle is the largest cross-section? d or e? Why? (Figure 9.6) 
‘Circle e,’ a student says, ‘because it’s closer to the middle.’ And another student: ‘It’s the middle cross-section.’ This is an earliest definition of a ‘great circle’, and it differs from Theo’s. Instead of a cross-section of the three-dimensional earth, the great circle was seen by Theo as a line straight ahead around the earth on the earth’s two-dimensional surface. I collected a lot of such different ‘definitions’ of great circles, formulated by students and based on a variety of geometrical standpoints. ‘Teaching becomes an adventure,’ says teacher Wim, without doubt. 

In the Staff Room 
I meet Wim regularly in the staff room to discuss his progress and which topics are left. Wim said that he had discussed time zones in the classroom. Although this may seem to be a strange choice of topic, it fits well in spherical geometry. A sphere is an appropriate object for the discussion of poles and antipoles, lines and ‘opposing lines’ (the prime meridian and the date line), hemispheres and ‘opposing hemispheres’. I stress to Wim, however, the great circle and its different definitions, as well as the great circle as determinant of the shortest direction, adjusting the compass course along a great circle, and flying North of the parallel circle. In addition, I show Wim a didactic idea: the ‘revolving door’. 
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Figure 9.7 Revolving door with axis AB



Figure 9.8 Amsterdam-Atlanta problem



A fan of cross-sections slices the earth in circles. By this one can demonstrate that the shortest distance between two points is indicated by the great circle, and also that the great circle will move North of the parallel circle by revolving the door on its axis. The idea of the revolving door gives a solution of the Havana-Mecca problem (see Fig. 9.2) in the first section of this chapter. 

At home, on a transparent plastic sphere, I drew three circles that crossed each other in two places: a parallel circle, a small circle, and a great circle. 
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Figure 9.9 Three circles on a plastic sphere



A paper revolving door of these three circles fits inside the sphere. ‘Educational designing is a bit of home industry’, Wim calls it. He has another suggestion: use two thumb tacks (drawing pins) to pin a piece of bicycle brake cable to a Styrofoam ball along the parallel circle. The cable is stiff enough to remain in a circle and, by sliding it, one can demonstrate that it is larger than the great circle. Whatever the solution of this didactic problem we might find, in the end, we leave it to the students to resolve our problem by making a good construction. 

Students’ Constructions 
Map and Sphere 
The students look over each other’s homework in groups of four. 9 
Is the direction to Mecca from Havana to the East or Northeast? 
‘On the map it’s to the East,’ says Peter. Everyone in the group agrees. To my amazement Peter then continues: ‘But it’s to the Northeast on the earth because the earth is spherical’. Again there is agreement among the students. Maarten explains by saying: ‘The shortest distance between two points is more towards the North, because that’s always where the narrowest point of the earth is’. 

It seems that the students are first visualizing a map which, in their eyes, is of more value than the globe. The fact that the spherical globe is a more ‘authentic’ model for our earth is not yet apparent to them. They construct a sphere out of the map by rolling it into a cylinder and then pulling it together at each pole. The distance between the points at a given latitude becomes shorter as one progresses Northwards. Therefore, in their minds, the direction 
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Figure 9.10 The curve from Havana to Mecca



determining the shortest distance must be more Northerly. This idea, thought up by the students, is a terrific alternative for my revolving door, for which I had such difficulty finding a demonstration model. 

One of the Two: ‘Either on the Map, or on the Globe’ 
A bit later I realize that something surprising is happening here again. The students are now considering the present question: 

An airplane flying from Havana to Mecca takes off to the Northeast and not to the East. Why is this? 
Peter, Bart and Betrick look at the map and see the curve from Havana to Mecca (Figure 9.10). 

They think up all sorts of reasons: in order to refuel in Spain, to catch a tail wind, to avoid the desert. Then Betrick discovers: ‘Oh, they’ve done it with the globe—it’s the globe direction, not the map direction. They’ve drawn the globe direction on the map’. 

Initially, the students distinguished two different shortest directions, one on the map and one on the globe, and kept them strictly separated. The idea that globe direction can also be depicted on a map is new for them. The fact that a line on the globe can become a curved line via Spain on the map is a new idea as well. On the basis of these results, I made some improvements in the unit (indicate direction on the map, see the direction on the globe, draw the globe direction on the map) so that the students might see the difference between globe direction and map direction. 
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Intuitive Geometry for the Sake of Formalization 
One Definition of Great Circle or Many Definitions? 
When developing the textbook, my goal was to ask students to investigate all aspects of a mathematical object that should be taught. Therefore, I was interested mainly in different ‘definitions’ of great circles that the students could imagine. But there were also other reasons. In a mathematical theory, one usually begins with one definition for an object. How the author arrived at this definition, why it was preferred over other definitions, and how to state it in precise form—in other words, the problem of formalization—remains hidden from the student. Freudenthal (1971) wrote that definitions ‘are not preconceived to derive something from them, but more often they are just the last element of analysis, the finishing touch of organizing a subject. Children should be granted the same opportunities as the grown-up mathematician claims for himself’ (1971, p. 424). And, he warned, ‘Geometrical axiomatics cannot be meaningful as a teaching subject unless the student is allowed to perform these activities himself’ (ibid., p. 426). Experiences in primary education (Brink, 1987, 1991a and 1991b) have led me to believe that, in mathematics education, it is better not to begin with one sole definition but, rather, to ask the students to produce all sorts of different ‘definitions’ with all kinds of characteristics. 10 This gives the students an idea of what it means to be the author of a theory, of an arithmetic book, of a manual for a calculator, etc. They must consider the various ‘definitions’ and investigate which properties are essential for a definition, which are not, and which are incorrect. In Hiele’s opinion (1957), by investigating geometrical properties of quadrangles and finding relationships among such objects, a student achieves a higher level if an internal network of geometrical relations is attained. In my research, from initially thinking up ‘definitions’ and properties of great circles, a network of relations was achieved in the sense of Hiele. 

Students’ Own Productions in Spherical Geometry: Definitions of the Great Circle 
The students are discussing an assignment in the textbook in groups. The question is: 

How would you describe what a great circle on the earth is? 
Some of the answers the students gave are: 

· A circle like the equator (Betrick). 

· A straight line around the earth (Bart). 

· A circle that goes straight around the earth (Johan’s first definition). 
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· Where the earth is the thickest (Johan’s second definition). 

· The greatest circumference of the earth (Wouter). 

· ‘A great circle is a circle straight through the middle of the earth that arrives at the same point’ (Peter). 

I could detect some weighing of the definitions by the students (Which is the ‘best’? Which is the most inclusive?), as occurs in the formalization of a mathematical system. Johan formulated two different definitions, though he did not choose ‘the best one’. Peter combined a cross-section through the ‘spatial’ globe with the lines straight across the ‘surface of the globe’. That brought me to a new assignment. 

Assessing Students’ Own Productions 
I wrote students’ definitions in the textbook. The worksheet consists of eight ‘definitions’ of great circle which I had collected. I streamlined them somewhat and asked the students to assess them. 

· A great circle is a circle that divides the globe in two halves. Right or wrong? 

· A great circle is the greatest possible circle on the globe. Right or wrong? 

· A great circle is a circle that divides the globe in two pieces. Right or wrong? 

· A great circle is a circle that goes through the North and South Poles. Right or wrong? 

· A great circle is a circle whose centre is the earth’s centre. Right or wrong? 

· If you keep going straight while going around the earth, you’ll make a great circle. Right or wrong? 

· A great circle is a circle around the earth that is 40,000 km long. Right or wrong? 

· A great circle is a circle on the earth that is not parallel to the equator. Right or wrong? 

I have several reasons for publishing the students’ definitions in the textbook: 

· The first aim of the assignment was that students search all aspects of the great circle at their level. So, using students’ definitions provides a genuine opportunity to make such a search. 

· Assessing the definitions of fellow students is not only motivating for a student, but it also provides an opportunity for him or her to explore possible misconceptions. It’s a form of interaction between students (silent interaction). 

· By assessing definitions and standpoints of fellow students, the authority of the teacher’s geometrical viewpoint is avoided. 
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· It provides the students with the opportunity of weighing and revising their ‘definitions’ and to find a network of geometrical relations for this field. In this manner, the intuitive ideas of students play an essential role in the process of geometrical formalization. Without intuitive ideas, no genuine formalization is possible, I believe. 

· Radical constructivists believe that construction of knowledge about the world is necessarily an individual affair, 11 and therefore may differ. Publishing students’ different productions in a textbook is an acknowledgment of this belief. 

Different Types of Geometry 
Some children became particularly disturbed upon the perusal of the various definitions and vehement geometrical discussions and striking arguments arose in the classroom. 

Intolerance for Different Viewpoints 
Heidy, Anette, Maarten and Jan are considering t he next definition: 

A great circle is a circle whose centre is the earth’s centre. Right or wrong? 
‘False!’ says Heidy. I can’t believe my ears. This is the very definition of great circle. False?! ‘A great circle goes across the earth and not through the earth,’ she says. Anette thinks differently and tries to explain it. ‘If you take this ball,’ she says, holding a Styrofoam ball with a seam at the equator and pretending to break it in two at the seam, ‘you get two halves. So that gives you two great circles whose centre is at the centre of the earth.’ 

‘Where you draw the line, you break through here, that’s what you mean,’ says Heidy in her own words. ‘That’s how you get the centre of the earth, yeah, I get it. But a great circle is still a straight line across the earth and not a cross-section through the earth like you mean. And a straight line doesn’t have a centre. Only a circle has that.’ She turns to me, asking, ‘Teacher, who’s right here?’ 

The great circle as a straight line across the earth’s surface does not have a centre on the earth’s surface, nor is it a circle on that surface. The great circle as the greatest cross-section through the earth’s sphere has a centre, indeed. These are two ways of looking at it, each of which is correct in itself. 

Something that is typically ‘radical’ is the constructivist criticism levelled at persons taking part in a discussion in which ‘the participants believe that their meaning of the words they have used are fixed entities in an objective world outside the speakers’ (Glasersfeld and Cobb, 1983, p. 10). Such discussions are common in classrooms and one such was an element in the discussion of 
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Heidy and Anette. So, I told them, ‘You’re both right,’ explaining once again both viewpoints. But this bothers them; they feel only one of them should be ‘objectively’ correct. But they like their own ideas as the most objective! 

The Paradox of the Happy Agreement 
In their negotiations, students are inclined to revise their opinions. As a result, students in the classroom construct a kind of consensus about how they as classmates will think about the objective outside world. Mental objects are of intersubjective origin, and are taken as ‘shared meanings’ (Bauersfeld, 1983; Cobb, 1987; Brink, 1991b). This seems to fit with what Lewin (Ch. 4, p. 43 above) calls ‘the paradox of happy agreement’: ‘Each student, independently pursuing his or her own best intuitions comes up with the identical solution as all others.’ For instance, they all conclude that ‘alternate interior angles are congruent’. 

Negotiations: Maintaining One’s Idea or Taking a Shared Meaning? 
I am not sure whether the paradox of happy agreement is inherent in radical constructivism, or whether it is forthcoming from traditional education. Tendencies for sharing meanings are characteristic of traditional mathematics education. Also, in new realistic education, whole structures may be developed by children. Individual points of view cause conflicts, which is more in the sense of radical constructivism than is the paradox of happy agreement. The example mentioned by Lewin is illustrative: alternate interior angles are congruent. Indeed, but only if parallel straight lines do exist. That is the case in plane geometry, but may differ in other geometries. For example in spherical geometry they do not exist. 

There is also a difference in the reactions of young children and of more grown-up students. Grown-up students tend to maintain their different meanings even when they are in conflict with others. How? By fitting the idea in a self-made formalized framework compatible with plane geometry, spherical geometry, or solid geometry. And that is important because it benefits geometry education. In convincing fellow students, one needs to search one’s own underlying system; it’s consequences, its consistency, its rules and operations, and its constraints. 

Formalizing: A Network of Properties 
Searching Exhaustively for a Network of Properties 
The fourth lesson of Mecca started with the teacher’s request to ‘name as many properties of great circles as you can’. Great circles, again? But the request is 
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not redundant because in addition to the familiar properties, the students name a number of new ones. Moreover, they find more and more relationships among the different properties and between various concepts. In fact, they find a brand new geometry in which, for instance, parallel straight lines don’t exist. 

Parallelism? 
· ‘The great circles are all the same length,’ a student says in response to the teacher’s request, ‘because they’re all just as big as the equator.’ 

· ‘Each great circle passes through the centre of the earth,’ a girl reasons, ‘because it divides the earth into equal halves. But parallel circles are different,’ she continues. ‘They don’t divide the earth into two equal pieces, so their centres will never lie at the centre of the earth.’ 

· ‘Every great circle is situated both in the Northern Hemisphere and in the Southern Hemisphere’, a student comments. 

· ‘Every great circle crosses the equator,’ another student concludes. ‘Any two great circles will always cross each other.’ (The equator is used by the students as a model for great circles.) And teacher Wim asks, ‘Are there parallel great circles on earth?’ 

The students concluded that lines straight ahead around the earth (great circles) cannot be parallel. The parallelism depends on how one regards the world, whether a flat or a global one. 12 
Paideia and Paidia 
The ‘paradox of the happy agreement’ only applies within one system if it applies at all. In plane geometry, everyone will conclude that alternate interior angles are congruent, based on visual perception. But geometry education reaches further than plane geometry. There are different geometries and different conceptual structures to modify the knowledge about the world. On that very basis no ‘happy agreement’ can be attained. Only ‘tolerance’. Or ‘democracy’ (Lenart, 1993). 

Looking back on the conversation between Heidy and Anette, I realize that the differences between geometries call for tolerance of the students for each other’s viewpoints. Might mathematics have a pedagogical value on the level where structuring and formalizing are at issue? In a Greek dictionary I found various meanings of ‘paideia’: ‘upbringing’, ‘youth’, but also ‘punishment’ according to certain rules. I also found the closely related ‘paidia’, which means: ‘playing’, ‘game for children’, ‘infantile game’ and even ‘joking’. Paidia and paideia have to do with all sorts of rules of play. Regarded in this way—as games—the different geometries fit wonderfully well. 

It is remarkable that in discussions based on different geometrical viewpoints (spherical geometry, plane geometry, and solid geometry) about a mental 
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object like a great circle, the students must be asked for tolerance and to pay attention to the constructions and viewpoints of their neighbours, for the other rules they follow, and for the other games they play. That’s a pedagogical value of geometry education from a fundamental geometrical point of view: namely the different types of geometries. 

Viability and Constraints 
Piaget’s adaptation implies an experiential environment in which an organism (or knower) makes accommodations (Glasersfeld, 1982; Lewin, Ch. 4). The constraints of the environment become manifest only in conjunction with the activity of the organism. Glasersfeld uses the idea of ‘viability’—the continuing organization of the biological (or cognitive) system over time—as fundamental in adaptation. Applied in the cognitive field Glasersfeld’s notion of the ‘experiential environment’ stresses the interdependence of the subject and the environment. Neither is less subjective than the other (Glasersfeld and Cobb, 1983, p. 5; Glasersfeld, 1988). ‘Intelligence…organizes the world by organizing itself’ (Glasersfeld, 1982, p. 613). The ‘constraints’ of the environment and ‘the means through which an organism (or knower) negotiates its continuing existence’ co-arise. Stressing ‘further existence’ in the context of viability, Glasersfeld wrote: ‘We believe to have “understood” a piece of language whenever our understanding of it remains viable in the face of further linguistic or interactional experiences’ (1983, p. 213). 

In my geometry education, each student made his or her own subjective logical system; a network of relations, a geometry, as part of the ‘subjective environments’ in which a phenomenon (of a great circle, for instance) fitted. From my point of view, the constraints of different geometries became manifest in the discussions in the classroom as consequences of different ways of regarding the world. And again, paideia and paidia as ‘playing’ comes to the fore: which rules do my fellow students follow? 

Didactic Constructivism 
Conditions and Instructional Means in Geometry Education 
Didactic constructivism tries to find conditions and means by which education develops in the sense of radical constructivism (Glasersfeld, 1991a, 1991b; Brink, 1991a). During the geometry lessons, students were encouraged to modify their notions, and their ideas remained viable in the exhaustive search for properties and relations. An internal structure and a higher Hiele level was achieved. But in the role of their teacher, how does one promote and stimulate these results? What were the conditions in education for this activity? In which perspective can we place these activities? 

-122-
In my view the key element was that not only one type of geometry was taken as the holy truth. This opens up possibilities for multiple conceptions and it helps keep the students’ ideas viable. Six other aspects of the geometry instruction may also be mentioned: 

· the ‘own productions’ of the students and the use of the productions in the textbook; 

· students’ assessment of the productions of other students facilitated their subjective network of relations; 

· searching exhaustively for new properties and relations in order to extend the subjective network; 

· convincing by opposing examples in order to clear up misconceptions in the network; 

· encouraging students to go in search of adventures; and 

· formalizations by comparing different types of geometry. 

Convincing by Opposing Examples 
In the assignment of assessing students’ own productions, problems provided an opportunity to explore convincing by opposing examples. 

A great circle is a circle that passes through the North Pole and the South Pole. Right or wrong? 
‘It is a circle, so that’s possible,’ says Betrick. He gets stuck on this one particular characteristic: it is a circle. Bart supplies an opposing example to unerringly refute Betrick’s answer: ‘It’s false,’ says Bart, ‘because the equator is also a great circle and it doesn’t pass through the North Pole and the South Pole.’ 

A great circle is a circle around the earth that does not run parallel to the equator. Right or wrong? 
False, according to Peter. But Betrick says, ‘That’s true, because if it’s parallel then you get an parallel circle.’ This counter example convinces Peter. The statement makes good sense if the universe is only great circles. But it is not correct if it refers to all circles on the earth, for there are circles smaller than a great circle and not parallel to the equator. 

Encouraging Students to Go in Search of New Adventures for a New Perspective 
In a discussion with teacher Wim, he made the following comment: ‘I feel kind of insecure. I don’t know where we are going. The topic isn’t clear, or not yet, 
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anyway. The problems are also questions for me.’ I agreed with him. What is the perspective? But it amazes me that he did continue enthusiastically to go on new adventures with the class. He even thinks up some new problems and discovers aims to go to. 

‘Straight lines on the earth?’ 
For instance, he is fascinated by his discovery that straight lines across the earth’s surface are not genuinely straight (sight) lines. ‘Are there actually any straight lines on the earth? It would be great if they discover those differences between plane and spherical geometry,’ he says. ‘Are there actually any straight lines on the earth?’ he asks the class casually, hoping they will reply in the negative. But they mention a number of examples, such as the sun’s rays and the doorposts, in confirmation of their affirmative answer. It is true that vertical lines—such as doorposts—do not follow the earth’s curvature. The question is whether two vertical doorposts are in fact parallel, for, viewed spatially, they both point to the centre of the earth. In the ensuing discussions, student Henk resolves the issue: ‘If you make the line on the floor go straight ahead, then it will leave the earth.’ He considers a tangent to the earth. ‘And if it doesn’t leave the earth, then it’s not a straight line,’ he continues. 

The balloon above Mecca—the great circle as determinant of direction 
According to the vertical straight lines Wim says: ‘Imagine that a huge helium balloon on a string rises above Mecca. Will it rise up like this?’ He draws Figure 9.11 on the board. 

‘No, in that way it’s going towards the North,’ says a student. ‘The balloon has to go to the right’. 

‘To the right?’ asks Wim and waits. The children search for a better formulation for what we know as ‘upwards’ or ‘vertical’. 

‘Straight away from the earth,’ says another. 

Figure 9.11 Balloon northwards and Amsterdam
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Figure 9.12 Four drawings



Figure 9.13 Central projection



‘Actually we are all little balloons’, says Wim, ‘all stuck to the earth with our feet towards the centre.’ 

‘Then the balloon descends,’ he continues, ‘and the sight line from Amsterdam follows a sight plane that cuts through the earth as a…?’ 

‘Great circle,’ guesses a student. For it will cut the earth in its centre. 

‘So the great circle is not only the shortest distance, but it also indicates the shortest direction from, for instance, Amsterdam to Mecca,’ Wim states suc-cinctly. I have my doubts whether everyone has understood his explanation. 

In the textbook four drawings present this story on the balloon above Mecca in order to demonstrate (as the Star above Bethlehem) that the great circle is the determinant of the shortest direction between two places on earth. 

‘Changing course along a straight line?’ 
In the textbook a polar map 13 introduces another remarkable phenomenon of the great circle: going straight ahead along a great circle you have to adjust the compass course continuously (Figure 9.13). 
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Figure 9.14 Line of course and arrow



The arc of the great circle passing through Los Angeles and Amsterdam changes into a segment which intersects the map in a straight line. 

‘You’re looking down over the North Pole’, says Wim, ‘and then you see this’. 
He draws the ‘star’ of Figure 9.14 on the blackboard. Wim suggests that the students imagine themselves standing above the North Pole and looking down over the globe so that they see a disc which is not quite the same as the polar map. But for the benefit of the considered phenomenon it does not matter. 

‘An airplane flies from point A to point B’, says Wim. ‘Along this line AB straight ahead. Which direction is it heading at takeoff, which directions during the flight, and which direction as it nears point B?’ 

‘It starts flying Northeast,’ suggests one student. 

‘OK,’ says Wim. ‘Pay attention, ’cause you won’t believe your eyes. Farther on, the compass is pointing in another direction.’ 

He draws a new compass needle pointing again towards the North Pole. But the flying direction is rather East! 

‘In which direction is it flying?’ he asks at each new compass needle he draws along the whole route. ‘The same direction?’ Silence. You can hear a pin drop. Then: ‘How’s that possible? I don’t get it.’ 

It’s true, they can’t believe their eyes. You fly in a line straight ahead, along a great circle, but in an ever changing direction of the compass needle. This phenomenon could be easily explained by walking past a street lamp, which is viewed from an ever changing angle. It is, in fact, the very same problem as posed by Bart: Going towards Mecca in relation to the North Pole. 

‘The shortest distance without changing course’ 
At the end of the lesson, Wim takes the students on another adventure. 
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‘Are there two places on earth between which you can travel without having to change course?’ he asks. 

‘Along a meridian,’ answers a girl. 

‘Along the equator,’ says another. 

Wim discusses the answers: ‘Yes, because then you either keep going northwards (along the meridian) or eastwards (along the equator)’. 

‘Or if you follow a parallel circle,’ says a third student, ‘that also goes eastwards.’ 

‘No,’ says Wim, ‘because that’s not the shortest distance between two points.’ 

So the answer is not simply a line upon which the course has been fixed (a ‘loxodrome’), but a line which is both a loxodrome and a great circle (shortest distance). A parallel circle is indeed a loxodrome, but not a great circle. The students can find no more examples of this type of lines. 

After this I improved the textbook by the meaningful use of two map projections: the mercator projection (on which a straight line is a rhumb-line or loxodromic line) and the central projection (a straight line is a great circle). 14 
Comparing Plane Geometry and Spherical Geometry (a Perspective) 
After the lessons the students like to have an overview of the different types of geometry. So, I added a worksheet in the textbook in which both types are compared. 

	Complete the Second Column 

	Geometry in the Plane 
	Geometry on the Sphere 

	Point in the plane 
	Point on the sphere 

	Straight line 
	Great circle 

	1. Infinite number of straight lines through a point 
	1. ................................... 

	2. Only one straight line through two points 
	2. ................................... 

	3. Two straight lines have one point in common or are parallel 
	3. ................................... 

	6. Two points divide a straight line into three parts 
	6. ................................... 

	7. Only one of these three parts can be used for defining distance of two points 
	7. ................................... 

	8. There is no greatest distance between two points 
	8. ................................... 
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Examination 
Preparation for the Examination 
An examination was given in the sixth lesson. We—Wim and I—liked to know which of the geometrical properties had become the students’ own. I wrote the examination covering the following topics: 

· great circles, antipoles and opposing planes; 

· map projections; 

· discussions of plane geometry, spherical geometry and solid geometry. 

Some Exam Problems and their Results 
We examined familiar as well as brand new properties of the great circle. The familiar ones were, indeed, familiar, for 93 per cent of the students answered these questions correctly. The children scored low in areas that were strictly technical and algorithmic, such as working with coordinate systems. This was true also for topics based on the revolving door (which had not been dealt with), such as the shortest distance and a flight path’s northerly course. 

On the other hand, the students were easily able to work with great circles, and poles and antipoles, in all sorts of new situations. They quickly formed links between these concepts and thought up relationships that had not been explicitly discussed in class. One property, not covered in the lessons, was tested in the following question: 

For every point on a great circle its antipole also is on the same great circle. True or false? 
Of the students, 97 per cent answered this problem correctly. Although Wim had occasionally made use of great circles when drawing on the board, he had never explicitly established the link between poles, antipoles and great circles. 

We included the two problems presented in Figures 9.15 and 9.16. 

Figure 9.15 Draw the antipoles of points A, B and C
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Figure 9.16 Construct the centre of the sphere using the antipoles pictured



Figure 9.17 Erik’s method: M=middle point



Of the students, 76 per cent answered the first problem correctly. In solving the second problem, 61 per cent of the students constructed the centre in the correct fashion, while 23 per cent first drew only one line from a pole to its antipole and then found the middle of this line as the centre of the sphere (a less satisfactory solution). One student, Erik, used imaginary intersections of the great circles and their antipoles in order to find the centre—an original method (Figure 9.17). 

General Conclusions 
Some main points in the mathematics curriculum for students from 12 to 16 years of age were demonstrated in these investigation lessons. 

a. Focusing on mathematics in contextual frameworks, familiar to students 

Not only as applied mathematics, but also for conceptualization and insight. For example, the question ‘Where is Mecca?’ is familiar to many of the Islamic students at school. It was used as a motivating introduction. 

b. Encouraging the constructions and productions of students 

Not only in ‘doing exercises’ in a certain geometrical structure (e.g. plane geometry), but also in developing the structures themselves (e.g. the structure 
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of the spherical geometry) based on the students’ experiences. The students did obtain insight into spherical geometry concepts such as great circles, poles and antipoles, and map projections. c. Stressing interaction and conflict situationsWhen constructing a geometrical structure, the student has to argue against geometrical experiences of a deviating type. For example, spherical geometrical experiences often conflict with planar geometrical experiences. Encouraging conflictive experiences in mathematics education within a radical constructivist epistemology is done so the students understand that knowledge is constructed via one’s own experience and one’s own way of regarding the world as well as to confront them with counter examples of taken-as-given geometrical laws when appropriate. The various types of geometry that emerged in the unit stimulated powers of reasoning. d. Encouraging formalizationIn discussions on topics based on the various types of geometry that emerged, the students took a number of different geometrical standpoints and were able to defend and modify these standpoints using a variety of geometrical representations and formulations. The process whereby the students’ designed and assessed their ‘own productions’ and chose from a number of these turned out to be an excellent method of furthering abstraction and formalization abilities in geometry education. 

· In the struggle to convince fellow students of a point of view or way of seeing a geometrical phenomenon, students often formalize their ideas by constructing relations between geometrical concepts. 

· The students’ constructions were starting points for further formalizations. 

‘Intuitive’ geometry played an essential role pointing the way towards more formal geometry. Without the intuitive geometrical ideas of students no genuine formalization is possible. 

Notes 
1 
For instance the spherical theorem of Pythagoras: cos a . cos b=cos c with a, b and c sides of a triangle of which the angle opposite to c is 90 degrees. 

2 
The common definition of a great circle on a sphere is the circle’s center is the center of the sphere. 

3 
Some main points in the new mathematics curriculum for students from 12 to 16 years of age are: (a) focusing on mathematics in contextual frameworks familiar to students; (b) encouraging the constructions and productions of students; (c) stressing interaction and conflict situations; (d) encouraging formalization. 
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4 
A Mercator projection is often used in making world maps. 

5 
In a central projection (gnomic projection), the center of projection is the center of the sphere and the sphere is projected onto a flat plane positioned tangentially to the sphere. A great circle of the sphere is projected onto a straight line in the plane. 

6 
A loxodrome or rhumb-line is the path of a ship which cuts the meridians at a constant angle, e.g. 90 degrees due East, sailing alongside a parallel circle. 

7 
Junior general secondary education. 

8 
In lesson 5, they will think that the straight arrows must be replaced by curved ones (‘greatcircle’ arrows) and they improve their previous work. Improving on their ideas after-the-fact makes them feel that they have really learned something. 

9 
Working in groups is a good way of working. By looking over each other’s work, the students must justify their own answers. For the designer/researcher it provides an ideal situation for collecting unexpected ideas, which can be used to improve the material. But one has to avoid the temptation of wandering around the classroom like a teacher, because the information collected then tends to be rather fragmented. One can better listen and think with one group. 

10 
‘Abstraction’ means ‘relinquishing specifics’ (Parreren, 1978). In my opinion, this puts the teacher on the wrong track if it is the teacher who relinquishes specifics. My experience in primary school teaching was quite the opposite. In order to help children abstract the ‘bus arrow-language’ into bare ‘arrow language’, it was necessary not to relinquish specifics (like ‘wheels’ and other drawings) but to include them. Abstraction of the arrow-language was obtained by allowing the children themselves (as ‘arithmetic book authors’) to think up an expansion of specific situations and contexts where arrow-language functioned, and to embellish the arrows. The students’ own productions supplied the bare arrows with a variety of contexts and also enabled them to see the similarities. 

11 
The reader might interpret this statement as leaving out social interaction. This is not what is intended. Rather, the statement should be interpreted with reference to individuals in interaction of some kind, including social interaction. Even a ‘co-construction’ is a construction by someone, perhaps one or more of the participants in the interaction which lead to the co-construction. 

12 
Euclid began his work with definitions and axioms. He had five axioms, e.g. ‘an interval can be prolonged indefinitely’ and the famous ‘parallel axiom’, interpreted in Figure 9.18. 

If angles a and b together are less than two right angles, the lines 11 and 12 will meet each other. In spherical geometry both axioms are denied: every interval is of finite length and angles a and b may be two right angles and yet 11 and 12 (e.g. meridians) will meet each other (at a pole). They will never be parallel. 

Two non-Euclidean geometries (the hyperbolic and the elliptic ones) satisfy all of Euclid axioms except those two mentioned above. The mathematician F. Klein modified spherical geometry into a model for elliptic geometry, by taking each pair of antipodal points on a sphere surface as one ‘elliptic’ point (Struik, 1980). 

13 
A polar map is a central projection (gnomic projection), where the center of projection is the center of the globe. The Northern Hemisphere is projected on to a plane. The textbook contains a description of how the great circle on the globe is mapped into a straight line on the map. 

14 
In navigation a loxodrome (e.g. a parallel circle) is preferred above a great circle. Alongside a loxodrome changes in compass direction are not necessary. However, a loxodrome generally is not a great circle and therefore not the shortest distance. 
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Figure 9.18 Three lines and two angles



To meet both requirements (a fixed course and the shortest distance), a ‘composed track’ is mapped out. Ikos, who is a navigating officer, explains: 

First I map out a straight line on the central projection map. That straight line is a great circle. I then copy the points of intersection with the meridians on a Mercator projection and connect these points with straight lines that are loxodromic on the Mercator projection. Thus, I navigate on a loxodromic line to the points of a great circle. We call this a ‘composed track’. 

Then he gives an assignment to prove that the projections of the parallel circles at a central projection are different kinds of conic sections. 
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10 
Professional Development in Recovery Education 1 
Robert J. Wright 
The focus of this chapter is an applied research and development project in children’s early arithmetical learning. This project, known as Mathematics Recovery, draws in a very significant way on the early number research program undertaken in the 1980s at the University of Georgia (e.g. Steffe et al., 1983; Steffe and Cobb, 1988). In Mathematics Recovery, theory and methods which resulted from the research program in early number are applied by teachers at the lower elementary level. These teachers have undertaken or are undertaking a professional development program focusing on specialist teaching to advance the arithmetical knowledge of low-attaining first graders. Mathematics Recovery was developed during the period 1992 to 1995, and involved twenty teachers in eighteen schools in the north coast region of New South Wales, Australia. Since January 1995, Mathematics Recovery has been implemented on a significant scale in school districts in the southeast of the United States (Wright et al., 1998) where approximately eighty teachers have undertaken the Mathematics Recovery professional development program. Since 1996, teachers in two local education authorities in the United Kingdom have also undertaken this program. In New South Wales, since 1996 Mathematics Recovery theory and techniques have been adapted as the basis of a systemic, large-scale, classroom-based project which has involved several hundred schools and thousands of students across all forty educational districts in the state (Bobis and Gould, 1998; Stewart et al., 1998). Finally, in New Zealand in 1998, Mathematics Recovery theory and techniques have been adapted as part of a major nationally funded project, the first phase of which involves seventy-two teachers. 

Background to the Mathematics Recovery Project 
At-risk Students 
Levin (1989) highlighted the urgent need to address the problem of too many children experiencing chronic failure at school. Levin calls for additional funding for programs ‘to bring at-risk students into the educational mainstream by improving their school success to the level of other students’ (ibid., p. 48). At-risk students are ‘those who lack the home and community resources to benefit 
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from conventional schooling practices’ (ibid., p. 47). The problem is urgent because poverty is a major indicator of at-risk populations, the proportion of at-risk students is high and increasing rapidly, and the degree of their disadvantage is increasing. 

Recovery Education 
Recovery education can be regarded as one important response to the need to provide better education for at-risk students. The term ‘recovery education’ is closely aligned to but can be distinguished from ‘early intervention’ because the latter is applied to programs in the preschool years and to children for whom identification of potential learning problems has occurred in the first three years of life (Meisels and Shonkoff, 1990, p. xvi). Recovery education is distinguished from remedial education because the former involves: (a) identification after one year of school (i.e. 6-year-olds) of children who are apparently unable to benefit from classroom teaching; and (b) intensive individualized teaching to advance the learner to an average level for their class. By way of contrast, remedial education typically applies to older children and often involves group teaching. As is typical in remedial education, recovery education is undertaken by teachers who have undertaken a specialized, post-initial training program. Recovery education is best known in the area of children’s learning to read. The Reading Recovery Program which originated in New Zealand almost twenty years ago (e.g. Clay, 1979; 1987; 1990; 1992; 1993) and is now well established in the United States (e.g. DeFord et al., 1991; Lyons, Pinnell and DeFord, 1993; Pinnell et al., 1990) and elsewhere (Dombey, 1992; Smith, 1986) can be regarded as a beacon in recovery education. Reading Recovery continues to attract widespread support that extends well beyond those directly involved with it (e.g. Wasik and Slavin, 1993; The Literacy Challenge, 1993). The Mathematics Recovery Program is organizationally similar to Reading Recovery, and aims to advance the mathematics learning of least advanced first-grade children. 

Differences in Levels of Mathematical Knowledge of Young Children 
That there are profound differences in the levels of children’s mathematical knowledge when they begin school has been established by research in Australia (Wright, 1991c; 1994a), New Zealand (Young-Loveridge, 1989) and the United Kingdom (Aubrey, 1993). Also supported by research (Wright, 1994a; Young-Loveridge, 1991) is the fact that, by and large, children maintain their relative levels of achievement as they progress through the lower, middle and upper elementary years. Thus low achievers remain as the low achievers, average achievers continue to achieve at an average level, and so on. Additionally, in a given class or school, the difference in ability levels of the lowest and 
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highest achievers is much greater at the end of the elementary years than at the beginning. Thus a three-year difference (Wright, 1991c) at the beginning of schooling is transformed into a seven year difference (Cockcroft, 1982) at the end of the elementary years. The term ‘three-year difference’ at the beginning of schooling refers to the fact that, in a given class or school, some children learn mathematics by the age of four that others do not learn until they are seven. 

Coping with Children’s Ability Range 
Coping with a relatively wide range of ability levels is one of the most difficult challenges for classroom teachers. This is particularly so in classes of twenty-five to thirty or more students that are common in Australian schools and elsewhere. What is frequently claimed in curricula, professional development courses and books about mathematics teaching is that teaching approaches can be developed which successfully take account of a range of ability levels. These approaches typically involve collaborative, problem-based and activity-based learning. These sources argue that, because of the open-ended nature of learning activities, students are able to solve problems and complete activities using strategies commensurate with their level. Further, it is also claimed that instructional methods can be adopted which allow children at different levels to learn successfully together, and that this results in students learning significantly from more or less able peers; for example, learning other students’ methods of solving problems from their explanations and discussions. This author would certainly agree that collaborative learning among students of mixed abilities can be quite successful, but what also seems reasonable is that it tends to be less successful as the range of ability widens. 

Basic Skills Testing and Remediation 
In Australia’s largest state, New South Wales, mandatory basic skills testing in literacy and numeracy at third- and sixth-grade levels was introduced in government schools in 1989 (Doig and Masters, 1992; Masters et al., 1990) and this program of annual testing has continued at third-grade level and at fifth- rather than sixth-grade level. One purpose of the basic skills testing program is to monitor progress in learning at school, class and individual levels. Additionally, the instigators of the program in part justify it in terms of the information it provides to schools to enable them to address areas of class or individual weakness in students’ learning. One question that arises about the basic skills testing program and its significance in addressing the problem of chronic school failure in mathematics is the following: to what extent do third-graders identified in the basic skills test as requiring remediation score significantly better on the fifth grade test? That is, what success are schools having in the middle and upper elementary years in addressing the problem of chronic school failure in mathematics? 
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Remediation in Mathematics at the Elementary Level 
In many elementary schools in New South Wales there are established programs of remediation undertaken by teachers working in a specialist position classified as Support Teacher Learning Difficulties (STLD). These programs usually involve children in the third to sixth grade range, and involve small group teaching rather than individualized instruction. What also seems typical of these programs is that language and literacy remediation are accorded a higher priority than mathematics remediation. The mathematics instruction that occurs in these programs typically involves memorizing basic facts of arithmetic and practicing methods of computation—methods that have long been characteristic of remedial programs in mathematics. Clearly, the task that these teachers have in trying to bring about significant accelerated learning of least advanced students in the third to sixth grade range is an almost impossible one. While many of these teachers are sympathetic to newer approaches to mathematics instruction that take account of children’s current meanings and strategies, these teachers simply do not have opportunities to learn theory or practice associated with implementing these new approaches. Indeed, the necessary application by researchers of current theories of learning and teaching of mathematics to specialist remedial settings has not been undertaken. In these circumstances there is little wonder that STLD teachers may seem somewhat overwhelmed by the problems of failure in school mathematics that they are endeavoring to address. 

Basic Skills Testing in a Political Context 
That basic skills testing was introduced in New South Wales elementary schools with: (a) virtually no support from classroom teachers, academics or teachers’ professional associations; (b) little enthusiasm from school and system administrators; (c) some opposition from parent groups; and (d) strong opposition from teachers’ unions, can be understood in politico-educational terms. During the campaign prior to a New South Wales state election held a year or two after the introduction of basic skills testing in 1989, both the governing party and the opposition promised to maintain the testing program. One can conclude from this that politicians and their advisers have determined by the usual means that there is significant electoral support for basic skills testing. Perhaps much of this support comes from parents’ disillusionment with an education system which they believe has failed their child and failed to inform them of their child’s lack of progress early enough to take adequate steps to redress it. 

Legitimizing the Inevitability of Failure 
The question of whether differences in school achievement are attributable to congenital or life experience factors has long been pondered. The nature versus 
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nurture debate has a long and respectable history (e.g. Plomin et al., 1988). In New South Wales government schools third-graders undertake a mandatory basic skills test in mathematics the results of which are reported to parents as a quartile rank. One can take the view that children whose score falls in the lowest quartile do not have an innate ability to learn mathematics very well because they have not been able to take advantage of classroom instruction in the first four years of school. This view accords with the long history of widespread failure in school mathematics and more broadly with our society’s ready tendency to celebrate innumeracy—for example, to take pride in the fact that one has had difficulty with and lack of success in learning mathematics. An alternative view might hold that: (a) the particular nature of children’s cognitive experiences in the years before school has a profound effect on the level and nature of their knowledge when they start school and this is largely what determines their progress in the first years of school; and (b) children who in the first three years of school find that they are unable to succeed in school mathematics may develop, and have reinforced, strategies that are counter-productive to successful mathematics learning (cf. Pinnell, 1989, p. 182). Educational administrators implement basic skills testing because they believe it will make schools and teachers more accountable and provide valuable information to parents, teachers and school systems. Unfortunately, formally assessing children’s mathematics knowledge at third- and fifth-grade levels may well be equivalent to ‘shutting the gate after the horse has bolted’ and, worse, may serve mainly to confirm perceptions of parents and teachers that some children are unable to learn mathematics very well and are unlikely to learn it successfully in the future. Thus basic skills testing serves to legitimize the view that there is an inevitability about widespread failure in school mathematics. In other words, the adult generation of innumerates imposes or supports basic skills testing and unknowingly creates the next generation in its own image. 

Theoretical Bases of Mathematics Recovery 
Children’s early arithmetical learning has been an area of intense research activity over the past twenty years (e.g. Carpenter et al., 1982; Fuson, 1988; Steffe et al., 1983; Steffe and Cobb, 1988). Since the mid-1980s researchers’ efforts in early childhood mathematics have been directed at the need to integrate research on learning with research on teaching (e.g. Carpenter and Fennema, 1992; Cobb et al., 1991; Cobb et al., 1992; Yackel et al., 1991; Fuson, 1992a; Fuson et al., 1992; Resnick, 1992). This has resulted in classroom-based research projects which take account of the results of the earlier research into children’s learning. The research by Steffe and colleagues in early arithmetical learning is distinctive because it was primarily about conceptual change (Glasersfeld and Steffe, 1991, p. 99). Of interest in this research were children’s advances in learning as observed during interactive and individualized teaching sessions. Children participating in these teaching sessions were taught 
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several times per week in teaching cycles of duration of 18 to 20 weeks, during their first and second years of school. This research had the purpose of documenting children’s conceptual progress over time by describing children’s current arithmetical strategies and ways in which these strategies were reorganized in the course of solving arithmetical problems. The participants in these research projects were beginning first-graders and, by and large, were assessed as lower attaining. These children are of similar age and achievement levels to participants in the Mathematics Recovery Program and this is one reason why the methods and results of this constructivist research program are particularly suited for application to a recovery program in mathematics. Additionally, the earlier research program included individualized teaching, that is, the instructional approach used in Mathematics Recovery (and of course, in Reading Recovery as well). 

Teaching and assessment in Mathematics Recovery focus on several aspects of young children’s arithmetical knowledge, aspects which have been described in detail elsewhere (Wright, 1994a; 1998a). A brief summary is presented here. The first and primary aspect is labeled ‘the Stage of Early Arithmetical Learning’. Assessing this stage involves eliciting the most sophisticated strategies used by the child to solve what, from an adult’s perspective, are simple addition or subtraction problems. For example, a child might be limited to counting visible objects (Stage 1), might count-on without requiring visible objects to solve an additive task (Stage 3), or when working out 8+9, might use 8+8 and not use counting by ones (Stage 5). This five-stage model is adapted from the earlier constructivist research program (e.g. Steffe et al., 1983; Steffe and Cobb, 1988). Other aspects of children’s arithmetical knowledge which are the focus of assessment and teaching in Mathematics Recovery are facility with number word sequences both forward and backward, and ability to identify numerals (Wright, 1998b). Children’s understanding of tens and ones (Steffe and Cobb, 1988; Cobb and Wheatley, 1988), ability to sequence consecutive numerals, and subitise (e.g. Glasersfeld, 1982) are also of significance. 

Underlying the work of Steffe and colleagues is Glasersfeld’s (1984, 1991) radical constructivist epistemology, which has its roots in the work of Piaget. According to Glasersfeld (1991), a tenet of all constructivist epistemologies is the notion that originated with Socrates, viz that ‘knowledge is the result of a learner’s activity rather than of the passive reception of information or instruction’ (ibid., p. xiv). Distinctive in the constructivist epistemology espoused by Glasersfeld is 

the revolutionary attitude pioneered in the 1930s by Jean Piaget…. This attitude is characterised by the deliberate redefinition of the concept of knowing as an adaptive function [emphasis in original]…. This means that the results of our cognitive efforts have the purpose of helping us to cope in the world of our experience, rather than the traditional goal of furnishing an ‘objective’ representation of a world as it might ‘exist’ apart from us and our experience. (Glasersfeld, 1991, p. xiv) 
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An Overview of the Development and Procedures of Mathematics Recovery 
Why Have Recovery Education at the First Grade Level? 
In planning Mathematics Recovery the following question was considered: At what age or grade are children at risk of chronic failure in mathematics best suited to undertake a recovery program? Given that there is a relatively wide range of abilities when children begin school and that this range increases as children progress through elementary school it seems reasonable to argue that intervention should occur as soon as possible after the child starts school. On the other hand there are reasons why a Mathematics Recovery program should not occur in the first year: (a) at this time children are coping with the transition to schooling and for this reason may not benefit from or cope well with a program of intensive, individualized teaching; (b) some children judged to be among the least advanced at the beginning of schooling may make relatively large gains as a result of classroom teaching and thus may not require a recovery program. Thus the second year of school (i.e. first grade) was considered to be the most appropriate for Mathematics Recovery. 

School-Based Phases of the Project—1992, 1993 and 1994 
As stated earlier, Mathematics Recovery was developed during the period 1992 to 1995, and involved twenty teachers in eighteen schools in the north coast region of New South Wales, Australia. This development involved separate school-based phases in each of the three school years of 1992, 1993 and 1994. In the 1992 school-based phase, a teacher in each of six schools worked half-time on the Mathematics Recovery Project for the period from mid-August until mid-December—sixteen weeks of the school year. In 1993, the school-based phase of the project also ran from mid-August until mid-December and involved ten schools. In 1992, the sixteen-week phase consisted of an initial six-week, half-daily professional development program; an eight-week teaching cycle during which four children were taught in individualized sessions four mornings per week; and a final two-week period during which participants and comparison children were reassessed and concluding professional development meetings were held. In 1993, the sixteen-week phase was structured as it had been in 1992. In 1994, the project involved a teacher in each of eleven schools and ran for most of the school year rather than for a sixteen-week phase as it had done in 1992 and 1993. 

The Initial Phase of the Professional Development Course 
Since 1995, there have been several implementations of Mathematics Recovery as a professional development course. This course typically involves an initial 

-140-
phase of teacher learning, prior to commencing teaching cycles with first-graders. The initial phase is structured as follows. First, teachers learn a method of assessing young children’s arithmetical knowledge which was developed and used extensively by the author in recent years (Wright, 1991c; 1994a; 1994b; 1998a; Wright et al., 1996; 1998), and which draws on the earlier research program (e.g. Cobb and Steffe, 1983; Steffe et al., 1983; Steffe and Cobb, 1988). Learning the assessment method involves assimilating detailed explanations of principles underlying the interview method and purposes of interview tasks, discussing videotaped excerpts of assessment interviews, and conducting trial assessments. Second, teachers learn a range of instructional activities that have been developed in Mathematics Recovery. As in the case of learning the assessment method, videotaped excerpts of teaching sessions are discussed so that teachers may understand better the teaching methods and specific instructional activities used in the project. The third and final part involves: (a) assessment of a cohort of first-graders which includes likely candidates for Mathematics Recovery as nominated by class teachers; (b) selection of up to four participants on the basis of the assessment; and (c) using the results of assessment to plan individualized teaching programs for each participant. These teaching programs are provisional only and are revised on a daily and weekly basis as a result of the child’s progress in the teaching cycle. 

Teaching Cycles and Teaching Sessions 
After completing the initial phase of the professional development course, teachers administer individualized teaching programs to participating students. In these programs, students are withdrawn from class and taught in an individualized program involving teaching sessions of 25-30 minutes duration, daily, for teaching cycles of 12-15 weeks. Typically, the daily starting time for each child’s session is varied in order to minimize the likelihood that the child is absent from classroom work of a very similar nature over many days. For several important reasons, all teaching and assessment sessions are routinely videotaped. Teachers use videotapes of teaching sessions to review their teaching and also to monitor children’s progress. In the first week of the teaching cycle, a version of ‘roaming the known’ is used. This allows the teacher to take a reasonably flexible approach to choosing particular instructional activities, to present activities similar to those presented during the assessment interview, and to know better the kinds of activities that are routine for the child, those that are problematic but perhaps within a zone of proximal development (Vygotsky, 1978, p. 86), and those that seem to be well beyond this. Teachers write daily plans for their teaching sessions which list instructional activities selected from a bank of activities studied in the initial professional development course. A typical daily plan includes four to six instructional activities. 
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The Instructional Activities 
A detailed description of the instructional activities that have been developed during the course of the project is presented in Wright (1998a). Some examples of these activities are: (a) additive and subtractive tasks involving collections or rows of counters some or all of which are hidden; (b) activities involving copying or counting sequences of sounds or movements; (c) activities using numeral cards arranged either singly or in numeral tracks or grids; (d) ascribing number to spatial patterns which are briefly displayed; (e) activities using collections of tens and ones; (f) activities that promote more sophisticated use of finger patterns in adding and subtracting; (g) number word sequence activities such as reciting sequences forward and backward, and stating number words before or after a given number word; (h) activities involving combining and partitioning small numbers without counting (Cobb et al., 1995); (i) activities that invoke quinary-based strategies (Gravemeijer, 1994); and (j) notating and symbolizing in ways that accord with students’ strategies (Gravemeijer et al., in press). Many of these were used in constructivist teaching experiments undertaken with 5- to 8-year-olds in earlier research projects (Steffe et al., 1983; Steffe and Cobb, 1988; Wright, 1989; 1991a; 1991c; 1994a). 

Modus Operandi and Guiding Principles for Mathematics Recovery Teaching Sessions 
In working with Mathematics Recovery teachers the following is emphasized as a modus operandi for the teaching sessions. First, the teacher must hypothesize about the child’s current ways of thinking. This is informed by prior observations in a current or earlier teaching session or in an earlier assessment session, and may concern, for example, the child’s current arithmetical strategies, facility with number words or numeral identification. Second, the teacher tests their current hypotheses by posing a task or asking a question and closely observing the child’s response. Third, the teacher modifies his or her hypothesis on the basis of the child’s response, and so the cycle continues. Additionally, the teacher must continually monitor the child’s willingness to tackle problems and how comfortable or at ease the child seems to be. Through practice and reflection teachers can learn to adjust, in subtle but important ways, the pace, difficulty and degree of variation and challenge when interacting with the child according to perceptions of the child’s ease and satisfaction when responding to the instructional activities. Teaching should be tailored as closely as possible to the initial and on-going assessment, and should be at the ‘cutting edge’ of the child’s knowledge. Activities should be genuine problems for the child and teachers must routinely make micro-adjustments to planned activities on the basis of the child’s responses. The child should be continually challenged, with the teacher aiming to bring about reorganizations in the child’s 
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thinking. These reorganizations are manifest in new and more sophisticated strategies. The teaching sessions are intended to be intensive. However, our observation is that for the vast majority of children the teaching and interview sessions are usually a very positive experience. Children seem to experience intrinsic satisfaction from thinking hard and solving problems and their enthusiasm for the sessions increases as the weeks progress. Additionally we believe that individualized teaching is necessary to achieve the intensity that is required in the teaching sessions. 

Children’s Learning 
We have observed that, as a result of participating in teaching sessions, important and positive changes in attitude to mathematics can occur as children develop a new sense of their ability to do mathematics and a greater reliance on their own resources. Children reflecting on their mathematical activity is an important aspect of the teaching sessions and it can play a crucial role in bringing about reorganizations of current strategies. Closely related to reflecting is the importance of giving children extensive thinking time and avoiding the temptation to speak when they are solving problems. Providing ample opportunities for extensive periods of thinking hard about arithmetical problems is a key aspect of the teaching approach. Underlying the program is a belief that children in need of a recovery program in mathematics are likely to have had too few opportunities to think hard about arithmetical problems and to reflect on their thinking. 

Professional Development Meetings 
Implementation of Mathematics Recovery involves an initial phase of teacher learning (described above), and a series of professional development meetings once the teaching cycles have commenced. These meetings are typically scheduled weekly or every other week. Following is a description of a typical half-day professional development meeting involving up to twelve teachers and a teacher leader. There is an initial period of 30 to 40 minutes during which each teacher overviews their teaching sessions; a period of 60 to 75 minutes during which each of three or four teachers gives a 15 to 20 minute presentation focusing on children’s progress, usefulness of instructional activities, and their challenges and achievements to date; and a final 20 to 30 minute discussion period focusing on issues which arose during the meeting. As in the initial phase of the professional development course, analysis and discussion of videotaped excerpts are key features of these on-going professional development meetings. For example, teachers routinely show and discuss such excerpts during their presentations at these meetings. 
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Significance of Videotaping 
Videotaping is a crucial tool in Mathematics Recovery and has its origins in the earlier research programs (e.g. Steffe et al., 1983; Steffe and Cobb, 1988; Wright, 1991a; 1991c; 1994a). In these research programs, the videotapes were used in micro-analyses of children’s advancements in their arithmetical knowledge as it occurs in interactive teaching situations (see Cobb and Steffe, 1983; Glasersfeld and Steffe, 1991; Steffe, 1991). In Mathematics Recovery, the videotapes form the basis of research into children’s learning, research into teaching, assessment of children’s arithmetical knowledge, and documentation of children’s progress over time. Further, videotaped records are used extensively in evaluation of instructional activities and in the professional development course for teachers. Mathematics Recovery does not incorporate use of a one-way mirror to enable an instructor and colleagues to observe each trainee’s teaching sessions. Rather, in Mathematics Recovery, observation and analysis of assessment and teaching sessions are undertaken via review of videotaped records of the sessions. 

Mathematics Recovery—On-going Developments and Outcomes 
When Mathematics Recovery commenced in 1992, the initial plan was to work with six schools and to develop instructional activities as time progressed. Several years earlier, the researcher (Wright, 1989; 1991a; 1991b) had conducted a ten-month teaching experiment involving individualized teaching sessions conducted weekly with four children in their kindergarten year who were among the least advanced in their class (5- to 6-year-olds). The approaches and the instructional activities initially used in the Mathematics Recovery teaching sessions were drawn from the earlier research programs. The assessment method developed for Mathematics Recovery also drew on this work and was used by the researcher in an earlier study focusing on arithmetical development in the first two years of school (Wright, 1991b; 1994). 

Children’s Progress in 1992 
A detailed analysis of the progress of the 24 participants and its comparison with the progress of 66 counterparts has been completed and a report based on this analysis is available (Wright, Stanger, Cowper and Dyson, 1996). Nineteen of the 24 participants made major advancements and four of the remaining five made significant advancements during teaching cycles of eight-weeks’ duration. In each of the six schools the advancements of the participants were notably greater than those of their counterparts who were initially at levels similar to those of the participants (i.e. prenumerical). 
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Participating Teachers’ Reactions To The Project In 1992 
As is to be expected there was strong enthusiasm amongst the six project teachers at the beginning of the program. For all of the teachers this enthusiasm was maintained and strengthened during the project. All of the teachers expressed the belief that they had learned significantly as a result of their participation and that this learning would be of benefit, either as a specialist recovery teacher or in classroom teaching. This is documented in professional journals maintained by the teachers during their time on the project. 

Learning From the First Years of the Project 
Given the experimental nature of the project, the achievements of the first year (1992) were regarded as very promising. In the first year significant insight was gained into: (a) the amount of progress that is achievable, (b) the usefulness of instructional activities, (c) an appropriate modus operandi for teaching sessions, and (d) the ways in which teachers interpreted theory and related this to their practice. All of these were used to revise the Mathematics Recovery professional development program for 1993, and this kind of revision has occurred in subsequent years as well. In Mathematics Recovery it is increasingly apparent that, as appears in reports of children’s progress in Reading Recovery, children’s progress is typically accompanied by major changes in their general learning strategies and their perceptions of themselves as successful learners who develop ways of learning mathematics which are significantly less teacher dependent. 

Mathematics Recovery Outcomes 
Detailed reports of children’s progress in the major implementations of Mathematics Recovery are available elsewhere (Wright, 1994b; Wright et al., 1994; 1996; 1998). Typically, virtually all participating students make significant progress, around 75 per cent of participating students make major progress and advance to at least average attainment levels for their class, and about one-third of that 75 per cent (25 per cent of participating students) advance to significantly above average levels. 

The Potential of a Recovery Program 
In the course of working in schools on implementations of Mathematics Recovery in Australia, the United States and the United Kingdom, the author has come to understand better the potential of the program directly to benefit all students in a school rather than merely the least advanced first-graders who 
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participate. In some implementations of Reading Recovery the proportion of a year cohort selected to participate in the program is as high as 30 per cent (Clay, 1990, p. 64). Given wide ranges of mathematical achievement in even the earliest years of schooling, it seems reasonable to claim that in a good number of schools, a similar percentage of children require a program of intensive individualized learning in early mathematics. Consider a school with ninety first-graders which implements Mathematics Recovery in which a specialist teacher teaches four of the least advanced first-graders individually each day, in 30 minute sessions. On the basis of several implementations of Mathematics Recovery, the most effective implementation would involve two specialist teachers each working five half-days per week on the program. Experience indicates that: (a) the lowest achieving students, i.e. the two or three least advanced among ninety, may require more than two terms (20 weeks) in a recovery program to reach a level at which they can learn successfully in class; (b) students more advanced than these but still candidates for Mathematics Recovery are likely to reach an appropriate level in a significantly shorter period, around 12 to 15 weeks. Thus with an implementation involving two half-time teachers, up to twenty-five students are likely to participate over the course of the school year, whereas with an implementation involving one half-time teacher, eight to ten students are likely to participate. Having two half-time specialist recovery teachers is preferable to having one full time because the teaching is very intensive and demanding on the teacher. An implementation as described allows more classroom instructional time for average and high-attaining children, and thus there is a good potential for all students to benefit significantly. 

Broader Impact and Significance of Mathematics Recovery 
In the initial years (1992-4) of the development of Mathematics Recovery, the focus of the project by and large was limited to instructional programs for individualized teaching of low attainers. As the years progressed, it became increasingly apparent that many Mathematics Recovery teachers were applying their new found knowledge and techniques in significant reorganizations of their classroom teaching. Many of the teachers found themselves to be regarded as key resource people in early mathematics teaching for colleagues in their own or other schools. What became very apparent after a few years of the program was that Mathematics Recovery was very successful as professional development, and was applicable to classroom teaching and to average and able learners as well as to low attainers. Accordingly, in New South Wales in 1996 Mathematics Recovery theory and techniques were adapted as the basis of a systemic, large-scale, classroom-based project in the government school system. This project, which is entitled ‘Count Me In Too’, has the goal of providing teachers with better understanding of young children’s mathematical thinking and ways of developing more sophisticated mathematical strategies in 
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their students. The project has involved several hundred schools and thousands of students across all forty educational districts in the state. It has been judged to be successful (Bobis and Gould, 1998; Stewart et al., 1998) and seems to be highly regarded by teachers and principals in participating schools. In a similar vein, significant positive and broader outcomes have been observed in the case of the implementation of Mathematics Recovery in the United Kingdom. 

Conclusion 
An important focus of the Mathematics Recovery Project in 1992-4 was to work collaboratively with teachers to find ways of providing for the least advanced young children. Individualized learning environments were developed in which the children undergo a program of intensive learning of early arithmetic. This involved taking a reflective and problem solving approach which includes identifying key questions about the children, and continually questioning one’s assumptions about young children’s arithmetical thinking and how best to provide opportunities for its advancement. There are several aspects of the project which have been rewarding in both personal and professional senses. These include the continuing challenge to improve methods and to understand better children’s arithmetical learning and thinking, the very obvious progress of virtually all of the participants, dramatic changes in the participants’ attitudes to doing mathematics, continuing enthusiasm for and commitment to the program from participating teachers, and interest and support from groups such as parents, principals, administrators and other teachers. 

Note 
1 
The research project which is the major focus of this chapter is funded by Grant No. AM9180064 from the Australian Research Council and by contributions in kind from government and Catholic school systems of the North Coast Region of NSW. Additional support has been provided by research grants from Southern Cross University. The author expresses his gratitude to the children, teachers and schools involved. 
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11 
Constructivism in Social Context 1 
Paul Cobb 
In this chapter, I focus on one of the aspects of constructivist theory that Glasersfeld (Ch. 1) identifies as in need of further development. This aspect of the theory involves locating students’ mathematical development in social and cultural context while simultaneously treating learning as a process of adaptive reorganization. In addressing this issue, I illustrate the approach that I and my colleagues currently take when accounting for the process of students’ mathematical learning as it occurs in the social context of the classroom. In the opening section of the chapter, I clarify why this is a significant issue for us as mathematics educators. I then outline my general theoretical orientation by discussing Glasersfeld’s constructivism and Bauersfeld’s interactionism. Against this background, I develop criteria for classroom analyses that are relevant to our interests as researchers who develop learning environments for students in collaboration with teachers. Next, I illustrate the interpretive framework that I and my colleagues currently use by presenting a sample classroom analysis. Finally, in the concluding sections of the chapter, I reflect on the sample analysis to address four more general issues. These concern the contributions of analyses of the type outlined in the illustrative example, the relationship between instructional design and classroom-based research, the role of symbols and other tools in mathematical learning, and the relation between individual students’ mathematical activity and communal classroom processes. 

From Individual Learners to Participants in Communities 
Sfard’s (1994a) analysis of the development of the concept of concept in mathematics education research provides a useful starting point from which to clarify why I believe it is important to view students’ mathematical learning as occurring in social context. Sfard divides the ways in which mathematics educators have thought about students’ development of mathematical understandings into four broad, overlapping and not mutually exclusive paradigms. At the risk of over-simplifying Sfard’s subtle analysis, I briefly discuss each paradigm in turn. 

Single-Frame Paradigm 
The research characteristic of this paradigm aims to develop a comprehensive picture of individual students’ mathematical conceptions at a particular point 
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in time. Often, students’ mathematical activity is compared with a normative model of mature activity, and divergences are treated as students’ misconceptions (cf. Confrey, 1990). 

Multiple-Frame Paradigm 
As Sfard (1994a) puts it, the goal of research that typifies this paradigm is to produce a model of the birth and maturation of particular mathematical concepts by identifying sequences of developmental phases, levels or stages. In this paradigm, activities that were previously taken as indicators of misconceptions are often seen as necessary steps in students’ development of mature conceptions. 

Motion-Picture Paradigm 
Research conducted in this paradigm questions the assumption that students’ development of mathematical concepts inevitably passes through a sequence of well-defined phases or stages. Rather than identifying a sequence of fixed points along a developmental route, the goal of this type of research is to model the process by which students’ mathematical concepts develop. This approach allows for the possibility that the results of these constructive processes, the mathematical understandings that students develop, can differ from one situation to another. Two of the most influential models of this type are Pirie and Kieren’s (1994) recursive theory of the growth of mathematical understanding and Sfard’s (1994b) own theoretical framework based on an assumed process-object duality of mathematical concepts. More generally, constructivist analyses that characterize mathematical learning as a process of reorganizing activity are at the forefront of work conducted within this paradigm (e.g., Confrey and Smith, 1995; Steffe and Wiegel, 1994; Thompson, 1994). 

Sfard (1994a) argues that analyses developed within this paradigm can inform pedagogical decision-making in that teachers and instructional designers seek to influence the process by which students’ mathematical understandings develop. However, she also observes that both this and the preceding two paradigms are primarily individualistic—they are concerned with the mathematical understandings of individual learners. There has, however, been a further trend in mathematics education research in recent years, one that brings to the fore the socially and culturally situated nature of mathematical activity (e.g., Bishop, 1988; Cobb and Bauersfeld, 1995; Nickson, 1992; Nunes, 1992; Voigt, 1994). This trend indicates that a fourth broad paradigm is currently emerging. 

Participation in Communities of Practice Paradigm 
Analyses conducted within this paradigm, like those conducted in the motion-picture paradigm, are vitally concerned with the process of mathematical 
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development. However, in contrast to the motion-picture paradigm, individual students’ mathematical interpretations, solutions, explanations and justifications are seen not only as individual acts, but simultaneously as acts of participation in collective or communal classroom processes. Viewed in this way, mathematical learning is seen to be necessarily and inexorably located in social context. It should be acknowledged that this paradigm encompasses a panoply of theoretical positions that include various versions of constructivism, sociocultural theory and sociolinguistic theory (cf. Cobb, 1994; Confrey, 1995; Lerman, 1996; Steffe, 1996). Each of these perspectives provides an orientation on mathematical learning as it occurs in social context. However, comparing and contrasting these alternatives is beyond the scope of this chapter, and I will instead focus directly on the version of social constructivism to which I and my colleagues subscribe. 

Theoretical Orientation 
The version of social constructivism that has emerged in the course of our work in classrooms draws heavily on psychological constructivism as developed by Glasersfeld (1978, 1987, 1991) by incorporating both the Piagetian notions of assimilation and accommodation, and the cybernetic concept of viability. Thus, the approach we take follows Glasersfeld (1992) in using the term knowledge in ‘Piaget’s adaptational sense to refer to sensory-motor and conceptual operations that have proved viable in the knower’s experience’ (p. 380). Traditional correspondence theories of truth are therefore dispensed with in favor of an account that relates truth to the effective or viable organization of activity: ‘Truths are replaced by viable models—and viability is always relative to a chosen goal’ (Glasersfeld, 1992, p. 384). As Glasersfeld observes, this instrumentalist orientation to knowledge is generally consistent with the views both of Dewey (1981) and of contemporary neo-pragmatist philosophers such as Bernstein (1983), Putnam (1987) and Rorty (1982). 

Although Glasersfeld defines learning as self-organization, he is careful to clarify that this constructive activity occurs as the cognizing individual interacts with other members of a community. Thus, he stresses that ‘the most frequent source of perturbations for the developing cognitive subject is interactions with others’ (1989, p. 136). In addition, he elaborates that knowledge refers to ‘conceptual structures that epistemic agents, given the range of present experience within their tradition of thought and language, consider viable’ (Glasersfeld, 1992, p. 381; italics added). In making this observation, Glasersfeld indicates the socially and culturally situated nature of epistemic agents’ understandings. In other words, learning is not merely social in the sense that interactions with others serve as a catalyst for otherwise autonomous conceptual development. Instead, the products of learning, increasingly sophisticated ways of knowing, are also social through and through. 

In building on this insight, I and my colleagues have turned to symbolic interactionism (Blumer, 1969) and ethnomethodology (Mehan and Wood, 1975) 
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as developed for mathematics education by Bauersfeld et al. (1988). Bauersfeld et al.’s interactionist perspective complements Glasersfeld’s psychological focus in that both view communication as a process of mutual adaptation wherein individuals negotiate meanings by continually modifying their interpretations. However, whereas Glasersfeld is concerned with individuals’ construction of their ways of knowing, Bauersfeld emphasizes that ‘learning is characterized by the subjective reconstruction of societal means and models through negotiation of meaning in social interaction’ (1988, p. 39). In accounting for this process of subjective reconstruction, he focuses on the teacher’s and students’ interactive constitution of the classroom microculture. Thus, he argues that 

participating in the processes of a mathematics classroom is participating in a culture of mathematizing. The many skills, which an observer can identify and will take as the main performance of culture, form the procedural surface only. These are the bricks of the building, but the design of the house of mathematizing is processed on another level. As it is with culture, the core of what is learned through participation is when to do what and how to do it…. The core part of school mathematics enculturation comes into effect on the meta-level and is ‘learned’ indirectly. (Bauersfeld, 1993, p. 4) 

Bauersfeld’s reference to indirect learning clarifies that the occurrence of perturbations is not limited to those occasions when participants in an interaction believe that communication has broken down and explicitly negotiate meanings. Instead, for him, communication is a process of often implicit negotiations in which subtle shifts and slides of meaning occur outside the participants’ awareness (cf. Cobb and Yackel, 1996). In taking this approach, Bauersfeld uses an interactionist metaphor and characterizes negotiation as a process of mutual adaptation in the course of which the teacher and students mutually establish expectations for each others’ activity and obligations for their own activity (cf. Cobb and Bauersfeld, 1995; Voigt, 1985). Consequently, for Bauersfeld and his colleagues, the classroom microculture is an emerging phenomenon. The teacher and students are seen jointly to constitute classroom norms and practices in the course of their interactions. Analyses compatible with Bauersfeld’s interactionist perspective therefore propose that individual students’ mathematical activity and the classroom microculture are reflexively related (Cobb, 1989; Voigt, 1996). In this social constructivist view, individual students are seen actively to contribute to the evolution of the classroom mathematical practices that both enable and constrain their individual mathematical activities. This assumed reflexive relation in turn implies that neither an individual student’s mathematical reasoning nor the classroom microculture can be adequately accounted for without considering the other. In general, the reflexive interdependence of students’ activity and the practices in which they participate serve to differentiate the social constructivist approach that I and my colleagues take from alternatives in which social phenomena are viewed as primary and psychological phenomena are treated as secondary. 
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Figure 11.1 Aspects of the developmental research cycle



Criteria for Classroom Analyses 
Given the basic tenets of the social constructivist approach I have outlined, the challenge of accounting for learning in social context involves analyzing both (1) the evolution of the communal practices in which students participate, and (2) the development of individual students’ mathematical understandings as they participate in and contribute to the evolution of these classroom practices. Consequently, from this point of view, a first criterion when accounting for learning in social context is that such analyses should focus on the mathematical development of both individual students and of the classroom communities in which they participate. 

Stated in this way, the rationale for this first criterion is primarily theoretical and reflects the assumed reflexive relation between individual activity and communal practices. In considering other criteria, it is important not to lose sight of the fact that we are mathematics educators. In other words, the issue of accounting for mathematical learning in social context should not be treated solely as an esoteric, purely theoretical problem. Instead, it should be grounded in our activity as mathematics educators who conduct highly interventionist research with the goal of contributing to current efforts to improve mathematics teaching and learning. In the case of myself and my colleagues, our work involves developmental research that combines the development of learning environments for students with classroom-based research into students’ learning as they participate in classroom practices (Gravemeijer, 1994). This notion of developmental research, which was originally formulated by researchers and instructional designers at the Freudenthal Institute in The Netherlands, should be differentiated from both child development research and psychological research into the development of particular conceptions. The cyclical nature of developmental research is illustrated in Figure 11.1. Gravemeijer (1994) clarifies that this cycle occurs at a variety of different levels that range from moment-by-moment pedagogical decision-making in the classroom to the several-month time periods involved in using and revising a sequence of instructional activities. In making this observation, he differentiates developmental research from the traditional formative-evaluation approach of first implementing predetermined instructional activities and strategies and then subsequently evaluating their effectiveness. 
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The first aspect of the developmental research cycle shown in Figure 11.1 involves the development of sequences of instructional activities for students as guided by a domain-specific instructional theory. In our case, the theory is that of Realistic Mathematics Education developed at the Freudenthal Institute (cf. Streefland, 1991; Treffers, 1987). Gravemeijer (1994) clarifies that the designer initially conducts an anticipatory thought experiment. In doing so, he or she envisions how students’ mathematical learning might proceed as an instructional sequence is enacted in the classroom. The thought experiment therefore involves conjectures about both students’ possible learning trajectories, and the specific means of supporting, organizing and guiding that development (cf. Simon, 1995). It is important to stress that these conjectures are tentative and provisional, and that they are continually tested and modified as the designer engages in classroom-based research. In this, the second aspect of the developmental research cycle, the designer attempts to make sense of what is actually happening as instructional activities are realized in interaction between a teacher and his or her students in the classroom. 

It is within the setting of the developmental research cycle that the issue of accounting for students’ mathematical learning in social context gains pragmatic force and ceases to be a matter of purely theoretical speculation. For example, in the case of myself and my colleagues, the research involves teaching experiments of up to a year in duration that are conducted in collaboration with classroom teachers who are members of the research and development team (cf. Cobb, in press; Confrey and Lachance, in press; Simon, in press; Yackel, 1995). After each classroom session, we usually hold a short debriefing meeting in which we discuss what happened and plan instructional activities for subsequent sessions. The ways in which we look at communal classroom practices and at individual students’ activity and learning profoundly influence the instructional decisions we make and thus the instructional design process. As a consequence, the challenge of developing ways of analyzing students’ mathematical learning as it occurs in social context is, for us, a pressing practical concern. Given our agenda as mathematics educators who conduct developmental research, a second criterion is therefore that such analyses should provide feedback to inform the ongoing process of instructional development. 

In addition to conducting ongoing analyses of classroom events on a daily basis, we also video-record all classroom sessions so that we can conduct retro-spective analyses of entire teaching experiments. The time frame of these analyses gives rise to further challenges. In particular, analyses that locate students’ mathematical activity in social context often deal with only a few lessons, or perhaps focus on just a few minutes within one lesson. For example, I have contributed to entire papers about classroom episodes that are less than ten minutes long (e.g., Cobb et al., 1992). Detailed analyses of this type can make an important contribution to developmental research. However, the issue that I and my colleagues have been struggling with is that of stepping back from and coming to grips with what transpires in a classroom not during a ten-minute episode but over, say, a three-month time period. A third criterion that 
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arises when conducting developmental research is therefore that analyses should document the mathematical learning of both the classroom community and of individual students over extended periods of time. 

Interpretive Framework 
Thus far, I have attempted to demonstrate why the issue of accounting for mathematical learning in social context is pragmatically significant and have proposed three criteria that are relevant given the concerns of developmental research. Against this background, I now focus on the interpretive framework that has emerged from my own and my colleagues ongoing attempts to analyze classroom events. It is important to clarify that this framework does not reveal the structure of individual and collective classroom activity independently of situation and purpose. In line with Glasersfeld’s instrumentalist view of knowing and understanding, the most we would claim is that we have found it useful as we have worked with teachers and their students in classrooms. 

The framework, which was developed in collaboration with Erna Yackel, is shown in Figure 11.2 (cf. Cobb and Yackel, 1996). As the column headings indicate, it involves the coordination of social and psychological perspectives. The social perspective is the interactionist perspective on collective or communal classroom processes developed by Bauersfeld and his colleagues. 

The psychological perspective reflects the basic tenets of constructivism as developed by Glasersfeld and involves analyzing individual students’ and the teacher’s interpretations and actions as they participate in and contribute to the development of communal practices. The entries in the column headed ‘social perspective’—social norms, sociomathematical norms and classroom mathematical practices—refer to aspects of the classroom microculture that Yackel and I have found it useful to differentiate, given our research agenda. The corresponding entries in the column headed ‘psychological perspective’ refer to what, for want of better terminology, might be called their psychological correlates. 

I will give an extended example taken from a year-long teaching experiment to illustrate how analyses can be organized in terms of the framework. This experiment was conducted in a first-grade classroom with 6- and 7-year-old students and focused on the development of core quantitative concepts. A series of three individual interviews conducted with all the students at the beginning, middle and end of the school year indicated that the experiment was reasonably successful by traditional standards. For example, at the beginning of the school year in September, all eighteen students typically attempted to count to solve several types of tasks with sums and minuends up to 20, their methods ranging from counting all to counting on and counting back. However, at least in the social context of the interviews, six of the students could not use their fingers as countable substitutes for other objects that were not directly accessible. For example, when the most elementary types of word problems were posed with numbers of five or less, the possibility of putting up 
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figure 11.2 An interpretive framework for analyzing the classroom microculture perspectives
	Social perspective 
	Psychological perspective 

	Classroom social norms 
	Beliefs about own role, others’ roles, and the general nature of mathematical activity in school 

	Sociomathematical norms 
	Mathematical beliefs and values 

	Classroom mathematical practices 
	Mathematical conceptions 


fingers as substitutes for items mentioned in the problems statements did not arise for them. 

In contrast to the September interviews, ten of the eighteen students used non-counting thinking strategy solutions to solve all of the tasks posed to them in interviews conducted in January. The following representative example illustrates solutions of this type. 

Joe and Bob each take a handful of candy out of this jar [picture shown]. Joe gets 13 pieces and Bob gets 9 pieces. How many pieces should Joe put back to make it fair? 

CHILD: Oh—4, ’cause take away 3 would make 10 and take away 1 would make 9. 

A further three students used thinking strategies to solve at least half the tasks presented, and the remaining five produced relatively sophisticated counting solutions. 

One child’s family had moved away from the school before the final interviews were conducted in May. Ten of the remaining seventeen students solved all of the tasks posed that involved sums and minuends up to 100 by producing relatively sophisticated incrementing and decrementing solutions. The following solution is representative: 

Bob and Joe each take a handful of candy out of this jar [the child was shown a picture]. Joe gets 63 pieces and Bob gets 27 pieces. How many pieces should Joe put back to make it fair? 

CHILD: 27-10 is 37, so 20 is 47, 30 is 57, three more—33—is 60, so it’s 35. 

Three other students each developed several solutions of this type, and the remaining four students all produced thinking-strategy solutions at least for tasks with sums and minuends to 20. 

The reason for outlining the interview results in terms of observed solution strategies is not to make claims about the instructional sequences developed in the course of the teaching experiment. The research team in fact had grave concerns about one of the instructional sequences and subsequently conducted a follow-up teaching experiment, in the course of which a radically modified sequence was developed (cf. Cobb et al., 1997; McClain et al., in press). My purpose is instead merely to illustrate that the students generally made significant 
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progress. As a consequence, the data collected in the course of the experiment constitute an appropriate setting in which to explore ways of accounting for the process of mathematical development as it occurs in the social context of the classroom. In the following paragraphs, I outline the analysis of the first-grade teaching experiment by discussing first social norms, then sociomathematical norms, and finally classroom mathematical practices. 

Social Norms 
In line with the interpretive framework as illustrated in Figure 11.2, the first step in the analysis involved documenting the social norms to delineate the classroom participation structure (cf. Erickson, 1986; Lampert, 1990). This was accomplished by focusing on transcripts of five lessons distributed across the school year. The field notes of three observers who made daily observations indicated that these lessons were representative of the larger data corpus. The classroom participation structure in fact proved to be relatively stable by the midpoint of the school year, and can be summarized as follows: 

· Students were obliged to explain and justify their reasoning. 

· Students were obliged to listen to and attempt to understand others’ explanations. 

· Students were obliged to indicate non-understanding and, if possible, to ask the explainer clarifying questions. 

· Students were obliged to indicate when they considered solutions invalid, and to explain the reasons for their judgment. 

· The teacher was obliged to comment on or redescribe students’ contributions, sometimes by notating their reasoning. 

This participation structure is exemplified in the following brief exchange which occurred as the teacher and students were discussing solutions to a task corresponding to ‘14-6’. One child, Joseph, had explained that he had used a physical device called an Arithmetic Rack (cf. Treffers, 1990) that consists of two parallel rods on each of which are five white and five red beads. He said that he had made two collections of seven beads to show 14 (i.e. five red and two white beads on each rod), taken away six from one of these collections, and immediately recognized that eight beads were left. 

T: Raise your hand if you understand what Joseph said. Raise your hand if that makes sense to you. [Several students do not raise their hands.] OK, if that doesn’t make sense to you, what could you ask Joseph to help you understand it? 

DARREN: I don’t understand how you started out with the 14…. 

JOSEPH: No, I did 7 and 7 equals 14, and I broke the 7 up into 6 and 1 and I had, I added the one to the 7 then it would be 8. 
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JAN: I don’t understand how you broke the six and one down. 

JOSEPH: You know 7 plus 1 will make, I mean 6 plus 1 would make 7. 

JAN: Yeah, but what about the 8? 

JOSEPH: Oh, the 8, um I had, I had about 7. [T places an arithmetic rack on the overhead projector and makes two collections of seven beads.] See that 7 right there next to the other 7? 

[T separates one of the collections of seven into six and one.] I had that 1 right there and the 7 to make 8. 

JAN: Oh. 

T: Joseph, you’ve done a really nice job explaining that. I think it might help some people if they could see what you’re saying. 

[T moves beads on the arithmetic rack as Joseph explains his solution for a second time.] 

JAN: I get it…. That’s a good way. 

T: Thank you for your question, Jan. Darren, did you have a different way? 

DARKEN: Yeah. 

T: Give your attention to Darren. 

As a point of clarification, the way in which the teacher used an arithmetic rack to enact Joseph’s explanation can be viewed as an instance in which she notated a student’s reasoning (Kaput, 1991). On other occasions, the teacher’s notating involved both standard and non-standard written notation. 

As shown in Figure 11.2, I take the psychological correlates of the social norms to be individual students’ beliefs about their own roles, others’ roles, and the general nature of mathematical activity in school. In line with the social constructivist approach I have outlined, these norms and beliefs are considered to be reflexively related. On the one hand, students actively contribute to the evolution of classroom norms as they reorganize their beliefs. On the other hand, students’ participation in the norms both enables and constrains the ways in which they might reorganize their beliefs. This reflexive relation gives rise to the conjecture that in guiding the renegotiation of social norms, teachers are simultaneously supporting students’ reorganization of their beliefs. This conjecture, it should be noted, is open to empirical investigation. 

Sociomathematical Norms 
It is apparent from the list of social norms given above that such norms are not specific to mathematics, but apply to any subject matter area. For example, one would hope that students might explain and justify their reasoning in science or history classes as well as in mathematics. The second aspect of the classroom microculture that we differentiate focuses on normative features of students’ mathematical activity (Yackel and Cobb, 1996). With regard to the analysis of the first-grade classroom, one sociomathematical norm identified was that of what counts as an acceptable mathematical explanation. In the 
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most general terms, acceptable explanations in this classroom had to be interpretable by other members of the classroom community as descriptions of actions on numerical entities. For example, in the sample episode, Joseph said, ‘I did 7 and 7 equals 14, and I broke the 7 up into 6 and 1 and I had, I added the 1 to the 7 then it would be 8.’ A second sociomathematical norm identified concerned what counted as a different mathematical explanation in this classroom. It appeared that solutions to additive tasks were judged as different if they involved either (1) a difference in quantitative interpretations (e.g. the task in the sample episode interpreted as 6+_=14 rather than 14-6), or (2) a difference in calculational processes such that numerical entities were decomposed and recomposed in different ways (e.g. a solution in which a student reasoned 14-4=10, 10-2=8 would be judged as different from Joseph’s solution in this classroom). 

Significantly, by the midpoint of the school year, various counting methods that would be judged as different by researchers (e.g. counting all versus counting on) were not judged as different. Instead, all such solutions were simply described as counting. This observation highlights our claim that what counts as a different explanation can vary markedly from one classroom to another, and that these variations can profoundly influence the mathematical understandings that students develop. 

The third sociomathematical norm identified concerns what counted as an insightful mathematical solution. It is important to clarify that, by the midpoint of the school year, the teacher responded differentially to students’ contributions, and that in doing so she indicated that she particularly valued what she and the students called grouping solutions. A detailed analysis of the teacher’s proactive role in supporting the students’ learning indicates that this was an important facet of her effectiveness in supporting her students’ learning (McClain, 1995). In particular, it enabled the students to become aware of more sophisticated forms of mathematical reasoning, thereby making it possible for their problem solving efforts to have a sense of directionality (cf. Voigt, 1995). In accomplishing this, however, the teacher continued to accept and actively solicited counting solutions from students whom she judged were not yet able to develop grouping solutions. In doing so, she actively managed the tension between proactively supporting the evolution of classroom mathematical practices and ensuring that all students had a way to participate in those practices. Classroom observations indicate that she was generally successful in this regard (Cobb et al., 1997). 

As is shown in Figure 11.2, we take students’ specifically mathematical beliefs and values to be the psychological correlates of the sociomathematical norms. Elsewhere, we have argued that the process of supporting students’ development of intellectual autonomy in the classroom involves guiding the renegotiation of sociomathematical norms (Yackel and Cobb, 1996). Thus, although it has not been our primary focus, we have necessarily had to address issues of ethics in the course of our work in classrooms (cf. Gash, Ch. 7; Kieren, Ch. 6; Larochelle, Ch. 5; Lewin, Ch. 4). More generally, we conjecture that in 
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guiding the renegotiation of these norms, teachers are simultaneously supporting students’ reorganization of the beliefs and values that constitute what might be called their mathematical dispositions. Once again, this conjecture is open to empirical investigation. 

Classroom Mathematical Practices 
The third aspect of the interpretive framework concerns the mathematical practices established by the classroom community and their psychological correlates, individual students’ mathematical interpretations and actions. The objective when analyzing the evolution of classroom mathematical practices is to trace the mathematical development of the classroom community against the backdrop of the social and sociomathematical norms. We have in fact analyzed all 103 lessons that were video-recorded in the course of the teaching experiment (Cobb et al., 1997; Gravemeijer et al., in press; McClain, 1995; McClain and Cobb, in press; Whitenack, 1995). However, for illustrative purposes, I will focus on one short instructional sequence called the ‘Candy Shop’ that was enacted during twelve lessons midway through the school year. In traditional terms, the instructional intent of this sequence might be described as that of supporting students’ development of initial understandings of place value numeration. However, given that our focus during the teaching experiment was on the quality of students’ mathematical experiences (cf. Glasersfeld, Ch. 1) rather than on their acquisition of a list of topics institutionalized in textbook curricula, we found it useful to cast the instructional intent in terms of Greeno’s (1991) environmental metaphor. Described in this way, the intent was that the students would eventually come to act in a mathematical environment in which numerical quantities are invariant under certain transformations (e.g. ten units of one taken together to make a single unit often). For example, in such an environment, 42 is the same quantity whether it is structured as 4 tens and 2 ones, as 3 tens and 12 ones, or as 1 ten and 32 ones. Needless to say, coming to act in such an environment is a major intellectual achievement for young children and requires proactive instructional support. 

Mathematical practice I: Counting by tens and ones 
At the beginning of the instructional sequence, the teacher introduced the anchoring scenario by developing a narrative with her students about a character called Mrs Wright who owned a candy shop. In the course of these initial discussions, the teacher and students established the convention of packing candies into rolls of ten. The first mathematical practice identified was that of counting by tens and ones to evaluate collections of candies. For example, in one of the first instructional activities, the teacher gave the students bags of lose unifix cubes and asked them to act as packers in the candy shop. Before 
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they began, however, the students were asked to estimate how many rolls of ten they thought they would make. This served to orient them to enumerate the candies/unifix cubes as they packed them. In a subsequent instructional activity, the teacher used an overhead projector to show the students a pictured collection of rolls and individual candies and asked them to figure out how many candies there were in all. In both these instructional activities and in others, solutions in which students first counted rolls by ten and then individual candies by one became routine and beyond need of justification. 

The emergence of this first mathematical practice indicates that a practice does not necessarily correspond to a particular type of instructional activity but can instead cut across several activities. It is also important to clarify that the actual process of emergence typically involves a process of explicit negotiation. For example, several students participated in the first instructional activity described above in which they acted as packers in the candy shop by counting rolls by ten, 10, 20, 30,…, 80, but then said that they had made 80 rolls. In contrast, other students counted in the same way but said that they had made eight rolls that contained 80 candies. In terms of Steffe et al.’s (1988) psychological analysis of early number development, one can speculate that the students who said they had made 80 rolls counted bars of ten unifix cubes as numerical composites of ten (i.e. each roll was a collection of ten units of one but not a single unit of ten itself composed of ones). In contrast, the bars of cubes may have been composite units of ten for the students who counted them by ten but said that they had made eight rolls that contained 80 candies. Given the intent of the instructional sequence, a mathematically significant issue therefore emerged as the teacher orchestrated discussions in the course of which students questioned each other’s interpretations. An analysis of the actual process by which the practice of counting by tens and ones emerged would involve a detailed microanalysis of these discussions. It is in this regard that microanalyses of moment-by-moment interactions can play an important role in developmental research. 

Mathematical practice II: Grouping ten candies mentally 
A second mathematical practice emerged as the teacher and students continued to discuss solutions to tasks that involved pictured collections of rolls and candies. One task presented was: 
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The reasoning of the first student who gave an explanation, Casey, proved to be difficult for the teacher and other students to follow. However, he appeared mentally to group ten individual candies together. 

T: How did you figure it out, Casey? 

CASEY: Well, I knew there was 13 pieces not counting the rolls, all those pieces that are loose, 

T: OK. 

CASEY: And then those three rolls make 30 and if you go up and I got past 10, and I got to 13, so I got past 30, and then I knew if you added 10 and 3, and I used up two of those, I mean three of those (points towards the screen from his position sitting on the floor). You have 30, and you add the 10, you used up the 10 on the 30 and then you had 3 left and that made 43. 

Casey’s subsequent clarifications indicate that when he spoke of ‘using up a 10 on the 30’, he probably meant that if he counted ten more from 30 he would complete the 30s decade and have 40, and that three more would be 43. Thus, his reasoning seemed to be counting-based even though he did not actually count the 10 individual candies but instead anticipated the results of counting. 

Not surprisingly, the teacher asked Casey to repeat his explanation. 

T: OK, come [to the overhead projector screen] and point to the 30 you’re talking about. Pay close attention, I heard somebody say they didn’t really understand. 

CASEY: [Goes to the screen] Here’s the 30. 

T: OK, he pointed to these three rolls, that’s 30 pieces. 

CASEY: And then I have 5 and 5 [points to a group of 5 candies, and to groups of 4 and 1 candies], and that used up the 30 because it made 10 and I got 40, and then I have 3 left and then I have 40, and then it’s 43. 

The teacher then began to redescribe his solution, possibly to verify her interpretation with him. 

T: Casey, you said this was 30 [writes 30 beneath the rolls]. Then you have 5 here [circles a group of 5 candies]. 

CASEY: Yes. 

T: Then you had [circles a group of four candies]… 

CASEY: Four, and then that 1 over there made 5. [T circles the candy he points to.] So that’s 10. I used up that 30 right there, I used up that 30 with 10, you see 30 is a whole entire 10 almost, it’s not really a whole entire 10—after 39 comes 40 and that used up the 10. 

T: So there’s the 30 that he used [points]. Now does everybody see the 10 that he used? He had 5 there, and then you saw he had 4 and 1 more made another 5. So did you add the 5 and 5 to make 10? 

CASEY: Yes. 

T: So then you had 30 plus 10 and that got you up to 40. 

CASEY: Yes. 
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T: And then you still had these 3 more [circles the group of 3 candies] made 43. 

CASEY: Yes. 

In the course of this exchange, the teacher appeared to accommodate to Casey’s way of speaking, saying ‘there’s the 30 that he used’. However, in doing so, she assumed that Casey was referring to the three pictured rolls when he in fact seemed to be referring to the 30s decade. Thus, there was a subtle difference in their individual interpretations in that Casey’s reasoning seemed to be counting-based but the teacher redescribed his solution in the collection-based terms of adding first a collection of ten candies and then three more (cf. Cobb and Wheatley, 1988; Fuson, 1992). Nonetheless, Casey and the teacher communicated effectively as the exchange continued and each remained unaware of the disparities in their individual interpretations. Consequently, the initial emergence of the second mathematical practice involved a process of both explicit and implicit negotiation. I note in passing that it is in order to account for communicative interactions of this type that I and my colleagues speak of taken-as-shared rather than shared interpretations. The notion of a taken-as-shared interpretation implies that individual interpretations fit for the purposes at hand but does not imply that they necessarily match (cf. Cobb et al., 1992; Glasersfeld, 1983). 

As the sample episode continued, several other students indicated that they did not understand Casey’s reasoning. 

JAN: I don’t understand about the 4 and the 1. 

T: It’s like this Jan. Pretend like this 1 is right there instead of right there [draws a candy next to the group of four and crosses out the candy she had previously circled]. Then what would you have [points to the groups of five and four]? 

JAN: Ten. 

T: Is that what you were thinking about Casey? 

CASEY: Yes. 

T: Pretending that this one… 

JAN: Oh, I know what it is. 

CASEY: If you have 5, 5, is 10; 30, use up the 30, then you get 40, then you use this 3, 43. 

Casey’s comment, ‘30, use up the 30, then you get 40’, indicates that he had interpreted the teacher’s comments in counting-based terms throughout the episode, while she had interpreted his reasoning in collection-based terms. The succinctness of Casey’s final explanation when compared with his initial attempts to explain his reasoning illustrates that this exchange in which he and the teacher mutually adapted to each other’s activity had been productive for him. He seemed to assume that his interpretation of the task was now self-evident and that he only needed to explain the calculational processes. 

In the remainder of this lesson and in subsequent lessons, the act of mentally grouping ten pictured candies became an established classroom mathematical 
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practice that was beyond justification. The teacher for her part indicated that such solutions were particularly valued. For example, after several students had explained their solutions to the following task, she asked, ‘Is there another way that you could group to figure out 93?’ 




BOB: (Walks to the screen.) I think it’s 93 because I took this 6 [points] and I broke it up and I took 1 away and I put it with the 4 [points] to make 5 and 5, to make 10, and I knew that was 80, so it would be 90, and then 93. 

Bob’s explanation indicates that, in contrast to Casey, his reasoning was collection-based. Thus, there was a significant difference in the two students’ thinking even as they contributed to the development of the same mathematical practice. As Bob described his solution, the teacher indicated that she particularly valued it by writing the following arithmetical sentences to record it: 




In addition, the protracted discussion of Casey’s solution had also implicitly served to legitimize reasoning of this type. 

It can be noted in passing that a full explanation of the emergence of this practice would have to take account of the students’ participation in the practices that had been previously established by the classroom community. For example, Casey and Bob both immediately recognized a grouping of ten individual candies as five and five. This, in all probability, reflects their prior participation in practices involving the Arithmetic Rack that were established during the first part of the school year. More generally, it is essential when analyzing classroom mathematical practices to document how one practice evolves from previously established practices. Only then does the analysis describe the process of the classroom community’s mathematical development. 
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Mathematical practice III: Generating alternative partitionings 
The third mathematical practice identified during the ‘Candy Shop’ sequence emerged when the teacher introduced a new type of instructional activity in which the students generated different partitionings of a given collection of candies. The teacher explained that Mrs Wright was interrupted as she packed candies into rolls. 

T: What if Mrs Wright had 43 pieces of candy, and she is working on packing them into rolls. What are different ways that she might have 43 pieces of candy, how many rolls and how many pieces might she have? Sarah, what’s one way she might find it? 

The students, as a group, were able to generate the various possibilities with little apparent difficulty. 

SARAH: Four rolls and three pieces. 

ELLEN: Forty-three pieces. 

KENDRA: She might have two rolls and 23 pieces. 

DARREN: She could have three rolls, 12 pieces, I mean 13 pieces. 

LINDA: One roll and 33 pieces. 

The teacher for her part recorded each of their suggestions on the whiteboard as follows: 
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Previously, the students had participated in the first and second mathematical practices by evaluating pictured collections of candies. Now, however, the teacher drew pictured collections to record the results of their reasoning as they generated alternative partitionings. It is this contrast and the fact that such reasoning was beyond justification that leads me to treat the activity of generating alternative partitionings as a distinct mathematical practice. At this point in the episode, one of the students, Karen, volunteered: 

KAREN: Well see, we’ve done all the ways. We had 43 pieces…[walks to the whiteboard]. 

T: OK. 

KAREN: And, see, we had 43 pieces [points to 43p] and right here we have none rolls, and right here we have one roll [points to 1r 33p]. 

T: OK, I’m going to number these, there’s one way…no rolls [writes ‘0’ next to 43p]. 

KAREN: And there’s one roll, there’s two rolls, then there’s three, and there’s four. 

T: (Numbers the corresponding pictures 1, 2, 3, 4.) 

Most of the students seemed to take the need to order the configurations as self-evident, and a second student proposed an alternative scheme for numbering the pictures. The discussion during the remainder of the session then focused on the merits of different ways of organizing and labeling the configurations. 
Summary 
This necessarily brief account of the mathematical practices that emerged during the ‘Candy Shop’ sequence can be summarized as follows: 

· counting by tens and ones to evaluate collections of candies; 

· grouping ten candies mentally when evaluating collections; 

· generating alternative partitionings of a given collection of candies. 

With regard to the intent of the instructional sequence, we, as observers, can see in this sequence of mathematical practices the initial emergence of the invariance of quantity under certain transformations. In particular, the students’ reasoning as they participated in the third mathematical practice indicates that it was, for them, self-evident that the number of candies remained unchanged when rolls were unpacked and when individual candies were packed into rolls. It can therefore reasonably be argued that the learning of the classroom community as documented by the evolving sequence of practices was mathematically significant. 

As a further point, it is again important to stress that an analysis of mathematical practices does not merely involve listing a series of activities, methods or strategies. The analysis also has to sketch the collective developmental 
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route of the classroom community by indicating how one practice might have emerged from others. For example, consider again Bob’s reasoning when he evaluated a collection of eight rolls and 13 candies: 

BOB: I think it’s 93 because I took this 6 [points] and I broke it up and I took 1 away and I put it with the 4 [points] to make 5 and 5, to make 10, and I knew that was 80, so it would be 90, and then 93. 

Here, in reasoning, ‘80, so it would be 90, and then 93’, Bob in effect established nine units of 10 and three units of 1 as an alternative to 93 organized as 8 tens and 13 ones. This, of course, is not to say that he consciously related these alternative partitionings. Instead, the relationship was implicit in his activity as he participated in the second mathematical practice. As the third mathematical practice emerged, what was previously implicit in students’ socially situated activity became an explicit topic of conversation. This example is paradigmatic in that it illustrates that an analysis of a classroom community’s learning should explain how the activity of participating in a particular practice emerged as a reorganization of the activity of participating in prior practices. 

Reflections 
My purpose in the following paragraphs is to step back from the specific analysis of the ‘Candy Shop’ sequence to make three more general points. The first is to clarify the contribution of analyses that focus on the mathematical practices established by a classroom community. To this end, imagine that at the end of the school year we had interviewed not only the students in the teaching experiment classroom but also those from another first-grade classroom in the same school. I am sure that if we shuffled the video-recordings of these interviews, the reader would almost unerringly be able to identify the classroom from which each student came. It is precisely this contrast between the mathematical activity of the two groups of students that is accounted for in terms of participation in the differing mathematical practices established in the two classrooms. 

To continue the thought experiment, suppose that we now focus on only the students in the teaching experiment classroom. The contrast set is then not one group of students as compared to another, but is instead the activity of other students in the same classroom community. This comparison brings to the fore differences in the reasoning of students who had participated in the same classroom mathematical practices. It is here that psychological analyses of the individual students’ diverse ways of participating in these practices are needed in order to account for qualitative differences in mathematical reasoning within the classroom community. In a recently completed teaching experiment, we were in fact able to document several individual students’ activity on an 
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ongoing basis and are currently conducting longitudinal analyses of the process of their mathematical development as they participated in and contributed to the evolving classroom mathematical practices (Stephan, 1998). 

The second more general point is to note that in documenting the evolving mathematical practices, we have in effect documented the ‘Candy Shop’ sequence as it was realized in interaction in the classroom. However, the students’ participation in these practices also constituted the immediate social situation in which they learned by constructing increasingly sophisticated mathematical understandings. As a consequence, the analysis also documents the evolving social situation of their mathematical development. We therefore have the following situation: 

Figure 11.3 Relations between mathematical practices, instructional sequences and social situation of development



These interrelations are encouraging in that they bring together the two general aspects of developmental research—instructional development and classroom-based research (see Figure 11.1). This indicates that analyses of classroom mathematical practices might make it possible to develop a common language in which to talk both about instructional design and about individual and collective mathematical development in the classroom. One of the attractive features of such an approach is that it offers an alternative to the traditional metaphor of mathematics as content. The content metaphor entails the notion that mathematics is placed in the container of the curriculum, which then serves as the primary vehicle for making mathematics accessible to students. In contrast, an analysis of the mathematical practices established by a classroom community characterizes what is typically called content in emergent terms. In the case of the ‘Candy Shop’ sequence, for example, a significant mathematical idea, that of the invariance of numerical quantities under certain transformations, emerged gradually as the collective practices of the classroom community evolved. It should be acknowledged that the shift from the content metaphor to the emergence metaphor involves a major change of paradigm. However, the emergent view has the merit of highlighting individual students’ constructive efforts while treating mathematics as a socially and culturally situated human activity. This suggests that it is an approach that is worth pursuing. 

The final more general point concerns the role of symbols and other tools in mathematical learning. It should be apparent from the sample analysis that ways of symbolizing do not stand apart from classroom mathematical practices but are instead integral aspects of both the practices and of the activity of the students who participate in them. Consider, for example, the third mathematical practice in which the teacher drew pictures to record alternative partitionings 
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of 43 candies. I do not have any direct information on the individual students’ reasoning as they participated in this exchange. However, it seems reasonable to speculate that some of the students might have reasoned with the pictures as they generated alternative possibilities. For example, some of them might have imagined breaking one or more rolls in a pictured collection into ten individual candies, or they might have imagined packing ten pictured candies into a roll. The latter possibility is particularly plausible given the students’ prior participation in the second mathematical practice, that of mentally grouping ten individual candies. 

Given these considerations, it seems self-evident that the ways of symbolizing established in the teaching-experiment classroom profoundly influenced both the mathematical understandings the students developed and the process by which they developed them. It is in fact possible to trace the evolution of ways of symbolizing: 




In Walkerdine’s (1988) terms, one can speak of a chain of signification emerging as the mathematical practices evolved. Walkerdine notes that succeeding signifiers may initially be established as substitutes for preceding terms, with the assumption that the sense of those terms is preserved through the links of the chain. For example, pictured collections were initially introduced as substitutes for collections of candies/unifix cubes. However, Walkerdine goes on to argue that the original sign combination (i.e. candies/unifix cubes) is not merely concealed behind succeeding signifiers. Instead, the meaning of this sign combination evolves as the chain is constituted. Walkerdine’s fundamental contention is that a sign combination that originates in a particular practice slides under succeeding signifiers that originate in other practices motivated by different concerns and interests. In the case of the ‘Candy Shop’ sequence, for example, the meaning of the candies/unifix cubes sign combination was initially constituted within a narrative about Mrs Wright’s candy shop. The concerns and interests in this instance were those of a simulated buying and selling activity. Later, the concerns and interests were primarily mathematical and involved structuring collections of candies in different ways. When the students participated in the third mathematical practice, rolls of ten candies instantiated units of ten of some type, and the activity of packing candies by making bars of ten unifix cubes had been displaced by that of mentally creating and decomposing such units. In a very real sense, they were no longer the same candies that the students had acted with as when they participated in the first mathematical practice. 

The process of signs sliding under succeeding signifiers can be schematized as follows by modifying the preceding diagram of signifiers: 
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Figure 11.4 Chain of signification for the sample instructional sequence



This, in sociolinguistic terms, is an account of the process of mathematization. It should of course be stressed that the symbols themselves do not, in and of themselves, have any particular magic. Instead, the focus of this account is on ways of symbolizing—on symbols as integral aspects of individual and collective activity. Viewed in broader terms, accounts of this type help move the debate beyond that of attempting to determine whether concepts or symbols are primary. Signification and the development of mathematical understanding are instead seen to be intimately related in that mathematical activity even at the most elementary level involves reasoning with symbols wherein one thing is taken to stand for another. 

Conclusion 
In this chapter, I have illustrated an analytical approach that locates students’ mathematical development in social context while simultaneously treating learning as an active, constructive process. In contrast to theoretical approaches that give primacy to social processes, I have characterized the relation between individual students’ mathematical activity and the communal classroom practices in which they participate as one of reflexivity. I would therefore question an account that spoke of classroom mathematical practices first being established, and then somehow causing students to reorganize their mathematical understandings. Similarly, I would question an account that spoke of students first reorganizing their understandings and then contributing to the establishment of new practices. The theoretical position inherent in the interpretive framework and in the sample analysis is one that focuses on both individual students’ activity and on the social worlds in which they participate without attempting to derive one from the other. From this point of view, individual students are seen to contribute to the evolution of classroom mathematical practices as they reorganize their mathematical understandings. Conversely, their participation in those practices is seen to both enable and constrain the ways in which they reorganize their understandings. 
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In this analytical approach, the process of coordinating psychological and social analyses is not merely a matter of somehow pasting a psychological analysis on to a separate social analysis. Instead, when conducting a psychological analysis, one analyzes individual students’ activity as they participate in the practices of the classroom community. Further, when conducting a social analysis, one focuses on communal practices that are continually generated by and do not exist apart from the activities of the participating individuals. The coordination at the heart of the interpretive framework is therefore not that between individuals and a community viewed as separate, sharply defined entities. Instead, the coordination is between different ways of looking at and making sense of what is going on in classrooms. What, from one perspective, is seen as a single classroom community is, from the other, seen as a number of interacting individuals actively interpreting each others’ actions. Thus, the central coordination is between our own ways of interpreting classroom events. Whitson (1997) clarifies this point when he suggests that we think of ourselves as viewing human processes in the classroom, with the realization that these processes can be described in either social or psychological terms. Throughout this chapter, I have attempted to illustrate that both these perspectives are relevant to the concerns and interests of mathematics educators who engage in classroom-based developmental research. The interpretive framework I have outlined represents one way of coordinating perspectives that draws on Glasersfeld’s foundational contributions to constructivism and on recent developments in interactionist theory. 

Note 
1 
The general theoretical analysis reported in this paper was supported by the Office of Educational Research and Improvement under grant number R305A60007. The analysis of the sample instructional sequence was supported by the National Science Foundation under grant number RED-9353587. The opinions expressed do not necessarily reflect the views of either OERI or the Foundation. 
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