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> context • The question of how to understand the epistemology of set theory has been a longstanding problem in the 
foundations of mathematics since Cantor formulated the theory in the 19th century, and particularly since Bertrand 
Russell articulated his paradox in the early twentieth century. The theory of types pioneered by Russell and Whitehead 
was simplified by mathematicians to a single distinction between sets and classes. The question of the meaning of 
this distinction and its necessity still remains open. > problem • I am concerned with the meaning of the set/class 
distinction and I wish to show that it arises naturally due to the nature of the sort of distinctions that sets create.  
> Method • The method of the paper is to discuss first the Russell paradox and the arguments of Cantor that preceded 
it. Then we point out that the Russell set of all sets that are not members of themselves can be replaced by the Rus-
sell operator R, which is applied to a set S to form R(S), the set of all sets in S that are not members of themselves. 
> results • The key point about R(S) is that it is well-defined in terms of S, and R(S) cannot be a member of S. Thus any 
set, even the simplest one, is incomplete. This provides the solution to the problem that I have posed. It shows that 
the distinction between sets and classes is natural and necessary. > implications • While we have shown that the 
distinction between sets and classes is natural and necessary, this can only be the beginning from the point of view of 
epistemology. It is we who will create further distinctions. And it is up to us to maintain these distinctions, or to allow 
them to coalesce. > constructivist content • I argue in favor of a constructivist perspective for set theory, mathemat-
ics, and the way these structures fit into our natural language and constructed speech and worlds. That is the point 
of this paper. It is only in the reach for absolutes, ignoring the fact that we are the authors of these structures, that 
the paradoxes arise. > Key words • Distinction, Russell paradox, Barber paradox, sets, Cantor’s Theorem, classes, types.

1. introduction

This is a paper about how a universe 
comes into being through the making of 
a distinction (spencer-Brown 1969). But 
rather than starting from nothing and not-
ing that the set theoretic universe arises 
from the act of distinction that creates sets, 
we shall concentrate here on the russell 
paradox about the set of all sets that are not 
members of themselves. We shall exam-
ine the distinctions that are made to keep 
the paradox at bay. There is a curious his-
tory here, with Bertrand russell and alfred 
north Whitehead creating a complicated 
theory of types that is later made into a 
single distinction between sets and classes. 
This class/set distinction appears to suffice 
for mathematical purposes, but we argue 
that it, as any distinction will, spawns a 
universe of distinctions and structures just 
like the theory of types, once one attends 
to the epistemology of the mathematics in 
relation to language and thought. Then we 
see that the solution to these conundrums 
lies not in the formalisms, but in our ability 
to create formalisms, in our ability to create 

and handle distinctions. These worlds made 
of distinctions are imaginary and fragile, 
yet they are often strong and real. They are 
our creations and our ability to make them 
forms the base of all that we do.

2. the russell paradox

The purpose of this paper is to discuss 
the russell Paradox. 

Lets begin with the Barber. 
The Barber: There was a town, long ago, 

wherein lived a barber, and he shaved those 
and only those who did not shave them-
selves. The question is – who shaves the 
barber?

if the Barber shaves himself then he 
shaves someone who shaves himself and 
this is not allowed. if the Barber does not 
shave himself, then he must shave himself, 
since the barber shaves everyone who does 
not shave himself.

What are we to do with this dilemma? 
it is well-known that the Barber reap-

pears in the russell Paradox as the set R 
of all sets x that are not members of them-

selves. is R a member of itself? if so, then it 
cannot be a member of itself, and if R is not 
a member of itself then it must be a member 
of R. Here the problem is suddenly of seri-
ous intellectual import. it was assumed by 
Gottlob Frege and others that to each con-
cept there should be the set of those entities 
that satisfied the concept. The Barber in the 
form of the russell set shows that this can-
not be done without some sort of control.

What control should be imposed’? of 
what should we be suspicious in examin-
ing russell’s Barber? There are two suspects. 
one is the use of “all” and the other is the 
notion of self-reference, of self-member-
ship. russell apparently suspected them 
both, but had more suspicion of the matter 
of self-membership than he did of the use of 
the “all.” He created a solution (the theory of 
types) that has a lot of control built in; too 
much for most working mathematicians. 

and so the problem underwent an evo-
lution that eventually led to a very simplified 
theory of types for mathematicians (Kelley 
1955), where there were sets and there were 
classes. Both sets and classes are meant to 
designate certain collections, but a set must 
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be a member of a class in order to be a set. 
in this evocation of pure mathematics, every 
set has members that are sets.

You never find anything but sets when 
you look inside a set. of course there is the 
empty set { } and then you find nothing at 
all.

If x is a member of a class then it is a set. 
Thus sets are members of classes, and classes 
are certain collections of sets, but classes are 
not members of anything! it is all right for 
most mathematics to have it this way, but 
if you wish to speak of “all ideas” then this 
collection is itself an idea and it is not at all 
obvious when an idea is a set.

We now take R to be the class of all sets 
that are not members of themselves. if R 
were a set then we would get a contradic-
tion. Thus R is not a set. R is a class and 
we are done with the problem. This is the 
Hilbert-Gödel-Bernays solution to the rus-
sell paradox.

some concepts have as their extension a 
class and some concepts have as their exten-
sion a set. some collections are classes but 
not sets.

How would this resolution apply to the 
Barber? Barbers exist and practice their 
profession. so the Barber of our tale is ap-
parently wrongly defined. He has a bad job 
description. 

Perhaps there are sets like that, sets that 
cannot accept a given job description. Georg 
Cantor had, some time before russell and 
the paradox, pointed out just how some sets 
could not support a natural enough condi-
tion. Cantor proved the following theorem.

Cantor’s Theorem. There cannot be a 1–1 
correspondence between a set U and the set 
of its subsets 2U.

Proof. suppose that there were such a 
1–1 correspondence. Then we could have a 
unique element x of U associated with every 
subset X of U. Think of each X as equipped 
with a pointer. This pointer will point to an 
element of the set U. now each X is a sub-
set of U and so X will either point to one of 
its own members or X will point to some x 
that is not a member of X. in the latter case 
we shall say that “X points outward” and in 
the former case we shall say that “X points 
inward.” Form the following subset C: C is 
the set of all x in U such that x is the target 
of an outward pointing subset X of U. does 
C point outward or does C point inward? if 

C points inward with target x, then x must 
be a member of C, but that would mean that 
C points outward since all elements of C are 
outward target points. if C points outward, 
then x would not be a member of C but if 
C points outward then x must be a member 
of C. We have a contradiction. The only way 
out is to conclude that there cannot be such 
a 1–1 correspondence, and this proves the 
Theorem. //

another way to put this argument is to 
suppose that only some of the subsets of U 
have pointers. Then C shows that there will 
always be subsets that cannot point. C is just 
like the Barber. C serves up those subsets 
(i.e., their targets) that point outwards. But 
in the process, C gets entangled with serv-
ing up itself. C is just the Barber in disguise, 
and in this situation we have to conclude 
that the Barber cannot do the job to which 

he was presumably assigned. Cantor’s Theo-
rem is very important, simple as it is, for it 
shows us that the set of subsets of a set is 
always larger than the set itself. This means 
that there is an ever increasing hierarchy of 
infinities starting with the first infinite set 
N = { 1, 2, 3, … } of natural numbers. 

Then we have N < 2N = N' < 2N' < … with 
no limit to the size of the infinite sets so gen-
erated.

Remark. see Box 1 for a illustration of 
this argument in the form a small fable. 

Let us look at this more closely. Let X be 
any set. Let R(X) denote the set of sets x in X 
such that x is not a member of itself. 

R(X) = { x | x is a member of X and x is 
not a member of itself. }

We did not take all sets. We just chose a 
particular set X and formed R(X). The rus-
sell argument still applies, and if R(X) were a 

boX 1: a cantorian tale
There was a set U.
And it was said that every subset of U would be equipped with a pointer that 
pointed to an element of U, unique to that subset. Some subsets pointed out-
side themselves. Some subsets pointed to one of their own members.

Tales of great battle and heroism were told about these subsets. One day the 
Storyteller was confronted by a strange bearded fellow who called himself Can-
tor. Cantor said, “Tell me a tale about the set of all points in U that are at the 
tips of outward pointers from the other subsets of U!” “Of course I am happy to 
tell you of that set, and I shall call it C for Cantor,” said the Storyteller. “Your set 
looks like this.”

“All the sets with outward pointers point into your set C.” And Cantor then 
asked, “But what about my pointer? Which way does my set point?” And sud-
denly the Storyteller was silent and thoughtful. And he said, “Oh my. If your 
set points inward then it must be an outward pointer. But if your set points 
outward, beyond itself, then by its very definition it must point into itself. Alas, 
I am so sorry, your set cannot have a pointer, and I was wrong. It is not possible 
for every set to have a pointer as I had imagined.” And Cantor was not sure 
whether this turn of events pointed to sadness or to happiness.

C
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member of X then we would get a contradic-
tion. so R(X) cannot be a member of X. We 
have shown that sets are always incomplete. 
There is no such set as the set of all sets. if X 
were the set of all sets we get a contradiction. 
There is the class Ω of all sets. That is oK but 
there is no set of all sets. Every set is incom-
plete and given a set X, R(X) is a new set that 
is not a member of X. 

Let us go back to the Barber. We could 
have told the story differently. We could 
have said, “There is a Barber and he shaves 
everyone in the village of Königsberg who 
does not shave himself.” and now you see a 
way that such a barber can exist. He simply 
is not an inhabitant of Königsberg. This is 
the set theorist’s solution to the Barber para-
dox.

By the way, Ω is a very nice class. after 
all, if S is any set of sets, then S is itself an 
element of Ω. so Ω = 2Ω. Ω is identical with 
its class of subsets. But Ω is a class that is 
not a set. 

We can try to get a contradiction from 
the assumption that Ω is a class by saying 
that every element x of Ω is a subset of Ω. 
and so we can have every element x point 
to itself. Then the elements of Ω divide into 
those that are members of themselves and 
those that are not members of themselves. 
in this case, Cantor’s collection C is the 
collection of all x in Ω such that x is not a 
member of x. But we have seen that C is not 
a set! so C is not a member of Ω (members 
of classes are always sets) and there is no 
contradiction. only sets can be members of 
a class. 

are we done? i am afraid not. not if you 
want to work in the languages that are spo-
ken in the world. Let me tender persuasions. 
Consider the collection of games – two-
person games such as checkers, chess and 
tennis. We will be particularly interested 
in games that are finite in that they end in 
a finite amount of time. Consider all such 
games, and let us define a new game that we 
shall call “Hypergame.” Here is how to play 
Hypergame.
1 | The first player says, “Let’s play Hyper-

game.”
2 | The second player says, “Let’s play ____.” 

(where ____ is a finite game of the sec-
ond player’s choice)

The two players then proceed to play a 
round of ____.

so as you can see, every round of Hyper-
game ends in a finite amount of time since 
the players always choose a finite game to 
play. Thus we have proved that Hypergame is 
a finite game.

But since Hypergame is a finite game we 
can have the following exchange:
1 | Let’s play Hypergame.
2 | Let’s play Hypergame. (now player 

number 2 is in the first position)
1 | Let’s play Hypergame.
2 | Let’s play Hypergame.

…
and this (rather silly) round of Hypergame 
goes on forever.

so Hypergame is not a finite game. This 
is a contradiction.

The only known way out of this prob-
lem is to declare that Hypergame is not an 
ordinary game and cannot be allowed as a 
choice when playing Hypergame. But surely 
Hypergame is a game. Would you like to 
play? 

it seems that there is a black hole at the 
center of logic and we just have to accept 
that and live in a world created by the dis-
tinctions we form to have a world at all.

in the rest of the paper we will explore 
the role of making distinctions in math-
ematics.

3. the class/set distinction 
and the russell operator
if we look back at the logic by which we 

have avoided the russell paradox by mak-
ing the class/set distinction, it seems both 
artificial and natural. Let us look at it again. 
in the theory of sets there are entities that 
are sets and entities that are classes. an en-
tity x can be a member of an entity y. But 
classes can not be members. sets are char-
acterized by being members. Thus if x is a 
member of y then x is a set. Classes are pe-
culiarly distinguished by not being members 
of anything. This works just right, it seems, 
to avoid the paradoxes, but leaves us feeling 
a bit odd about the classes. Let us consider 
Ω, the class of all sets. if x is a set then x is a 
member of Ω. 

You might think that Ω would be para-
doxical, but no problem arises. We made 
this argument in the previous section, but 
let is repeat it now.

We map I: Ω → 2Ω by I(x) = x. This is a 
legitimate mapping because every set is a set 
of sets and hence is an element in the class of 
subsets of Ω. Then we try to apply Cantor’s 
argument and we say, “Form the class C = {x 
in W | x is not a member of I(x)}.” The usual 
argument is that C is a subset of W and that C 
cannot equal any I(a) for any a since it differs 
from each one. But here we have I(x) = x and 
so C = {x in W | x is not a member of x}. Thus 
C is the russell class and we have already 
ousted C from being a set. Thus C is not a 
member of W and there is no contradiction!

We have already argued that this solu-
tion is really not so artificial. The Barber 
could be from another town. The russell set 
could be a new sort of set. The Hypergame 
could be a new sort of game. 

We are asked to understand that new 
distinctions have to be made in order to 
avoid circularity and contradiction. sets are 
entities for mathematical construction and 
calculation. W, the Class of all sets, is avail-
able to us. Yet we find that some entities will 
not be members of Ω. and Ω itself cannot 
be the member of any class. 

But i can conceive of a “class” whose 
only member is Ω. i will even write it down. 
There:

{ Ω }.
What have i done? This entity, sitting on 

the page, represents neither a set nor a class. 
its meaning is clear. it represents my thought 
in collecting together just Ω. But if { Ω } is a 
mere class, then Ω must be a set. it is not a 
set and so { Ω } is a hyperclass, and { { Ω } } is 
a hyperhyperclass and { { { Ω } } } is a hyperhy-
perhyperclass and so on ad infinitum.

if you wish to have such things you will 
apparently have to create hyperclasses and 
hypersets, and this process will go on for-
ever. at this point we meet the demon that 
russell originally encountered in his theory 
of types.

The Russell Demon. We have defined 
the russell operator R on sets S as R(S), 
which is the set of all members of S that are 
not members of themselves. We have re-
marked that R(S) will never be a member 
of S. it helps to familiarize oneself with this 
operator on small sets. For example, if { } 
denotes the empty set, the R({ }) is empty 
and so R({ }) = { }. on the other hand, sup-
pose that I = { I } is a set that has only itself 
as a member. Then we have R(I) = { } and we 
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see that R(I) is not a member of I. We now 
have two sets and can form S = { I, { } }. Then 
R(S) = { { } } and a new set has come into be-
ing. Collecting all the sets so far, we have 
T = { I, { }, { { } } } and R(T) = { { }, { { } } }. This 
is the next new set. We can define a recursive 
process by letting X' = X ∪ { R(X) } for each 
set X. Then we have I' = S, I" = T and so on. 
We can regard the simple set that is its own 
member as the initial point in the genera-
tion of an infinite hierarchy of sets. it is sig-
nificant that the russell operator creates the 
empty set from the self-referential set. This 
is a formal image of the theme of this paper, 
that even the empty set is a creation. taking 
the russell operator out to the class Ω, we 
can try to form R(Ω). But R(Ω) is the origi-
nal russell class. it is not a set. Thus R(Ω) is 
a class and does not belong to Ω. Thus even 
at the level of classes, the russell operator 
continues to construct new entities. if we 
start collecting up the so-created classes into 
superclasses, the process will start all over 
again. The demon never sleeps.

4. conclusion

it only takes the one distinction, class/
set, and eyes-wide-open epistemology to see 
that the one distinction opens the door for 
russell’s demon and we are off and running 
with a theory of types, starting at the level of 
the class of all sets. it only takes one distinc-
tion to create a whole universe.

Mathematicians have been content 
with sets and an occasional tip of the hat to 
classes, but from the point of view of episte-
mology and philosophy, one must face up to 
the russell demon. We cannot discard our 
concept of classes. But this concept is neces-
sarily a hyperconcept. oh my.

There are no hyperconcepts. only con-
cepts. and we handle them just fine. it is not 
just misplaced confidence. it is our ability to 
handle entities and frameworks equally and 
to keep making sense out our own created 
world. 

But how do we do that? That is just it, we 
do that. it is our creation.

We do that by taking the freedom to 
make and unmake distinctions as they are 
significant to us, to track down contradic-
tions or to use circularities as they are useful 
for us. any formality in which a contradic-
tion can arise is built from distinctions that 
we have made. 

When we go to the level at which these 
houses of cards are built and take ownership 
of the construction, then the world of logic 
comes aright.
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