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Abstract9

This is a study of mathematics students working in small groups. Our research methodology allows us to examine10

how individual ideas develop in a social context. The research perspective used in this study is based on aco-11

constructiveview of learning. Groups of three or four undergraduate mathematics majors, with prior experience12

writing mathematical proofs together, were asked to prove three statements. Computer software, such asGeometers13

Sketchpad, was available. Group work sessions were videotaped. Later, individuals viewed segments of the group14

video and were asked to reflect on group activities. Students in some groups did not share a common conception of15

proof, which seemed to hamper their collaboration. We observed interactions that fit with the co-constructive theory,16

with bidirectional interactions that shaped both group and individual conceptions of the tasks. These changes in17

understanding may result from parallel and successiveinternalizationandexternalizationof ideas by individuals18

in a social context.19
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1. Small-group work in mathematics24

There is no shortage of suggestions for improving the mathematical learning that takes place in col-25

lege classrooms. Since the mid-1980s especially, increasing numbers of mathematicians and collegiate26
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mathematics educators have devoted considerable attention to the nature of undergraduate mathematics27

courses. They have focused on each of the core areas of content, instruction, and learning, producing28

reformed curricular materials and instructional strategies, and developed, tested, and revised theories of29

learning.30

Work in small groups is one form of instruction that has been given increased attention in mathematics31

classrooms at the collegiate level during the past decade (Johnson, Johnson, & Smith, 1991a, 1991b;32

Rogers, Reynolds, Davidson, & Thomas, 2001; Treisman, 1992). Constructivist learning theories and33

research provide support for the notion that cooperative and collaborative problem solving can be an34

effective aid in the teaching and learning of mathematics (Davidson, 1990; Davidson, & Kroll, 1991;35

Johnson et al., 1991b; Reynolds et al., 1995; Vidakovic, 1997). Undergraduate mathematics instructors36

now can find many resources that encourage and help them to incorporate cooperative and collaborative37

instructional methods in their courses (Dubinsky & Mathews, 1997; Reynolds et al., 1995). Underlying38

a move to small-group work is a belief that when students discuss their thinking about problems with39

others it helps them develop rich and powerful understanding of mathematical concepts, perhaps by a40

structural organization and connection of mental constructs (Hiebert & Carpenter, 1992). Any teacher or41

tutor of mathematics has experienced the increased understanding of a topic that comes, apparently, from42

the act of explaining mathematics to others. Such beliefs and experiences support the idea that effective43

cooperative group work on appropriate mathematical tasks can be a highly effective instructional strategy.44

We have students work in small groups in our own undergraduate classes for similar reasons. While45

our experience and course assessment supports our beliefs about the benefits of small-group work, we46

feel driven to more systematic investigations to better understand the nature of group interactions and47

their apparent impact on learning.48

Initially, we have chosen to focus on the construction of proofs by undergraduate mathematics students.49

We chose this particular domain for several reasons: (a) the central role of proof in mathematics; (b)50

constructing proofs is a high-level problem-solving task that requires both factual recall and original51

thinking; and (c) even good mathematics students are known to have difficulty developing their ability to52

understand and construct mathematics proofs (Selden, Mason, & Selden, 1989; Selden, Selden, & Mason,53

1994). Observations of individuals’ actions while they struggle with a familiar or unfamiliar problem can54

provide considerable insights to their thinking, attitudes, and beliefs about mathematics.55

The objective of our research is to initiate an exploration of the process of individual learning in the56

social context provided by small-group problem solving situations. Specifically, in this study we seek to57

analyze group’s decisions and individual thinking as upper-division undergraduate mathematics students58

try to prove elementary theorems of Euclidean geometry. We believe that better understanding of these59

individual and group processes will help us understand the nature of learning in small-groups and will60

provide guidance for enhancing the learning in undergraduate mathematics classes.Hershkowitz (1999)61

expressed the need to focus on the “individual construction of knowledge within the different ‘ensembles’62

of which he or she is part.”63

The literature suggests that a problem-solving environment that promotes rich, social interactions64

around the material increases the likelihood of students’ individual learning (Denning & Smith, 1995).65

Technologies, including computers and computer laboratories, are an example of instructional settings66

that have been used to provide especially rich environments to enhance students’ interactions by some col-67

legiate mathematics educators (Dubinsky, 1995; Harvey, Waits, & Demana, 1995; Hillel, Lee, Laborde, &68

Linchevski, 1992; Judson, 1990; Kaput & Thompson, 1994; Shaw, Jean & Peck, 1997). The Geometers69

Sketchpad (Key Curriculum Press, 2004) is a specific dynamic software package that was used in small-70
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group settings by the participants of this study during an undergraduate geometry course to investigate71

geometric problems. We believe that the richness of interactions that occurred in some of the groups,72

as we will describe later, partly reflected the environment provided by such software. Students in our73

study used the Geometers Sketchpad (GSP) in their geometry courses and the GSP was available for74

their use during the research interviews. We wish to emphasize that individual mathematical thinking in75

a social context is the primary focus of this study. Nevertheless, the students’ use of technology during76

their geometry course and in the interviews clearly influenced their thinking, as will become apparent in77

our description and analysis of the data.78

2. Theoretical context79

Since the middle of the 20th Century, two distinct perspectives on learning have predominated in much80

of the mathematics education research. One is a psychological focus on individual learning and knowledge.81

Important examples include Piaget’s developmental psychology, which has influenced much recent work82

in mathematics education research (for example, the APOS theory of mathematical learning described by83

Asiala et al., 1996). The psychology of mathematics learning was an important research domain during84

the second half of the 20th Century. Cognitive scientists focused on individual mental processes in a move85

beyond a behavioristic view of mathematics learning. Along with developmental theories in the style of86

Piaget, there was also a focus on information-processing as a model of the activity of the individual mind87

during learning (seeResnick & Ford, 1981, for an earlier survey of the psychology of mathematics).88

The second perspective is on the social nature of knowledge and learning.Vygotsky’s (1962)work on89

language and meaning has influenced later work in mathematics education such as socioconstructivism,90

where knowledge and reality are viewed as social, rather than individual phenomena (see, for example,91

Ernest, 1991; von Glasersfeld, 1990). Lakatos’ writing (1976)about the nature and development of92

mathematics knowledge is a similar example of this perspective on knowledge as a social construct,93

rather than something that has independent or absolute existence.94

Our study is not as philosophical as the perspectives just mentioned, but we are very interested in the95

possibility of relating individual and social notions of knowledge. Researchers from both perspectives96

recognize the importance of social activities for much mathematical learning.Valsiner (1992, 1993)has97

proposed a theoretical perspective,co-constructivism, that we find useful for describing how individual98

learning takes place in a social setting.99

2.1. Learning as a social activity: small-groups environment100

We use the termsmall-groupwork to represent a combination of collaborative and cooperative work.101

Small-group problem solving is socially organized activity. We view students’ collaboration as based on102

a shared conception of the task.103

Students bring pre-existing schemas, from academic and from other life experiences, to small-group104

settings. We classify as small-group problem solving only those group activities in which two or more105

individuals are cooperating to ensure their own learning and facilitate the learning of all others in their106

group. We believe that small-group problem solving occurs when the shared knowledge stays within the107

individualzones of proximal developmentof group members. Briefly, thezone of proximal development108

is defined as the difference between the level of an individual’s actual development and more advanced109
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level of potential development that could be observed in interaction between more or less capable110

participants (Vygotsky, 1962).111

2.2. Learning as individual development in a social context: co-construction of knowledge112

We have adapted Valsiner’s notion ofco-constructivism(Valsiner, 1992, 1993) as the theoretical113

framework for our research. This perspective synthesizes the ideas of a number of developmental114

theorists—Piaget, Vygotsky, Stern, Wertsch—all of whom have been fascinated by the ways in which115

persons develop as both individual and social entities. Co-constructivists view learning as the joint con-116

struction (orco-construction) of the psychological system of the developing person by him/herself, and117

the “social others” who influence the development of the individual psychological framework through118

attempts to communicate ideas. Learning is seen as arising from the two-way interplay between individual119

and social activities.120

The co-constructivist view blends the complementary constructivist and sociogenetic viewpoints in121

the learning process.Valsiner (1987)recognized that there is (a) a collective culture of socially shared122

meanings and (b) the individual’s personal cultures. Thus, culture is partially shared and partially personal.123

Because of personal contributions, individuals are said toco-constructthe collective culture.124

According to Valsiner, individuals construct their personal meanings from the collective cultures by way125

of internalization, while at the same time contributing to the reconstruction of that collective culture by126

process ofexternalization. Although one constructs her/his knowledge socially—through negotiation of127

meanings, inVygotsky’s language (1962)—Valsiner emphasizes that because of individual experiences,128

it is unlikely that two people construct exactly the same understandings. Since psychological development129

is an open-systemic phenomenon in whichnoveltyis constantly in the process of being created (Valsiner,130

1987, 1989a, 1989b, 1991), reality is characterized as a dynamic phenomenon as it moves between individ-131

uals and collective individuals. In a group setting, the group or collective knowledge is constructed through132

negotiation. When the process of negotiation results in agreement, that agreement is reality or social reality.133

From the standpoint of an observer, we could say that the development of a group’s understanding of134

a mathematical idea, both collectively and at the level of individuals in the group, consists of a series of135

internalization and externalization transformations or representations alternating with one another. The136

notion of internalization implies a critical transition or transformation from perceived external social ex-137

periences to individual inner thinking, invoking new mental functions within the individual. The formation138

of new mental functions takes into account the individual’s previous experience, their mental structure,139

and the dynamic nature of group interactions. In parallel with transformation of external experiences140

to the internal sphereinternalization, the reverse process, occurs. That is, the process of transformation141

of internal experience into the external expression,externalization, takes place completing a cycle and142

making it possible to study the cognitive development of an individual. We can infer these changes by143

comparing the original, external expression of ideas with the transformed expression that follows an144

internalization and externalization cycle. Externalization is a constructive process. According toValsiner145

(1993), externalization involves constructive transformation of the internalized psychological phenomena146

into the social, interpersonal domain.147

Valsiner suggested the existence of two forms of coordination between internalization and externaliza-148

tion: (a) parallel functioning and (b) delayed functioning of the externalization with respect to internaliza-149

tion. Any externalization feeds back some internalization, which is the source of new externalization, and150

the cycle continues. For example, when we, as teachers, provide some information to our students we are151
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only asking them to internalize. If, at the same time, we ask them to reflect and share their thinking with152

others we are encouraging the externalization of their thoughts. Social activities such as class discussion153

may produce a new series of internalization and externalization transformations of ideas. We expect this154

increased student activity or engagement to facilitatelearning; that is, changes in their psychological155

framework.156

In teacher-centered classrooms students are not asked to reflect and share immediately; to internalize,157

then externalize ideas. More commonly, the process of externalization is left until a subsequent assessment158

(for example, assignment, quiz, or test). It is quite possible that by delaying student’s externalization he159

or she misses the opportunity for better internal transformation and consequently further development of160

understanding relative to the individual’s prior knowledge.161

Valsiner’s view of learning seems to differ from other theories in another important way. Rather than162

seeing internalization and externalization as inverse, hence reversible, functional operations that are163

determined by existing conditions, he instead describes an uncertainty principle he callscanalization: “A164

set of constraints that direct—but do not precisely determine the next state of human conduct.” (1993, p. 25)165

The co-constructivist perspective on human development is based on the general view on development166

by way of the principle of “bounded indeterminacy” (Valsiner, 1989, for criticism, seeVan Oers, 1988).167

By the use of constraining as a process that enables construction of novelty (Winegar, 1988; Winegar,168

Renninger, & Valsiner, 1989), it is possible to explain the directionality of development, while retaining169

the open-systemic notion of unpredictability of the exact outcomes.170

We cannot be certain of the form of the internalized notion that an individual holds, but can only171

make inferences based on externalized representations. Furthermore, because these processes are not172

completely deterministic or predictable—by the principle of bounded indeterminacy—we cannot even173

expect externalizations to be consistent from one expression to another, even under comparable condi-174

tions. But we can be sure that individual internalizations and externalizations, although inconsistent and175

unpredictable, are refined in the process of group interactions.176

This co-constructive theory suggests that we can expect several things when observing small-group177

problem solving activities of mathematics students. Individual comments or actions may reveal chang-178

ing individual mathematical ideas as the problem solving progresses, changes reflecting ideas that were179

expressed by other group members. For example, an individual might express a changed conception of180

mathematical proof that reflects group discussions. We also might see group conceptions, such as in181

agreed-upon responses to problems, change during the course of an interview. We might also observe the182

group’s implicitly adopted view of proof evolve to reflect a synthesis of individual ideas communicated183

during the session. We do not expect to be able to give a prescription relating specific conditions particular184

productive group interactions or development of individual mathematical ideas, given thebounded inde-185

terminancyinherent in the theory; we do expect to use our analysis to describe conditions that facilitate186

or inhibit communication and learning in small-group settings.187

3. Research design188

Stimulated recall is an introspective method in which the subjects are prompted (via appropriate189

stimulus such as a video- or audio-taped event, or a written document) to recall thoughts they entertained190

while carrying out a particular task (Gass & Mackey, 2000). The method has been in use for several191
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decades, especially during the past 10 years, perhaps reflecting the increased use of qualitative research192

methods in educational studies. The method is superior to a simple post ad-hoc interview because it193

reduces the subject’s reliance on memory without prompts.194

The most basic problems of stimulated recall methodology are its reliability and validity. The as-195

sumption underlying introspective methods, which could be questioned, is that higher order cognitive196

processes are accessible to introspection. Retrospective reports are subject to the participant’s memory197

limitations, especially when the considerable time intervenes between the event and the recall.Gass and198

Mackey (2000)provide a more complete discussion of advantages and disadvantages of the method. This199

methodology seemed compatible with our theoretical framework and ideally suited to our focus on the200

introspection of individuals in a group context, despite the potential concerns of reliability and validity.201

We have used a modified version of stimulated-recall research methodology that allows us to explore202

student interactions in small groups (Schoenfeld, 1985). Briefly, there are three stages in this research203

methodology:204

• Teach a course using small-group work extensively.205

• After students have extensive experience with small-group course work, videotape them as they206

work—in the same groups as during the course—on a series of tasks related to, but not part of the207

course content.208

• After reviewing the video of the group session, interview students individually about their experiences209

working in the groups—both during the course and during the videotaped interviews—using video210

clips of their group activities as stimuli to help trigger recollections of those problem-solving sessions.211

We interviewed all our participants individually within two weeks of the group sessions to minimize212

concerns about memory lapses. The student’s written work and transcribed protocols of the group and213

individual sessions provided the data for analysis.214

This study, conducted at two research universities with graduate programs in mathematics, involved215

students studying axiomatic geometry in undergraduate mathematics and secondary mathematics educa-216

tion programs. All participating students had worked in small groups extensively. Also, the students had217

been required to write formal geometric proofs in mathematics courses completed before participating218

in this study. They were aware of differences between deductive and inductive proof as well of various219

proof procedures. The instructor rarely gave lectures in these classes, and normally only wrote proofs for220

students after they had spent considerable time trying to write their own proofs. Students were responsible221

for reading and making sense of the course text (Cederberg, 1989) and for asking questions about content222

with which they had difficulty: initially of their group members, then of other classmates, and only finally223

of the instructor. Class time was spent with students working on problems in their groups, writing solu-224

tions on the board and explaining work to the class, and having discussions about problems and material225

in the text. A major part of their course grade was based on homework and test problems completed by226

their group, which was permanent for the semester, along with some individual assignments. Students in227

the courses also investigated Euclidean and non-Euclidean geometries through a series of labs that used228

physical objects, such as balls and string, and computer software, such as the Geometers Sketchpad and229

NonEuclid.230

Our focus in this study is on the thinking of students who had considerable experience with this231

collaborative style of instruction and on the interactions of these students when working on problems in232

small groups. This paper is specifically based on a series of interviews conducted with seven groups of233

3–4 students at two universities.234
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Students, working in groups, were asked to write proofs of geometric statements. The problems, some235

of which the students could have seen in a high school geometry class, were chosen to be challenging but236

accessible to the students, while not being directly taken from their college geometry course. Students237

were asked during the interview whether they remembered having worked or seen the problems before238

some did. The problems were not intended to be novel tasks in the sense of those used by researchers,239

such asSchoenfeld (1985), who studied mathematical problem solving.240

These sessions, lasting up to three hours, were videotaped. Students had access to computer and hand-241

held calculator technologies, such as the Geometers Sketchpad and Texas Instruments TI-92, during242

the problem sessions. Technologies were not required, nor suggested, for the problems and were only243

available in case students choose to use them. There was no explicit suggestion that technologies should244

be used. Two problems that most groups worked on are thoroughly analyzed in this paper: Additional245

questions were provided, but most groups spent all their time on these problems (seeFig. 1).246

Not all groups were able to find satisfactory solutions, in their own view, during the group session. The247

researcher/interviewer reviewed each videotape after the session. His or her goal was to select several248

significant segments that appeared to involve interaction among group members that may have influenced249

subsequent thinking and activities of individuals.250

Following the group sessions, we interviewed students individually. These individual interviews were251

structured around three areas:252

1. Each student was asked to recall parts of the problem solving session: (a) What they understood the253

problem to be, (b) to describe their solution, (c) to describe the contributions made by different group254

members, and (d) how they recalled that the solution was developed.255

2. The student’s feeling about group work in the geometry course: Did they believe group work helped256

their learning and did their group function effectively? They were specifically asked to reflect on the257

contribution and role of each group member during the course.258

3. While viewing clips selected by the researcher, the student was asked to reflect on their own thinking259

and how the activities in the short segment fit within the entire problem solving session.260

In this report we focus on students’ responses to Question 1 and Question 3 with a brief note about their261

responses to the last part of Question 2. Students viewed selected segments from their own videotaped262

sessions and were questioned about what they observed and about their interactions with group members.263

This gave us the opportunity to probe each group member’s thinking about the problem solving without264

influencing their initial activities while they worked on the problem. This also enabled us to investigate265

the interactions and roles that students played, or were perceived to play, in group activities. Our questions266

focused on the ways that group interactions appeared to influence or shape the mathematical thinking of267

individual students, and how individuals shaped the direction taken by the group.268

Although the problems specifically requested proofs, during the interviews we did not give any guidance269

to students about the meanings and expectations. When students asked about our expectations, we told270

them to do what they believed was necessary and said we would not give any indication of whether or not271

their actions were appropriate. This approach allowed us to observe a variety of interpretations of proof272

among participants.273

The context of Geometry was significant in the study only because it was linked with students’ previous274

cooperative learning experiences and because it provided a familiar context in which students could275

construct formal mathematical proofs. The research method could easily be applied to other areas of276

mathematics or even to other disciplines.277
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Fig. 1. Problem-solving tasks.

In contrast to some problems used by researchers specifically studying student notions of proof, we did278

not leave open the question of whether or not the statements students were asked to prove might be false.279

The tasks, then, were in keeping with whatSchoenfeld (1985)said many college students believe about280

proofs: That the role of proof is to confirm something that is intuitively obvious, or to verify something281

that we already know is true. This is in contrast to a mathematician’s view of proof as the search for, and282

development of understanding of what is true.283
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4. Analysis of group-work interviews284

This section provides information about the data that was obtained, and includes commentary on how285

that data is related to the theoretical framework and some specific, interesting findings about group work286

and the students’ understanding of mathematics. We believe the inclusion of longer excerpts here will287

give the reader the opportunity to judge the validity and objectivity of our interpretations based on the288

data obtained from the interviews.289

Although several of the groups had very productive problem-solving sessions, we have chosen to present290

the analysis of Group 6 because their interchanges help to clarify the mechanism of co-construction.291

We first describe one of these productive sessions in some detail to provide insight to the sort of data292

produced by this study. We considered this sessionproductivebecause students had extensive interactions293

that clearly influenced their thinking about the problem and because they achieved a solution that satisfied294

the entire group (an informal and inductive proof in which the student’s warrant was purely empirical).295

Several other groups had similarly productive sessions that led to valid proofs of one or more statements,296

while some groups had much less productive sessions both in terms of lack of proof and the nature of297

interactions of group members. To conserve space, we comment on these other sessions without providing298

full details. We are unable to report our analysis of all of the data collected during this study in the limited299

space of this paper.300

4.1. Introspection of individuals in small-group environment301

The problem-solving activities described earlier provided an environment where students could engage302

in meaningful exploration of a problem with rich, social interactions. The extent and efficacy of interaction303

varied considerably from one group to another.304

Our focus is on several aspects of the interactions and reflections: (a) the nature of interaction, in-305

cluding whether communication of ideas occurred and if this had an influence on individual thinking;306

(b) the proximity of individual student’s thinking about the tasks and the extent to which they had a307

shared purpose; and (c) the students’ perceptions of their own and other group members contributions308

to the task and mathematical understandings. The aspect (b) requires the most interpretation by the re-309

searcher; the aspects (a) and (c) are more descriptive of explicit behaviors or comments made by the310

students.311

We observed three stages in several of the group-work interviews: (i) a preliminaryexploratorystage as312

students gained familiarity with the problem; (ii) a middleproductivestage when groups found a solution313

to the problem; and (iii) a finalpolishingstage during which the solution was formalized and written. On314

each of these three episodes we report in two parts: (a) using a fragment from the group interview and (b)315

using corresponding fragments from individual interviews in which students reflect on the group-work316

that took place earlier.317

4.1.1. Stage 1: Exploratory Stage (Group 6)—Group perspective318

In this episode students read the problem, then interpret and discuss how to approach the required319

proof.320

Group 6 [Anita, Bob, Donna, and Quin] is starting with the first problem: to show that the three321

perpendicular bisectors of sides of a triangle intersect at a single point.322

323
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Bob[1]: OK, let’s start.

Donna[2]: Let’s just fool around.

Quin [3]: [looks at the problem] So we have three perpendiculars and they meet at a point, and
then knowing this

Donna[4]: Right

Quin [5]: . . . and then knowing this we have to prove that. . . no we have to prove they are
concurrent.

Bob[6]: Yes. So we have to show. . .

Donna[7]: We have three perpendicular. . .

Bob[8]: We draw a perpendicular. . .

Quin [9]: First thing we do. . .

Donna[10]: I mean by proving we just kind of show that they intersect. . .

Bob[11]: We got two perpendicular bisectors. Right?

Donna[12]: No, three.

Bob[13]: We want to draw here and show it’s perpendicular. That’s what we want to do.. . .

Right Quin? We got two perpendiculars. Of course they intersect. Right? OK. Now, this
here, we draw first this perpendicular [he uses paper and pencil as he talks], then this
perpendicular, and I gotta show this is a perpendicular bisector [pointing at the third line
that he drew perpendicular to the third side]. I need to prove that.

Donna[14]: No we are not proving they are perpendiculars. We are showing they all intersect at one
point. So we draw all three perpendiculars.

324

Notice that the group members are talking about two different things. Quin and Donna are interpreting325

the meaning of the problem that was posed [3–5, 7, 10], while Bob is thinking of the way to prove the326

statement [11,13]. At this point, Bob’s thinking seems to be ahead of that of other group members. His327

idea is rejected by at least one group member [12,14]. We hypothesize that the rejection of Bob’s idea328

reflects changes in meaning as his team mates internalize his partially externalized thoughts such as “I329

gotta show that this is a perpendicular bisector.” [13] At this point, we can only note that there apparently330

are differences in thinking of group members; we cannot be certain of the differences of understandings331

or the reasons for those differences.332

Later, Quin uses the GSP to draw a triangle and two perpendicular bisectors:
333

Quin [15]: Yeah.

Bob[16]: [continuing with his idea] Oh, maybe, show that it goes through that point [midpoint of
the third side] and then show that’s perpendicular.

Quin [17]: No, it’s clearly perpendicular. We are given this.

Donna[18]: Yeah, we are given that [all three perpendiculars].

Anita [19]: [nodding, seems to be agreeing with Quin and Donna]

Bob[20]: No, no. You have to prove it by. . . that’s perpendicular.

334
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Quin [21]: You have two lines that meet at one point and the third also goes through that point but
you don’t have to show that’s perpendicular.

Donna[22]: You don’t.

Bob[23]: But what you gonna do is you gonna draw, I think, you have to draw this though that
point. There is a line that goes through that point and then show that is a perpendicular
bisector. That’s the proof. Right Quin? [Bob is asking Quin for confirmation while Donna
takes over and continues with construction using the GSP.]

335

For a moment all students focus on construction using the GSP. Donna constructed three perpendicular336

bisectors as lines perpendicular to the sides through the midpoints, and then constructed their point337

of intersection. When the construction was done, the discussion about how to proceed with the proof338

continues.339

Donna[24]: They are saying. . . that’s what we are expected to prove. The first is to show is that
everything meets at G. The second proof is to show that G [pointing at the point of
intersection on the screen] is the center of the circle. We have to prove that’s, no
matter what this triangle looks like,. . . you know [she takes the mouse, grabs one of
the vertices and drags it around]. We are just to trying to prove they always meet at
that point.

Bob[25]: First of all we have to prove. There are two things we need to prove. First one is that
they are perpendicular [line bisectors]. That’s a first thing. I think the other point is
easier. You can show that they are all congruent, like they are all radii.

Donna[26]: I’m convinced but. . .

Quin [27]: We have to prove that they are. Basically, again. . .

Bob[28]: OK. [Again he draws, by hand, a triangle and two perpendicular bisectors].

Quin [29]: I remember you draw two lines and than you prove that a third line goes through the
same point.

Donna[30]: Yeah. There is such proof but she does not want a formal poof.

Quin [31]: [Dr. —], In trying to prove we want to use proving by contradiction. What kind of
proof are you looking for?

Researcher[32]: Any kind of proof that you as a group decide to be a proof. Anything that you
negotiate to be a proof.

Bob[33]: OK. This is what I think we should do. You tell me if I’m wrong. OK. We draw this
perpendicular. We draw that perpendicular. Right. Then you draw the line through
this point. Now, it goes through this point. Now we gotta show that’s perpendicular
[and he draws another picture on his paper]

Donna[34]: All you need to do is to measure the angle. But this is informal.

Bob[35]: Yeah, but proving formally, all you need, all you gotta do is draw a third line [this
time he seems to be suggesting to draw any line, not necessarily perpendicular to
the third side as he suggested earlier]. You know these two intersect. We draw a
third through this point. We show it is perpendicular and that these two are the same
[pointing at two line segments on the third side of a triangle]. That’s it. That’s not
very hard.

340
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Donna[36]: But, see. We are not. . . [the researchers] is not looking for the formal proof.

Bob[37]: You mean informal proof? The GSP, measurements? [They all looked at the re-
searcher standing near]

Researcher[38]: Whatever you as a group decide to be a proof. All I wanted differently from you is
to write your proof in a paragraph form, not in a two-column form.

Donna[39]: OK. Then take off one of these lines that we constructed. [Quin cuts a third line
from their GSP drawing.]

Bob[40]: Yeah. We want to show that’s perpendicular. If we don’t need to prove it formally,
it’s not that hard. I mean. . . [Students have an extended discussion about how to
use GSP to reconstruct the deleted third line.]

Donna[41]: That seems to be a formal proof.

Bob[42]: We know much stuff. . .
341

Anita sat and observed this discussion quietly.342

In this part, we see that Bob continues to develop his idea of the proof. His main strategy was to start343

with two perpendicular bisectors that intersect at a point and then to show that the third line passing344

through the intersection of the two other lines and the midpoint of the third side is perpendicular to the345

third side [13]. Quin and Donna clearly do not understand his suggestion [17,18], and point out that the346

third line isgiven to be perpendicular. Anita agrees [19] with Quin’s and Donna’s comments, leaving347

Bob alone with a different idea about the proof strategy than that held by the other three group members.348

Continually, Bob’s externalized ideas were partially understood and therefore partially internalized by349

his team mates. This forced him to try to explain his ideas more clearly.350

Bob tries to restate what needs to be proven [20]. Quin reiterates that the problem is to show that the351

third line is concurrent with the other two but not that it is perpendicular. Donna agrees with Quin [21,22].352

Bob is able to express more clearly what he meant to say: If they construct the third line through the353

intersection point they would need to show that such a line is a perpendicular-line bisector of the third354

side [23].355

His clarification was not useful to Donna. She says that the problem asks for two things: One is to356

prove that the lines are concurrent, and the second that the intersecting point is the center of the circle357

[24]. In contrast to Donna, Bob’s clarification seems to trigger Quin’s memory about the existence of such358

proof [29]. However, unable to recollect it, she turns to the researcher and asks if the group needs to prove359

the problem formally or informally [31]. Left with a choice to make—about the kind of proof—Bob360

continues with his idea to draw two perpendicular bisectors that intersect at a point, and then draw a361

third line through that point and show that it (a) is perpendicular and (b) cuts the third side in congruent362

segments [33,35].363

Notice here that Bob suggests a slightly different idea from that given previously [13]. It appears364

he suggests that they constructany line through the intersecting point, then show that the line must be365

perpendicular toandmust bisect the third side. Previously, he suggested constructing a third line per-366

pendicular to the side and then showing that such line bisects the side. Although his idea regressed,367

it triggered Donna’s thinking: Now she agrees with Bob’s idea to start with two perpendicular bi-368

sectors [39] but not how to go about proving that the third perpendicular bisects the third side. It is369

important here to observe the strategy Donna suggested to get those two initial lines. She suggests370

they use the already constructed picture with all three perpendicular lines and remove one of them371
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[39]. This is a very important step in their problem-solving process that helped them later to construct372

their solution. At this point Bob consciously agrees to proceed with an informal proof. Was Bob’s373

suggestion [33,35] just a slip of the tongue or a real regression of his previous idea [13]? Why did374

he agree to this compromise: Perhaps because the others accepted his idea to start with two perpen-375

dicular lines? Or was he tired of being different? Perhaps his own suggestion was not clear to him376

either?377

These excerpts illustrate the complexity of students’ interactions in a small-group setting. This com-378

plexity is the result of individual student’s parallel functioning and the coordination of their internalization379

and externalization processes. Our observations reveal only how the group’s strategy for the proof devel-380

oped. Consistent with our theoretical framework, we can only speculate about how particular student’s381

comments and actions represent externalization of their thought and internalized ideas that led to this382

developmental solution path.383

4.1.2. Stage 1: Exploratory Stage (Group 6)—Individual perspectives384

The students reviewed and commented on this segment during their individual interview. During the385

individual interview, they were asked to reflect and comment on what they remembered about the problem386

and the solution strategies that were developing during this phase. Their comments served to confirm387

some of our observations from the group session and also to provide insights that were not apparent from388

the initial videotape.

389

Donna[43]: We were talking and deciding what to do. It had to do what you construct and what
you prove. He [Bob] went off one tangent and I went off for another. . . We were also
negotiating on the definition of what you were looking for. Some of them wanted to
say. . . that was another thing. We had to clarify that. Some were starting construction; it
took a while for us to get together and agree. . . Bob was thinking that the medians are
the same as perpendicular bisectors. That’s why he kept going. I think he was putting
the two definitions together thinking that connecting from the vertex to the midpoint was
a median and it was perpendicular. [We assume that this was Donna’s interpretation of
Bob’s explanation given in 16, 23, 33]. But see, we were able to talk such contradictions.
We saw that wasn’t true and we moved on. We sort of challenged one another. It was
good to have others to explain. We all agreed about construction. At first, it was difficult.

Quin [44]: I just did not know how to approach this particular proof. So, then we thought we should
use the GSP. I took the geometry course last semester and we had done this proof in
class. Actually the professor did it for us and it was very long theorem proof. I remember
thinking to myself – that’s hard. And so I was thinking you want to reproduce the proof
like that? And I had no idea how to start a proof like that – very, very complicated. ...
We started with three bisectors as they were given and then we had to prove something
else and that’s why for the moment I was thinking – no it wasn’t given, you’d have to
prove that it was perpendicular bisectors. . . we did straighten each other out, you know
one of us had information incorrectly. I thinkBobwas one of those.He thought that
the bisectors were not given and that you had to prove that it was perpendicular
bisectors.

390
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Bob[45]: Well, we are just trying to get started here and we had a little trouble at the beginning. We
needed to do the proof that these perpendicular bisectors of the triangle are concurrent and
we were thinking about the ways to do that with GSP. We started off doing it just as we
were doing a formal proof on paper and we always were making sure that everyone in the
group had a good idea how to start the proof and what to do. . .

Anita [46]: We talked how to prove it. . . it takes me a while with proof. I just don’t. . . I mean, I can sit
there and look at something for ages. . . just looking something in geometry strictly it just
does not make much sense. I did not say anything because I never knew what the sufficient
proof is. . . I have no sense of logic. Analytical thinking, I’m great at. Like I can sit down
and I can put things together or take things apart but proving things it’s just something. . .

just I’m not a logical thinker. And so at this point I was still trying to figure out what they
were doing. . . I had no idea what they were talking about. . . Bob is a nice guy and I like to
talk to him but he goes over my head. . .

391

These exploratory stage excerpts clearly show full verbal engagement of three group members as they392

negotiated their ideas with respect to the shared work. The fourth member was not verbally involved, but393

she was actively involved in making sense out of the conversation as we will see it in the next two stages394

of problem solving. The three members had two slightly different ideas how to approach the problem.395

Resolving this conflicting situation was an additional problem for the group.396

Bob’s initial idea was to construct two perpendicular bisectors, find the intersecting point, construct a397

third line through that point perpendicular to the third side and show it passes through the midpoint of398

the third side. Donna and Quin’s idea was to construct all three perpendicular bisectors and somehow399

show that they are concurrent. At some point, Quin was trying to recall a formal proof of the problem400

that one of the professors had given in class. She only remembered that it was a very long and hard proof401

and worried about how to reproduce such a proof. Notice here that Bob and Donna seem to be working402

on the basis ofinternal authority(validity comes from their own deductive reasoning), while Quin seeks403

external authority(validity of ideas is given by a professor or textbook).404

Donna and Quin’s initial interpretations of Bob’s suggestion are interesting [43,44]. Donna heard Bob’s405

suggestion “you got to show that the third goes through that point” as a suggestion to construct a median406

and show that the median is a third perpendicular. She did the same after watching the clip during the407

individual interview, which indicates her inability to move away from her own thinking (de-center, in408

Piagetian terms) and recognize Bob’s conflicting position. On the other hand, Quin’s interpretation of409

the same suggestion from Bob was that “he thought that the bisectors were not given and that you had to410

prove that it was perpendicular bisectors.”411

It appears that Bob and his team mates did not share a common conception of their task, the proof412

strategy that they would pursue, during this exploratory stage. We also observed a fluidity of thinking413

by individuals during these interactions. As Bob struggled to clarify his proof strategy to the others, he414

switched between two ideas without seeming to be aware of the differences in the ideas he expressed. This415

probably made it even more difficult for his team mates to understand his suggestions. These changes in416

Bob’s statements illustrate thatinternalizationandexternalizationare not inverse, functional operations.417

As Bob transforms the representations of his ideas, the ideas themselves change. It does not seem that this418

is simply his attempt to clarify the ideas for the others, but that it also reflects a simultaneous refinement419

of his thoughts about the proof. It is exactly this refinement of thoughts that indicates cognitive change420

for an individual.421
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There is an interesting pattern of conversation by this group: One partner begins a sentence or an idea422

and the other partner completes it. To us, this suggests that the students are accustomed to working closely423

with each other’s ideas. It seems likely that the individualzones of proximal developmentof students in424

this group often overlapped because of the way they could complete each other’s thoughts. This allowed425

them to move beyond initial miss-communication to achieve success with the problem. For example, Bob426

said in his individual interview “I made a mistake and said that you got to show it’s perpendicular but427

what I meant to say was that it’s a midpoint. She [Donna] corrected me—she knew what I was thinking428

but I was saying the wrong thing.” As we will see, that success did not always mean that they resolved429

all of the misunderstandings that were apparent at this stage.430

4.1.3. Stage 2: Productive stage (Group 6)—Group perspective431

In this stage students are working on the problem solution, trying to find or create the proof. After the432

group agreed upon the problem (agreed in the sense that no group member had any question or comment)433

they proceeded with their proof. First, they constructed an arbitrary triangle and three perpendicular434

bisectors. Next, they constructed a point of intersection of the perpendicular bisectors. They deleted one435

of the lines and then disagreed about how to replace the perpendicular bisector. Bob suggested drawing436

a third line through the intersecting point and the midpoint of the third side, then showing that it is437

perpendicular to the side [note that this is his new idea]. Donna suggested drawing a line through the438

intersecting point that is perpendicular to the third side, then showing that it bisects the third side [Bob’s439

first idea that he had abandoned at this point]. This excerpt, which is the continuation of the excerpt that440

ends at [14], illustrates how the disagreement was resolved.

441

Bob[47]: Select the midpoint of the segment.

Donna[48]: No, we just want to say construct a perpendicular line.

Quin [49]: No, we don’t know it’s perpendicular.

Donna[50]: No, we gonna. . .

Bob[51]: You could draw a perpendicular through H and. . .

Donna[52]: We are doing it backwards. [they used ‘undo’ and ‘redo’ feature of the GSP as they
discussed]

Bob[53]: You can draw a perpendicular through H and. . .

Donna[54]: Draw a perpendicular. . .

Bob[55]: You could do that. . .

Donna[56]: Yeah, end then show that’s. . .

Bob[57]: . . . perpendicular, I mean. . .

Donna[58]: . . . GSP measures to see. . .

Bob[59]: . . . show that these two are same. . .

Quin [60]: I think you have to show that is perpendicular and bisecting also. . .

Bob[61]: Ah. . . no what you need. . .

Quin [62]: The problem asks us. . .you have to prove it’s perpendicular, also. . .

Bob[63]: I think you draw it through the midpoint of that segment.

442
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Quin [64]: We don’t know they are. . .

Bob[65]: When it goes through the midpoint that it is perpendicular. . .

Anita [66]: . . . perpendicular bisector. . . you don’t know

Bob[67]: You gotta draw through the midpoint of AC and then show that’s perpendicular. Right?

Quin [68]: No, I think you have to show it’s perpendicular and bisector, both.

Bob[69]: You can’t do that because you can do the line through the midpoint anywhere on that. . .

I don’t know. . . you don’t know. . . you draw through the midpoint of AC and then show
it’s perpendicular.

Donna[70]: Yeah. . .

Bob[71]: But you can’t do it any other way. You can draw a line through H. . . and then show it’s
perpendicular. . . Doesn’t necessarily mean. . .

Quin [72]: . . . actually you did not construct a midpoint. You constructed a perpendicular but not a
midpoint.

Bob[73]: How . . . Oh, I thought you constructed a bisector through a midpoint.

Donna[74]: You can draw a perpendicular line and then show it’s the midpoint.

Bob[75]: Oh, I know, I know,I made mistake. . . You’ve got to draw a perpendicular and then
show it’s a midpoint. You can always draw a perpendicular but you can’t say it necessarily
goes through a midpoint. If you did that and. . .

Donna[76]: I think

Anita [77]: Construct a perpendicular

Donna[78]: OK, now highlight that point of intersection. You need to show. . .

Anita [79]: Highlight that point. [Quin highlights the point and constructs a line through it perpen-
dicular to the side]

Donna[80]: You need to show it’s a midpoint.Use your measure now. [Important note]

Quin [81]: We need to construct. . .

Anita [82]: Measure distance. . .

Bob[83]: Go to measure. . .

Anita [84]: Highlight the point [all of them are talking at the same time]

Donna[85]: We know that’s perpendicular. We need to show that goes through a midpoint.

Bob[86]: Yeah.

443

The group continues with construction and writing of their proof. Their complete solution is presented444

later, inFig. 2.445

In this episode we see the group struggle to prove that the third line, which is concurrent with the446

other two perpendicular bisectors, is a perpendicular bisector of the third side. Bob’s new idea—draw a447

line through the intersecting point and a midpoint of the third side and then show that it is perpendicular448

[47]—was not clear to other group members. Donna suggested starting by constructing a perpendicular449

line through the intersecting point, an idea originally suggested by Bob—did she realize this? [13]. It450

appears that her idea came as a result of removing the third line [39] and “doing it backwards” [52]451
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Fig. 2. Group 6’s written solution.

using the GSP. At first, Quin seems to be confused with both ideas. She focused on the statement of452

the problem, insisting that they need to show that the third line is perpendicular and bisects the line453

segment [68]. Her suggestion was not clear to other group members and may not have been clear to454

herself, either. Her attention clearly was focused (centered, in Piagetian terms) on the fact that the third455

line has to be a perpendicular bisector. Bob sees the difference between their suggestion and his own idea456

and acknowledges his “mistake,” which actually was not a mistake [69,75] but a valid alternate solution457

strategy. The group eventually agrees on the solution that uses this ‘new’ idea of Quin and Donna, which458

they seemed to think was what Bob suggested.459

We want to emphasize here that the GSP played a very important role in the process of de-centration of460

group members’ thoughts and made it possible for some group members to move forward in their thinking.461

After some discussion about the problem, as given above, this group used GSP to construct a triangle462

and its three perpendicular bisectors. They manipulated vertices and noticed that the bisectors remained463

concurrent. Then they decided to cut one of the perpendicular bisectors from the GSP figure. A discussion464

ensued about how to reconstruct the deleted line. We see here that GSP is being used as a manipulative465

by the group. Following this construction and manipulation, the thinking of several group members466
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apparently took new directions. We emphasize that the point here is not themathematical correctnessof467

their argument, but theways inwhich thestudents learned fromeachotherandasacollective. For example:468

1. It is clear that Donna’s thinking about the solution of the problem was influenced by constructing the469

third perpendicular bisector in GSP, removing it, then discussing how to put it back in GSP. [GSP470

provides two methods for constructing this line: (a) construct a line perpendicular to a side through a471

given point, and (b) construct a line through the midpoint of the third side and the point of intersection.]472

Describing how the software helped her move beyond initial confusion, Donna said “But we saw that473

wasn’t true and we moved on. . . I think that’s what is good about group. It was good to have others to474

explain. We all agreed about [the GSP] construction. At first, it was so difficult.”475

2. Bob abandoned his idea about the midpoint once he understood Donna’s suggestion and after seeing476

the construction (using a perpendicular to the third side).477

3. Quin was able to see that in order to show that the third line is a perpendicular line bisector, one has478

to assume one property of the line and show the other (for example, assume the line is perpendicular479

and then show it bisects the line segment).480

It is important to note that so far the group had followed a deductive line of proof. Excerpt [80]481

illustrates the moment when the group switched from deductive to inductive proof: “Use your measure482

now.” Significantly, this quote suggests that the measurement feature of the GSP software provided an483

opportunity for the group to show congruence of the two segments informally, and thus to turn from484

deductive proof to inductive verification. We wonder how typical this type of action might be in the485

dynamic geometry environment. Certainly, it indicates the heightened importance of discussing what486

constitutes a mathematical proof in the inductive, dynamic-geometry environment.487

This episode clearly illustrates how individual internalization and externalization moves can lead to488

changes both in individual and group conceptions of a problem with the final group state not completely489

attributable to any individual’s conception. We observed a group negotiate and construct shared meanings490

when the group members listened to each other, considered each other’s perspectives, and even aban-491

doned their own ideas when it seemed necessary. The teacher’s role in helping students to achieve these492

objectives—such as pointing out some significant comment of a group member and asking others to think493

about it—is crucial in small-group settings. Depending on the task and pedagogical objectives, this guid-494

ance could be provided either during small-group sessions or during subsequent whole-class discussions.495

4.1.4. Stage 2: productive stage (Group 6)—Individual perspective496

Students again reflected on the group work in a subsequent individual interview.497

Donna[87]: OK. Bob is saying it wouldn’t be that hard to prove it formally in two column proof and we
all agreed. At this point we all agreed that this is how to construct. Once you show that the
two segments have to be the same then you are done. He [Bob] thinks that if we really go
to the formal definition, it wouldn’t be that hard. We sort of taught him how to use the GSP.
. . . We went and we drew two perpendicular bisectors. How did we really do? Look at this
shape. We marked these. We marked these two bisectors. OK. We drew two perpendicular
bisectors, we did a point of intersection, we drew like a perpendicular to a third side
passing through that intersection. So, we are not proven that and we gonna prove that this
is a perpendicular bisector that bisects a line.. . . The GSP constructs it perpendicular and
we are. . . so if these two parts are equal then in fact it is a perpendicular bisector. And
that’s what we did; that’s what we measured here, these two segments stretching them
around to show that a third line going through H is indeed a perpendicular bisector.

498
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Asked to reflect on what Bob said [63] Donna added:
499

Donna[88]: B was. . . If you do this and. . . We did this on our screen to show that it is a bisector. If
you go to the midpoint and show that it’s 90, it’s another way. I think that the fact that
the three girls, that we agreed that it was that way and then we went to do it and Bob
wanted the other way. There were the three of us who pull it one way.

500

Quin and Bob expressed similar views of the episode, suggesting that they ultimately shared a con-501

ception of the work they had completed:
502

Quin [89]: What happens here is that I’m suggesting to the other members of the group that maybe
we should prove that theorem by assuming that two of the lines, two of three lines intersect
at one point already and then show that the line going through that point has to be a
perpendicular bisector, meaning that it has to bisect the other side and form right angle at
it. . . . Well, we had the two lines that intersect at the point. We, my suggestion was to draw
an arbitrary line through that point. We don’t. . . not a perpendicular line, just an arbitrary
line and then prove it that that line is perpendicular and bisecting the other side.. . . Well,
I shouldn’t say that. I guess at the time I just thought there was just one line going through
it that would be the exact line and it was supposed to be perpendicular. I guess you have
to assume that it is perpendicular and prove that it is bisecting the side.. . . I guess my
suggestion at that time was. . . I didn’t want to think too much. I wanted to prove without
assuming what I’m trying to prove. But I thought that assuming that it’s perpendicular you
are assuming what you are trying to prove.. . . I think we ended up drawing an inclined
line through the point of intersection and then proving that it was bisecting the segment.
. . . We measured the segments and showed that the two parts are equal.

Bob[90]: Yeah, what happened was. . . I was drawing it right but I was saying it wrong. So, I was
saying that when you drop that perpendicular to the side it goes through the point of
concurrency. I made a mistake and said that you’ve got to show it’s perpendicular but
what I meant to say was that it’s a midpoint. She [Donna] corrected me—she knew what
I was thinking but I was saying the wrong thing.. . . My idea was that you construct two
perpendicular bisectors to two sides of the triangle and then you must drop a perpendicular
through that point of intersection to the other side and then my idea was to prove that went
through the midpoint of that side. That’s how you would do it formally. I don’t know if
that’s right. I think they were doing little different. They constructed three and then I think
showing that is the point of intersection of all three or something like that.

503

The interviewer commented to Bob that Donna seemed to agree partially with his idea. Bob responded504

in a way that shows there was not complete agreement or understanding of each of their views about the505

solution strategy:
506

Bob[91]: Yeah, it was really incredible what she was talking about the whole time. I still even at this
point don’t understand totally what she was trying to suggest. I felt like she had ideas about
and stuff what to do. I was unclear the whole time while we were working about what she
was talking about. I think she had some idea that I was not familiar with or something and
I was trying to piece through what she was saying and I’m still not totally what she was
suggesting but. . . I mean, originally, I had the idea to do what we just did.

507
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Anita was quiet during the whole discussion on how to approach and solve the problem. When the508

interviewer asked if she understood what the group was discussing and why they discussed using a GSP509

proof or a formal proof, what it was that bothered them, Anita said:
510

Anita [92]: I don’t think so. I think. . . I was trying just get it done. I always like. . . I guess to me if I
do something on my GSP or something, to me the proof is just write down what you did.
It doesn’t matter what theorem you are formulating or that. I thought they were coming
getting caught up and they kept talking about formal proof and I was sitting back there
thinking – you just did it, that is a formal proof in itself. But I’ve just set there.. . . With
the group you know I’m there. . . I’m usually one that does the writing. I don’t do much
speaking unless I knew what we are doing. Like one-on-one it usually takes me easier.
When there is more than three people I’m very easily intimidated.

511

From these individual students’ reflections we see that Donna did not understand that Bob’s latest512

suggestion was not wrong and that she was very happy with the group’s final solution [87]. Her perception513

was that Bob insisted on a formal proof. One wonders if that might have blocked her reflections on514

Bob’s suggestion. Only later, after Donna was asked to reflect on Bob’s suggestion during the individual515

interview, did she realize that his suggestion was valid [88].516

The group’s influence on Bob’s thinking is quite intriguing. Even during the individual interview517

he was convinced that his initial idea was wrong [90]. The interviewer noticed this critical incident518

in which Bob appeared to change his thinking because of group influence. After hearing and under-519

standing Donna’s suggestion, Bob changed his mind. We can only speculate that Bob rejected his520

initial idea believing that there is only one solution to a problem. During the individual interview,521

this portion of the video was replayed several times as the interviewer probed Bob about how and522

why his thinking changed. He explained that he was actually thinking like Donna, but “I was think-523

ing one and saying another thing.” Although he seemed to remain convinced that his original ap-524

proach was wrong, it is interesting that during the individual review, while watching the same clip,525

Donna came to believe that either approach would work. This illustrates Valsiner’s notion of the co-526

construction of new ideas by individuals when solving a problem collaboratively. This also illustrates527

Bob’s ability to decenter(Piaget’s notion) from his own thinking and consider the perspective of528

others.529

Quin explained her misconception and emphasized her contribution to the group’s solution [89]. Anita’s530

explanation indicates that she did not comprehend the group’s discussion and the issues that group531

members raised while working on the problem [92]. It was only after completing the GSP construction532

that she showed some signs of understanding of the group’s solution, while still acknowledging her533

inability to distinguish between the formal and informal proof.534

Bob’s individual comments illustrate the complexity of the interactions that take place in this535

sort of mathematical problem-solving activity. He admits that he did not really understand the ideas536

that Donna expressed. Still, Donna’s comments shaped Bob’s thinking about the problem, and the537

group was ultimately able to agree that they had achieved a solution to the problem. This high-538

lights two important characteristics of the theoretical framework: (a) Bounded indeterminacy holds539

that we should not expect a clear, causal relationship between stimuli and responses, and (b) an in-540

dividual’s zone of proximal developmentdescribes a readiness to make use of external stimuli to re-541

fine internal conceptions. Group members were influenced by the discussions that took place, but542
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this influence was not simply a matter of adopting the ideas expressed by others. The ideas they543

heard triggered (or, in Valsiner’s terms, canalized) advancements or, at least, changes in their think-544

ing, but these changes had a unique and personal character that was not exactly shared by all in the545

group.546

4.2. Stage 3: Polishing stage (Group 6)—Group perspective547

In this stage the same students are writing their solution, having substantially developed their ideas548

about the problem.
549

Anita [93]: Given a triangle ABC,

Quin [94]: no

Bob[95]: draw a perpendicular BL and then the other one. . .

Quin [96]: No BL,

Anita [97]: It doesn’t matter which one. . .

Bob[98]: Yeah

Anita [99]: Construct a perpendicular bisectors AB and BC. Any two. Mark the intersection H. . .

Bob[100]: Mark the point of intersection H. . .

Anita [101]: and then construct

Bob[102]: Now draw a perpendicular from H to L

Quin [103]: Yeah, that’s what we were doing

Anita [104]: through a midpoint

Bob[105]: From H to a midpoint of the segment.

Quin [106]: We already know that L is a midpoint.

Bob[107]: Draw a perpendicular from H to AC at point

Donna[108]: . . . through that H and then draw a perpendicular. . .

Anita [109]: Now measure AL,. . .

Donna[110]: Wait a minute.

550

Anita continues to dictate: “Construct a perpendicular from H to segment AC. Label the point of551

intersection between perpendicular and AC as L. Measure lengths AL and LC to show they are of equal552

measure.”553

It is evident in this excerpt that some group members were still confused with two different ideas554

[101,104–106]. But together they were able to reconstruct their previous discussion and write the solution555

(Fig. 2). As they finish writing the solution Donna takes over typing while Anita dictates the rest of their556

description.557

In this episode the fourth group member, Anita, became active. She felt confident that she could558

describe the construction and could repeat the group’s “GSP proof,” so she stepped forward to make her559

group contribution. This excerpt again illustrates the pattern of conversation, so typical of this group,560

with individuals completing sentences of other group members.561

This group’s written solution for the problem is presented inFig. 2.562
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4.2.1. Stage 3: Polishing stage (Group 6)—Individual perspective563

During the individual interviews, all students stated that by the polishing stage of their work on the564

problem the group had reached agreement. All became active and participated in wording and writing565

a solution. Additionally, they all said that Anita became more active at this phase and was the one who566

dictated most of the written solution.567

Anita’s role in this final stage provides another illustration of how students, when their zones of proximal568

development appear to overlap, are able to refine their understandings based on the ideas expressed by569

others. These refinements are not a deterministic, uncritical response to external stimuli but involve570

choices between conflicting points of view. Anita had not been involved in the previous discussions, but571

clearly had been following and came to make her own sense of the ideas that had been discussed. She was572

not simply recalling previous ideas of one or more group members, but had internalized them and was573

able to produce her own externalization, which differed from ideas expressed by other group members574

during this stage.575

For example, in the first few lines of this final excerpt, Anita responds to the disagreement of Bob and576

Quin by saying that the choice of which two perpendicular bisectors they start with does not matter. She577

also has the idea of constructing a line to the midpoint of the third side andshowingthat it is perpendicular578

to the side, rather thanconstructinga perpendicular to the third side as Bob suggests during this exchange.579

She does not seem confused by these contradictory suggestions or by differences in ideas from Bob, Quin,580

and Donna. Instead, she seems to have her own understanding that she relates selectively to the comments581

made by other group members. Anita refines her ideas through selective adoption of ideas expressed582

by others, not from an uncritical adoption of every idea that comes up. For this reason, we believe that583

much of the group discussion took place within Anita’s zone of proximal development. She was able to584

internalize then externalize the ideas, even though she had not participated in the discussions previously,585

because of her readiness to interact with the ideas.586

4.3. A brief overview of the remaining group sessions587

We have presented a detailed analysis of one group’s work on a single problem. Group 6 was chosen588

because their exchanges help illuminate the mechanisms of co-construction. Several other groups found589

proofs for one or more problems. Each of these successful groups had similarly rich interactions as students590

refined and melded individual ideas to produce a shared, group understanding of the task. The nature591

of interactions of Groups 2 and 5 were very similar to those of Group 6, although Groups 2 and 5—in592

contrast to the decision of Group 6 to give an informal verification based on a GSP construction—gave593

formal proofs and did not use the GSP except to produce figures to accompany their proofs. Their group594

sessions involved an extensive exchange of ideas, balanced contributions from group members, and fairly595

high level of comfort in completing each other’s thoughts. Group 5 never wrote out a formal proof, but596

were satisfied that they understood completely what was necessary to prove the result. From the videotape597

of their group session, we know that their impression was accurate in this respect.598

Each group’s shared or accepted understanding of the nature of the task strongly shaped the interactions599

that followed. For example, the decisions by Groups 1–5 to pursue a formal proof rather than informal600

verification relegated the GSP to an insignificant role. Only two of these groups even used the software.601

One group used the GSP as a graphics program to sketch figures, the other only to confirm at the very602

end of the problem-solving session that their conjecture that the inscribed figure in Problem 2 was a603

parallelogram.604
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The significant influence played by the nature of the group’s shared vision of the task, or lack of a605

shared vision, is also illustrated by the work of a group that was much less successful. We observed606

a markedly contrasting style of work by Group 1, which was unable to give a solution for any of the607

problems. This group essentially worked in isolation, with two individuals (Kerry and Will) seeming to608

wait for the third member (Nathan) to come up with an idea or solution. The group worked in total silence609

for periods of 10–15 min, broken by brief exchanges in which group members asked whether the others610

had made any progress. They could not seem to come up with the proof ideas they wanted and seemed611

unable to generate and refine speculative ideas to move forward. Their most animated exchange took612

place near the end of the interview when they were asked to summarize their progress before the end of613

the session.614

From their transcript, it was apparent that this group could have given an inductive “GSP solution”615

of the second problem had they wished; and one would suspect they also could have managed that for616

Problem 1. Their understandings of the capabilities of GSP were much more closely shared than their617

views of the nature of proof, so the exchanges when using the GSP seem more productive than at other618

times (more like those of Group 6, described above). Nathan, the leader, was intent on giving a formal,619

axiomatic proof. Kerry mentioned a wish to refer to a book to find some axioms or theorems that could be620

used. Her view of proof seemed to be that it involved recalling arguments and statements made by others,621

perhaps by the instructor or in the text. These two students had very divergent views of mathematics622

and, specifically, the nature of proof: Nathan lookedinternally for meaning and authority, while Kerry623

depended entirely onexternalsources of validity and verification. Despite their different understandings624

of the nature of proof, both sought a formal proof. That is in contrast to Group 6, above, which sought an625

informal, inductive verification using the GSP.626

It seems that several characteristics of some groups allowed them to collaborate more effectively in this627

problem-solving activity. First, the group members needed to share an understanding of what was involved628

in providing a mathematical proof. It was not important that this shared understanding be of a formal629

proof, but that the students agreed, at least implicitly, about what they had to do, even if that was informal,630

inductive verification of the statements. Second, the group members had to have understandings of the631

problem situation that were similar enough to that of group members that they could interact with the ideas632

of group members. This required an ability to internalize externalizations of other group members and633

to relate their own ideas to those of other group members. As we saw with Group 6, it was not necessary634

that understandings were shared by sender and receiver: That group had several instances where one635

group member appeared to misinterpret the ideas expressed by another. What seems important was that636

the ideas offered by one person were within a zone of proximal development of another group member.637

That is, the understandings were close enough that the person could interpret the new ideas within the638

context of their existing understandings.639

Several groups spent most of the time working unsuccessfully as individuals in silence, with brief640

conversations to see whether the others had made any progress. For example, the members of Group 1641

appeared to be extremely reluctant to reveal their thinking before they were certain that their thinking642

was correct. Members of this group, including two students who were quite successful in the geometry643

course, claimed during their individual follow-up interviews that their group work was not representative644

of the style of work they mostly had used during the term. Other groups showed a similar inclination to645

work privately and individually during parts of the session.646

In summary, then, we observed widely varying degrees of collaboration and interaction, and these647

seemed related to the success that groups had with the problems: Groups with more extensive and open648
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discussions seemed to have greater success with the problems. A group whose members held differing649

understandings of proof, such as members of Group 1, did not seem able to have productive discussions650

about their work on the problems. We believe that this lack of a shared purpose or common understanding651

of the task may have blocked their ability to function productively as a small group.652

5. Findings and implications653

5.1. Group influences on individual thinking654

We were able to observe several instances in which groups influenced individual thinking. This often655

moved the individual and group closer to a solution, but we also saw one case in which a student (Bob in656

Group 6) abandoned correct reasoning to adopt an alternate—and also correct—strategy.657

The group interactions we observed in productive groups, especially Groups 2, 5 and 6, matched the658

behaviors we would expect based on the co-constructivist framework. Excerpts from the work of Group659

6 reveal students expressing ideas of their own and of others in the group. As they internalize, then660

externalize the ideas, their understanding of the problem changes. Their new expressions of ideas appear661

to influence the ideas of team mates with the cyclic process moving the group’s conception of the problem662

toward a solution acceptable to the group and not reflecting the isolated work of any individual.663

Students in this study were aware of the contributions made by team members and seemed to recognize664

some of the small-group processes that contributed to enhanced, deeper understanding of mathematics.665

One might expect to discover that individuals in a group held different views of their own and their group666

members’ contributions to the tasks. We were somewhat surprised to discover the extent to which group667

members shared common views about themselves and their team members. This includes what they did668

during the problem-solving session and during a prior geometry course. This agreement and the generally669

favorable views of the efficacy of group work suggest that cooperative and collaborative group activities670

helped students better understand the thinking of their classmates—and, consequently, their own.671

The work of several groups seemed to show how productive interactions advanced the group’s efforts to672

find a proof by influencing individual group members’ understanding of the problem. In contrast, another673

group that had a dominant leader (Nathan, Group 1) who was expected to solve most problems had little674

interaction because he was unable to discover a productive approach to the problem. As group members675

reported, they usually reacted to his ideas but rarely generated their own. Although one of his group’s676

members—Kerry—had a limited notion of proof, there was no evidence that her thinking was influenced677

by the comments of Nathan. We believe that Nathan was not making suggestions that were in Kerry’s678

zone of proximal development, so the insights of Nathan could not influence the thinking of Kerry.679

Several participants expressed highly favorable impressions of the impact that small-group work had680

on their learning of mathematics during these courses that involved extensive cooperative learning. This681

was in spite of the common view that it involved more time and effort. Their comments also illustrate their682

own recognition of the contribution of interactions with others to their own understanding of mathematics.683

For example, Kelli (Group 2) responded to the question of how the group work had influenced her learning684

by stating685

I think I remember everything a lot more because you not only have to prove it to yourself but you have686

to defend it. It makes you have to go over it at least twice. I’ll remember it a lot more.687
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Kelli is expressing the idea that it was not enough to internalize an idea in this course, but that she had688

to repeatedly externalize the ideas to share them with group members. She believed that these repeated689

transformations from thought to expression and back helped to produce better understanding of the690

material. Similar sentiments were echoed by others. For example, Al (Group 2) stated:691

[Group work] really helped. At times I would have been lost without guidance. . . I got a lot out of this692

course. Sometimes [in other courses] you just go through and do the homework problems and take the693

tests. But I feel I have a better understanding and can recall it. The groups were more fun and we didn’t694

get bored with it. It was a lot of work but worth it. Sometimes you can skate your way [through a course]695

but with people helping you they can point out where you went wrong.696

6. Concluding remarks697

Students need to discuss mathematical ideas to develop rich and deep understandings of important698

concepts. This view is widely shared by educators involved in the teaching and learning of mathematics699

at all levels, from elementary school through graduate programs in mathematics. Many have embraced700

a constructivist view of learning that has been developed in various forms from the early psychological701

and sociological work of scientists such as Piaget and Vygotsky. Valsiner more recently has described702

co-constructivism, a theoretical perspective that blends an individual, psychological perspective on in-703

tellectual development with a group, sociological perspective. This theoretical perspective holds that704

development of knowledge in a social setting is bidirectional. Individuals process ideas through inter-705

play of internalization and externalization processes, and are not only influenced by the social culture of706

knowledge, but also have an influence on the social culture. It is these transformations of ideas between707

group and individual and between external and internal representations that allow the group and individual708

to co-construct mathematical ideas in ways they find meaningful.709

This study supports the view that small-group work can have significant, positive effects on student710

learning, problem-solving, and self-confidence in mathematics. The co-constructive view of learning is711

consistent with interactions that we observed in many of the groups, especially the three groups that712

had productive discussions leading to solutions of one or more problems. Given thebounded indeter-713

minancythat underlies the theory, we did not expect that every group would exhibit the interactions714

described by the theory. Indeed, Vygotsky’s notion of readiness—the individual’s zone of proximal715

development—suggests that there are necessary conditions for such social interactions; bounded indeter-716

minancy says that these conditions are not sufficient to ensure such interactions will, in fact, occur.717

It is clear that many factors contribute to the nature of interactions that take place in small-group718

settings and their impact on individual thinking. For example, students must be operating within the719

zones of proximal development of their group members if the ideas are to be modified and developed720

through group interactions. Group members must share an understanding of the nature of their task,721

such as having a common notion of proof. It is possible for groups to workcooperatively, in the sense722

of division of labor, without also having productivecollaborativeinteraction, in the sense of working723

together to achieve a common goal as a team.724

The research methodology employed here could be used in a variety of settings to generate useful data725

about the ways that students learn mathematics in a social context. The use of group sessions with minimal726

intervention, followed by individual probing based on video recordings of the previous session allows727
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the researcher to observe activities without directly influencing their course, but then probe individuals728

in some depth about their thinking during the group session. Students’ reflections and interpretations of729

particular group sessions could give more insights than any interpretation that researchers can get by730

just observing the video tape. For example, individual interviews with members from Group 6 revealed731

thatdifficulties the group experienced in their problem solving session were a result of poor attention732

the students were giving to each other’s comments and suggestions. Reviewing a clip from their group733

work during the individual interview, Donna realized that Bob’s suggestion how to prove that the third734

line is perpendicular to the side was also correct. This is asignificant result documenting the importance735

of students’ reflection and could be used as an instructional strategy. The video of the previous session736

provides a good stimulus to generate individual reflection by the student. Technologies also provide the737

opportunity to study a dynamic record of students’ written responses to better track the development738

of ideas over time. Further studies conducted in a variety of settings could provide insights that could739

guide instructors in the sorts of group activities and modes of instruction that would facilitate the learning740

of undergraduate mathematics by providing data that helps to further refine and develop the theories of741

learning in a social context. Such studies may also provide better insights to the characteristics of small742

groups that seem to contribute to particularly rich and effective interactions and collaborations between743

students.744

We believe our research, as described in this paper, sets a foundation for further investigation of the745

use and impact of small-group activities in the teaching of mathematics. The most significant ideas we746

discussed include:747

• The learning of mathematics can be enhanced by promoting the development of shared knowledge and748

the individual learning within a context of small-group work.749

• Valsiner’s notion of co-constructivism provides a theoretical framework that helps to explain the con-750

struction of knowledge by individuals who participate in mathematical activities with others. This751

theoretical perspective holds that successive changes of representations of ideas, through the pro-752

cesses of internalization and externalization, promote changes in and refinements of both individual753

and shared mathematical notions. Our study suggests that instructional emphasis on reflective thinking754

about externalised thoughts of others in the group is a very important aspect of parallel functioning.755

• Through observation of mathematical activities in a small-group context and subsequent stimulated756

individual introspections on the group activities, we were able to explore the individual and social757

dimensions of mathematical learning. This methodology seems promising for researchers investigating758

the learning process in a social context because of its focus on both individual and shared notions, and759

seems applicable not only to other mathematical domains but also to other disciplines.760

• Individual cognition, a psychological perspective, and social construction of knowledge as described761

by Vygotsky are interactive dimensions of learning. For example, we observed that productive social762

interaction seemed to require individual understandings that could be shared, to some degree at least,763

by group members: The groups had to share an agreed understanding of the requirements of the task,764

such as a notion of acceptable proof. This is in keeping with Vygotsky’s notion of thezone of proximal765

development.766

• Teachers should be aware that while a technology-enriched environment can be beneficial to develop-767

ment of students’ understanding of mathematics, it may require specific instruction about expectations768

for a given task. For example, in our study we saw that Group 6 constructed their proof using ‘undo’769

and ‘redo’ (or, cut and paste) features of the GSP. By undoing and redoing the third perpendicular,770
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students were able to move forward. At the same time, using the GSP’s measurement feature, students771

switched from their formal mathematical proof to an informal and inductive proof. We believe that772

clear communication of our expectation for a formal, mathematical proof would have changed the773

nature of proof that this group produced.774
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