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Abstract

In the late seventies, Guy Brousseau set himself the goal of verifying experimentally a theory he had been building
up for a number of years. The theory, consistent with what was later named (non-radical) constructivism, was that
children, in suitable carefully arranged circumstances, can build their own knowledge of mathematics. The experi-
ment, carried out jointly with his wife, Nadine, in her classroom at the École Jules Michelet, was to teach all of the
material on rational and decimal numbers required by the national program with a carefully structured, tightly woven
and interdependent sequence of “situations.” This article describes and discusses the first portion of that experiment.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Warfield

Among the most attractive and accessible features ofDidactiqueare the examples of specific situations.
A number of particularly well-known examples come from Nadine and Guy Brousseau’s “Rationals and
Decimals in the Required Curriculum.” I was particularly pleased, therefore, when in the early stages
of my introduction toDidactiqueI was given a copy of the book. At the time I saw it as an attractive
and coherent sequence of lessons about fractions and decimal numbers and as evidence of the degree
to which the field ofDidactiqueis based in the reality of the classroom. As I delved deeper into the
book, I discovered that it also contained thought-provoking commentaries on the learning to be expected
from specific situations (as well as some learning that should not yet be expected), and a pair of articles
discussing the enormous mathematical and pedagogical study behind the choice of the sequence.
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That was in 1992. In the ensuing decade I have read moreDidactiqueand have had more conversations,
and repeatedly have had the experience of discovering that there was yet more to the book than I had
realized. I was therefore delighted when Guy Brousseau mentioned his interest in returning to the book
and writing down some of the additional thoughts and discoveries he has come up with since the original
writing in 1987. We settled on making it our next joint project.

As we launched the project, some things immediately became clear. One was that simply taking the
original book and adding a decade and a half’s worth of further thoughts would produce an object more
appealing to a weight-lifter than to a reader. We therefore decided that only a very few lessons would be
reproduced in their entirety, and the rest would be condensed. Even at that, though, the project remained
unmanageably bulky and not conducive to the kind of deepening of understanding that Brousseau had
in mind. So we broke off the first three modules, which deal with rational numbers as measures, and
postponed the rest. Brousseau’s introduction, which follows, provides enough of a description of the rest
of the book to put this part in context.

There then remained the issue of putting all this in a form that would be of use to the reader. One clear
element was to insert commentaries between the lessons, condensed or otherwise, where they would
be pertinent. Even that supplied a challenge, because a concise commentary requires a precision of vo-
cabulary which needs to be understood as such. Details on that front appear in the first of the com-
mentaries.

One other need must be addressed, and that is one which pertains to the English-language readership,
and hence must be addressed in this part of the introduction. Our language, although generally rich in
synonyms, fails to supply us with a pair of words to correspond to the French near-synonyms “savoir” and
“connaˆıtre.” Both are translated as “to know.” Likewise the nouns associated with them, “les savoirs” and
“ les connaissances” are generally both translated as “knowledge.” At times this is fine, at other times it is
a problem. The latter is notably the case in dealing withDidactique, where the words are frequently and
highly intentionally distinguished. In the following paragraphs we will attempt to make the distinction
clear, and we will propose a solution to be used in this article.

At a first pass, the verbs can be thought of as “to be familiar with” (connaˆıtre) and “to know for a fact”
(savoir). For some examples the distinction is clear and useful: “connaˆıtre” a theorem means to have
bumped into it sufficiently often to have an idea of its context and uses and of more or less how it is stated;
“savoir” a theorem means to know its statement precisely, how to apply it, and probably also its proof.
On the other hand, when it comes to an entire theory, with a collection of theorems and motivations and
connections, what is required is toconnaˆıtre it. Savoirat that level is not an available option — but on the
other hand, no realconnaissanceis possible without thesavoirof some, in fact of many, of the theory’s
constituent parts.

The corresponding distinction exists between the two words for “knowledge,” with the additional
complication that each of the French words has both a singular and a plural form.

Before offering a solution, I propose to give an example of a way in which having the two words is both
thought-provoking and a material aid in analyzing what’s going on. Currently in American mathematics
education there is considerable debate about the status of certain kinds of knowledge. One side is accused
of interesting itself solely in “skill-drill” and computation, the other of interesting itself solely in “fuzzy
math,” where anything goes as long as it is in the right general vicinity. Consider instead the following
description: all school learning is an alternation ofsavoirsandconnaissances. Isolated parts are acquired
assavoirsconnected byconnaissances. Without theconnaissances, thesavoirshave no context and are
swiftly mixed or lost. Without thesavoirs, the connaissancesare more touristic than useful. Imbedded
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in connaissances, savoirscan develop gradually into a solidly connected chunk — in fact, asavoir,
which is then available to be set into a widerconnaissance. Thinking this way then provides a tool
for contemplating another of the current hazards of mathematics education: assessment. It is a clear
need, but a thorny issue. And one of the causes of its thorniness is that all that can be assessed on a
standardized test issavoirs. The state of a student’sconnaissancesis visible to the teacher if enough
time in the classroom can be devoted to the kind of activity whereconnaissancesare built and used. But
an over-emphasis on visible, “testable” knowledge leads to attempting to teach thesavoirswithout the
connaissancesto hold them together and carries with it the danger of damaging the entire fabric of the
learning.

It should by now be clear that a casual treatment of thesavoir/connaissancedistinction would be a
serious error. On the other hand, finding a solution is not a trivial pursuit. One solution would be simply
to transfer the words, untranslated, as we have done with the similarly untranslatable “Didactique.” On
the other hand, that would be cumbersome (witness the paragraph above!) and, given the conjugations of
the verbs, both obscure and distracting. Past efforts have included use of “know-how” and “a knowing,”
but neither has proved very satisfying. We therefore propose in this article to try an idea recently in-
vented by Brousseau: “Connaˆıtre” derives from the Latin “cognoscere” and “savoir” from the Latin
“sapere.” We will generally use “to know,” “knowledge” and “a piece of knowledge” (the latter for the
singular form of either noun), but if there is a need to distinguish, we will pay hommage to the Latin
by attaching the prefix “c-” when the word comes from a form of “cognoscere” and “s-” when it comes
from a form of “sapere.” We hope in this way to achieve the best available balance of accuracy and
readability.

1.2. Brousseau

The teaching sequence presented in this article is the first of a set of six designed for teaching rational
numbers and decimals as required in the school curriculum. The first five were used experimentally for
around 10 years in two classes each year. With the addition of the sixth part and a review chapter, the
sequence covers essentially all of the teaching objectives at both the primary and secondary level. All
of the activities organized by the teachers for their students were described and explained, so that they
could be reproduced the following year. Eventually the descriptions were assembled into a single book,
along with reports of their results and commentaries. In this article we reproduce or summarize the first
portion of that book.

These sequences, which were regularly reproduced with 10- or 11-year-old students by the teachers at
the École Jules Michelet in Talence, and which could be used with children from 10 to 14 years old, were
not designed to be published and used in schools which don’t have the benefit of solid mathematical and
didactical assistance. Thus they do not represent model lessons, but rather an experiment inDidactique
and epistemology.

The first three modules from the teaching sequence are summarized below. In them, rational numbers are
introduced and studied as measurements and as scalar ratios, with their operations of addition, subtraction,
then multiplication and division by a natural number scalar. After being created by the imagination in
order to make things commensurable, they are defined in the classical manner by partitions of unity and
intermediate units. In the course of the following four modules, students study the ordering of rational
numbers, then decimal numbers as a means of rapidly evaluating and comparing rational numbers, the
particular properties of operations on decimals, and decimal notation.
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The next modules (8, 9) introduce rational numbers as rational linear applications, initially used for
drawing reproductions of pictures and geometric similarities. That then makes it possible to give com-
pletely general definitions of multiplication and division by a rational (Modules 10–13) and the compo-
sition of applications (Modules 14 and 15; fractions of fractions).

It would be useful here to recall a few of the questions which were being addressed in this experiment
and a few of the ideas which underlay its realization. We will present just three.

Public opinion in the sixties was exerting pressure for the mathematics taught in schools to resemble as
much as possible, and as early as possible, the mathematics practiced and produced by mathematicians.
Some even felt that from pre-school to university everything could be taught in a unique “definitive” form.
However utopian the idea may appear today, at the time it didn’t seem impossible to meet that challenge,
or at least to study it seriously.

To do so required thatthe activity of mathematicians be modeled, and then that conditions be imagined
which wererealizable by the teacherand which would lead the students to produce on their own,by
a similar activity, some current mathematical c-knowledge. In point of fact, there is no such thing as
a “mathematical activity” which does not depend on its objective, and the historical genesis of any
mathematical concept is so complex and so much wrapped up in its history that it defies reproduction by
any isolated modern individual.

Another aspect is that “understanding” a notion like that of rational or decimal number implies that at the
end of the learning process a subject has at her disposal a collection of widely varied, logically interlinked
pieces of knowledge. This organization can determine an ordering of teaching based on logical relations,
for example, a locally or completely axiomatic ordering. Moreover, these are the orders of succession
which dictated the classical didactical methods.

But mathematical concepts are constructed in the course of a story which follows another ordering: that
of questions, of problems and of solutions, where a much richer collection of “reasons” comes into play.
The first idea was thus to realize a process of construction of concepts important to the school curriculum
— rationals and decimals — which simulates as well as possible that sort of genesis. That is, to simulate
a process making minimal use of pieces of knowledge imported by the teacher for reasons invisible to
the students. This type of project was subsequently labeled constructivist.

The initial objective of the experiment was thus an attempt to establish an “existence theorem”:

• Would it be possible to produce and discuss such a process?
• Would the students — all of the students — be able to engage in it?
• Could the result of the process be, for each of the students, a state of knowledgeat least equalto that

obtained by known methods?

The realization of the process made no sense unless simultaneously each lesson was conceived, studied,
corrected and criticized with the most severe of theoretical, pragmatic and methodological instruments.
These instruments were mostly derived from the Theory of Situations, but we consider that they were
heavily modified in the course of the experiment. The goal was, thus, that the instruments should progress.
The second objective was to clarify and complete the Theory of Didactical Situations.

On the other hand, there was no question of relying on imagination and fantasy and then waiting to see if
the results were satisfactory. Children are not laboratory animals. The methodological and deontological
principles were very different from those in use still today in that domain. In this real experiment, we set
minimal objectives in terms of success rates, in terms of median results at other schools, and time limits.
If the method in question had not made it possible to achieve the results normally attained by classical
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methods in that much time, we would have had them follow some specific activities — if necessary using
other methods. The comparison between two methods was thus madeon equal results on curricular
objectivesby comparing:

• the time and effort required to achieve this result,
• various differences in results which were not evaluated and were often impossible to propose as objec-

tives, of which we will speak later, and
• certain qualitative differences, some of them affective: pleasure and motivation, for the students and

the teacher.

The third objective was essentially to know if the use of activities similar to those of mathematicians
would give the scholastic c-knowledge of students different qualities from that obtained by the standard
teaching methods of the period.

The realization of such a program led the researchers to make a considerable number of “technical”
choices about which information and arguments can be quite complex. We will attempt to give an idea
of them in the course of our description of the process.

In order to construct such a didactical process it was necessary to determine the knowledge to be taught,
its structure, its properties, its different mathematical aspects, its ways of being written and its uses. For
our teaching objective we chose the productionby the studentsof the principal notions and properties,
for reasons of consistency and appropriateness which they themselves could formulate. Numerous pieces
of s-knowledge were considered equivalent in the classical methods, even though the results of testing
demonstrated that they were not so for most students. The basis for analyzing the situation is to pose the
question “Why?”: why would the students do this or say that? Why would they change their opinion?
Why would they judge it incorrect?, etc. This method led us to decompose this school s-knowledge
into distinct pieces of c-knowledge without being preoccupied with restrictions imposed by the classical
curriculum. For example, fractions as measurements of size, fractions as scalar ratios and fractions as
linear applications are not conceived in the same way or in the same circumstances. Knowledge of one
does not guarantee the use of the others, and they should therefore be constructed separately, then brought
together in distinct didactical activities.

The terminology used in the text is that used by the teachers. Naturally almost none of those terms
would be used with the students in the first five sections. But they are determined and explained by
their immediate usage in such a way that no prior mathematical knowledge is necessary. It would be
easy — and at times distracting — for a mathematician to find within the sequence of problems and
exercises with apparently modest ambitions not only a distinct, separate and ordered study of all the
objects in the field (numbers, measures, ratios, fractions, linear applications, homotheties, etc.), of all
their structures (algebraic, of order, topological, functional), and of all the properties which together
lead to the understanding of the different uses of rationals and decimals, but also properly mathematical
procedures of construction (symmetrization, imbedding) which here plainly play the double role of means
of construction and demonstration of knowledge. And it would then be apparent to the mathematician how
easy it is to put into mathematical format the wealth of knowledge the students have thereby harvested.

The same principle led to a search for “reasons” to study each aspect, either practical or theoretical
reasons, so as to base their definition on a genesis and not on an erratic juxtaposition. For example, the
reason for inventing both the rational and the decimal numbers is clearly to have the use of a dense set of
“numbers” for purposes of measurement and calculation.
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But how can we justify the invention of one or the other? Should we follow the historical order?
Rational numbers were measurement fractions, ratios of lengths, then ratios of numbers. Decimal numbers
are particular rational numbers which were not accepted into mathematics until a very long time after
fractions and rational numbers, as a palliative for difficulties of fraction calculation especially in questions
of ordering and topology.

But the principle of decimals had been known since the dawn of time as an extension of decimal
measures. Their completion generates the real numbers more easily than that of the rationals. The latter
could, in fact, be relegated to an appendix: the study of the symmetrization of decimals by multiplication.

This author (G.B.) shares with numerous mathematicians the opinion that it is useless to develop
the study of rational numbers in K-12 schools, at least in countries which have developed the decimal
system of measurements. On the other hand, decimal numbers are genuinely indispensable today in both
mathematics and its applications. It was not possible to draw the didactical conclusions to which this
situation obviously points. On the contrary, the study of ratio and proportion which for a long time was
maintained as an “elementary” alternative to algebra contributed to the restoration of the study of fractions
at the elementary level for reasons of culture or mathematical classiness, and it disappears just when it
might have become useful.

It would have seemed natural for this author to conceive of a curriculum which matched his ideas, one
withoutthe study of rationals, or with the study of rationals as a corollary to that of decimals, in order to
propose it to the teachers. But such a teaching sequence, or at least a reasonably similar one, had already
been carried out, and according to the claims of the teachers, presented no notable difficulties. An honest
defense of the opposite position and the study of its consequences would facilitate if not the invention,
then at least the exercise and improvement of the principles of the theory of situations, and would give a
“benchmark” to which other methods could be compared.

The designers thus encountered at each step of the process delicate alternatives: should measurement be
done by commensuration or partition of unity? Should one start with simple fractions (small denominators)
or plunge straight in with any old denominator?, etc. It seemed best to respond with choices which
maximized the logical coherence from the point of view of the subjects engaged in the construction, and
not as a function of our own knowledge, habits, etc. We felt that in thus augmenting the distance — the
transposition — between the reasons natural to the teacher and the reasons, different ones, made natural
to the students by the process, we would achieve the clearest view of the constraints of the didactical
situations which we wished to study.

The curriculum obtained in the end is composed of 60 lessons, which appears to exceed the time
normally allocated to the subject. But in compensation we realized that it integrates the entire of the set
of classical arithmetic objectives for the fifth grade, which leaves a lot of time for the teaching of other
mathematical subjects.

The last objective is perhaps the most interesting for a reader today. It was a matter of explaining to
the teachers and to their teachers the mathematical, epistemological and didactical basis of the concepts
they were teaching, and of doing so under conditions and in terms usable by their students, so that this
work constitutes a genuine mathematical treatise.

Some will want to know the most notable effects of this teaching. Setting aside the mountains of varied
evaluations, just one stands out for me. Students often returned in the following years to show their teacher
their grades (and their grades on fractions were always good!). The comment heard more often than any
other was, “Yes, I am learning, and I am doing well in my math class, but when are we going to get back
to really doing mathematics?”



G. Brousseau et al. / Journal of Mathematical Behavior 23 (2004) 1–20 7

Fig. 1. The five stacks of paper.

2. Module 11

2.1. Comparison and measurement of the thicknesses of sheets of paper (construction of the rationals
— measurement by commensuration)

The objective of the first module is to define a new way to compare very small lengths, in fact, the
thicknesses of sheets of paper. Without the possibility of using their habitual technique, which consists of
measuring something with the aid of a smaller unit which one repeats several time, the students “discover”
the means, which consists of repeating many times the thickness to be measured in order to compare the
result with an appreciably larger unit.

2.2. Session 1

2.2.1. Situation: the thickness of a sheet of paper
The set up. On a table at the front of the classroom are 5 stacks (or half-boxes) containing 200 sheets

each of paper (seeFig. 1). All the paper is of the same color and format, but each box contains paper of a
different thickness from the others (e.g., card stock in one, onionskin in another, etc.) The boxes are set up
in a random order and labeled A, B, C, D, E. Some of the differences should be impossible to determine
by touch alone. The teacher needn’t know the exact measurements, since there is no “good measure” to
be discovered.

On another table at the back of the classroom there are 5 more stacks or boxes of the same papers, in a
different order, which will be used in phase 2.

Each group of five students should have two slide calipers (a device for measuring thickness, standard
in French elementary classrooms).

There should be some means of screening the ends of the room from each other — a curtain or a screen
or something similar.

2.2.2. First phase: the search for a code
The teacher divides the class into teams of four or five students.
Presentation of the situation — assignment. “Look at these sheets of paper that I have set up in the

boxes A, B, C, D, E. Within each box all of the sheets have the same thickness, but from one box to
another the thickness may vary. Can you feel the differences?”

Some sheets from each box circulate, so that the students can touch them and compare them.
“How do businesses distinguish between types?” (weight)

1 An earlier version of this section appeared inBrousseau (1997). Both are based on portions ofBrousseau, N. & Brousseau,
G. (1987).
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“You are going to try to invent another method to designate and recognize these different types of paper,
and to distinguish them entirely by their thickness. You are grouped in teams. Each team must try to find
a way of designating the thicknesses of the sheets. As soon as you have found a way, you will try it out
in a communication game. You may experiment with the paper and these rulers.”

Development and remarks. The students almost invariably start by trying to measure a single sheet of
paper in order to obtain an immediate solution to the assignment. This results in comments to the effect
that “It’s way too thin, a sheet has no thickness” or “it’s much less than a millimeter” or “you can’t
measure one sheet !”

At this point there is frequently a moment of disarray or even discouragement for the students. Then
they ask the teacher if they can take a bunch of sheets. Very quickly then they make trial measurements
with 5 sheets, 10 sheets — until they have a thickness sufficient to be measured with a ruler. Then they
set up systems of designation such as:

10 sheets 1 mm
60 sheets 7 mm or
31= 2 mm2. . .

In this phase, the instructor intervenes as little as possible. He makes comments only if he observes that
the students are not following — or have simply forgotten — the assignment. The students are allowed
to move around, get more paper, change papers, etc.

When most of the groups have found a system of designation (and the five children in each group agree
to the system or code) or when time runs out, the teacher proceeds to the next phase: the communication
game — going on even if not every group has found a system.

2.2.3. Second phase: communication game (ca. 15 min)
Presentation of the situation — assignment. “To test the code you just found, you are going to play

a communication game. In the course of the game you will see whether the system you just invented
actually permits you to recognize the type of sheet designated.”

Development. “Students on each team are to separate themselves into two groups: one group of trans-
mitters (two students) and one of receivers (two or three students). All the groups of receivers go to one
side of the curtain, and the groups of transmitters to the other. The transmitters are to choose one of the
types of paper on the original table, which the receivers can’t see, thanks to the curtain. They will send
their receivers a message which should permit the receivers to find the type of paper chosen. The receivers
should use the boxes of paper set out on the second table at the back of the classroom to find the type of
paper chosen by the transmitters.

When the receivers have found the paper, they become transmitters (after verification with the trans-
mitters). Points will be given to the teams whose receivers have correctly found the type of paper chosen
by the transmitters”.

At the beginning of the game, the teacher puts the curtain in place. Then he:

• passes the messages from the transmitters to the receivers,
• receives the responses of the receivers,
• checks whether this response corresponds to the choice of the transmitters and announces the success

or failure to all of the team.

2 This use of the equal sign is incorrect. The teacher will mention it during the discussion time.
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Group number 

First game:  

message sent 

I 

E:  10 = 1 mm
1st game 

I 

1  D 

Reply R:  D success 3rd game 3  A 

Second game: 

message sent E:  21 = 1 mm

Control form

Reply R:  B success 

Third game: 

message sent 

E:  8 = 2 mm

Reply R:  A success 

Message form

Fig. 2. The message card.

All of the messages are written on the same sheet of paper, which we can call the “message card”
(seeFig. 2), which goes back and forth between the transmitters and receivers on the same team. The
team’s number is written on the card. In addition, the transmitters write on another sheet of paper — the
“checking card” — which they keep, the type of paper which they have chosen, so that the teacher can
check for success or failure.

Remark. Clearly, the teacher does not introduce superfluous formalism or vocabulary. If certain teams
have not arrived at any way of sending effective messages, the teacher could send them back to considering
a code together (same assignment as in the first phase). On the other hand, in eight identical trials of this
material, that has never happened. The students have managed to play two or three rounds of the game.

Behaviors. During this game, there are three different strategies commonly observed.

• Some choose a particular number of sheets and always measure that.
• Some choose a particular thickness and count how many sheets it takes to make that.
• Some look randomly at a thickness and a number of sheets.

It is notable that the children prefer to choose the types of sheets of extremes of thickness: the thinnest
or the thickest, to make the job of their partners easier.

2.2.4. Third phase — result of the games and comparison of the codes (20–25 min)
Presentation of the situation and assignment. For this phase, the students go back to their original places

in teams of 5, as for Phase 1. The teacher prepares a table with groups down the side and paper types
across the top and keeps a record of the groups’ messages (and their success) as the reports are made.

Development and remarks. Taking turns, each team sends a “representative” who reads the messages
out loud, explains the code chosen and indicates the result of the game.
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The different messages are compared and discussed by the students. Since they are frequently very
different, the teacher requests that they choose a common code.

Example: 10; 1 mm
VT (for Very Thin)
60; 7 mm

After discussing these, the class chose 10; 1 mm and 60; 7 mm.
When all the messages have been written up, the students inspect the table and make spontaneous

observations like “That doesn’t work!” and “That one’s OK,” etc. These remarks fall into four categories.
1st category
If the sheets are of different types, the same number of sheets should correspond to different thicknesses.

2nd category
If the sheets are of the same type, the same number of sheets should correspond to the same thickness.

3rd category
If there are twice as many sheets, it should be twice as thick.and the students add: “it should be”

4th category
A difference in the number of sheets shouldn’t correspond to the same difference in thickness.
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At the end of the session the teacher proposes to the students that they finish up the table the next day
by collectively verifying the measurements and fixing them if necessary.

Important remark. The use of arrows to indicate operations carried out on the numbers in the process of
finding equivalent pairs has no formal or obligatory character. It is a familiar “manifestation” of the use of
natural operators to which the students are accustomed. The teacher makes no explicit reference, and does
not ask of the students any explicit reference, to the scholastic s-knowledge attached to the c-knowledge
of proportionality. On the contrary, she favors the explanations given by the students to whatever extent
they are understood, but does not at this stage correct the ones which are not understood.

2.2.5. Didactical results
All of the students know:

1. how to measure the thickness of a certain number of sheets of paper (with or without the calipers),
2. how to write the corresponding ordered pair, and
3. how to reject a type of paper which does not correspond to a written notation given to them (if the

difference is large enough).
Most of them are thus able:

4. to analyze a table of measurements, and
5. to point out inconsistencies makingimplicit use of the linear model.

Those who can’t do so seem to have understood those who do.
This c-knowledge is sufficient to undertake (understand the goal and resolve) the situations which

follow, where the need is:
6. to distinguish betweennumbers for countingandnumbers for measuringthe thicknesses, and
7. to use these to carry out the additive operations: addition, repeated addition, subtraction.

The remaining two sections of the first module explore some of the consequences of the discoveries
made in the first session and introduce the standard fraction notation.

2.3. Comparison of thicknesses and equivalent pairs

The first step is a review of the table produced in the previous lesson. At first, students study the table
silently and make individual observations; then they discuss these observations as a class. The table is
corrected either by universal agreement, or, where that agreement doesn’t occur, by a re-measurement.
This process serves to bring out the idea of augmenting the number of sheets counted in order to distinguish
between papers of highly similar thicknesses as well as to exercise further the implicit use of linearity to
determine consistency of representations of the same paper.

Working in (non-competitive) groups, students then fill in any empty slots on the chart by counting
sheets and then comparing their results with those of other groups. As a confirmation and celebration,
they play one more round of the communication game from the first session, discovering that they are now
equipped to handle it even if a couple more types of paper are tossed in. This finishes the second session.

2.3.1. Equivalence classes — rational numbers
In the third session of Module 1, the completed table is once more the center of attention, and the

central topics are equivalence and comparison. After getting the students to focus on the table, the teacher
presents some other pairs of numbers and asks which kind of paper each pair represents, then has the
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students invent other representations, listing all of the accepted ones in the same column on the table.
This provides the occasion for introducing the termequivalent.

The teacher then produces a new table with a single representation for each kind of paper (the class
chooses the representation) and the students are told to figure out the order of the papers, from thinnest
to thickest. Students work individually, then discuss their results and their reasoning. Once an order is
agreed on, the teacher introduces another type of paper (fictional this time) and the students figure out
where in the ordering it belongs.

As a final step, the teacher returns to the table with columns containing equivalent ordered pairs for
each type of paper and introduces the wordfraction and the standard notation for a fraction, pointing
out that this not only makes it possible to designate the entire class of equivalent pairs, but also gives a
designation for the thickness of a single sheet of paper.

The lesson finishes with some opportunities for the students to practice the use of this new notation
and its connection with papers.

3. Module 2

The next five lessons constitute the second module, which deals with operations in the context of the
sheets of paper.

3.1. The thickness of cardboard

By way of motivation for introducing operations, the teacher asks students to consider individually
and then discuss together the issue of whether the “rational thicknesses” they invented in the previous
lessons are numbers. In general the conclusion is that if you have 8/100 the 8 and the 100 are numbers,
but 8/100 is two numbers. The teacher points out that we might be able to regard them as numbers if we
could do the same things with them that we do with numbers, and asks what those things are. Responses
generally include “count objects with them,” “put them in order” and “do operations like addition and
multiplication with them.” Quietly slipping the first of these under the carpet, the teacher presents the
suggestion that to decide whether these are numbers they need to try to do some operations with them.

The first project is to make “cardboard” by sticking together a sheet of type A paper (thickness 10/50)
and a sheet of type B paper (thickness 40/100). “How thick do you think the resulting pages will be?”
Students agree that that thickness will be 10/50+ 40/100, and most agree that the result will be 50/150,
though a few have some doubts about that. After a short discussion, whatever its outcome, they set out to
verify the results. The teacher has them count out 50 A sheets and 100 B sheets and begins gluing them
in pairs, continuing until students realize that a problem is developing and stop the process. Offered an
opportunity to correct their proposed solutions, most go immediately to the correct procedure. Most are,
in fact, so confident that they declare verification unnecessary, but the teacher does it for the sake of the
others. The stack may measure 59 or 61 mm, but this they have already learned to deal with. They then
practice by adding some other pairs and triples of fractions, and observe that they are now capable of
adding any fractions they want.

The remarks on this lesson have a wide enough application to be worth reproducing in their entirety:
The choice of thickness to add could be anything, but the manipulations depend on the numbers. For

example, one could propose 10/50+ 39/100. This would prevent the children from mixing two boxes of
paper, but not from envisaging it and saying that it is impossible.
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To offer at this particular moment the sum of two fractions with like denominators would be a didactical
error. Certain teachers have tried it with the hope of obtaining an immediate success for everyone. They
wanted to avoid having students have the double difficulty of having to decide to reduce to the same
number of sheets and doing it in such a way that the sum of the numerators, that is, the thicknesses, would
make sense. Doing so gives the children justifications which are easy to formulate and learn, which
facilitates the formal learning of the sum of two fractions (we know how to add two fractions whose
denominator is the same, so what is left for us to do in the general case is to reduce it to having the same
denominators before performing this addition).

But this method gives inferior results. Only the students capable of comprehending simultaneously
and immediately both the general case and the reasons for the apparent ease of the particular cases were
able to avoid difficulties in developing a correct concept of the sum of two fractions. They were then
able to reason directly or make rapid mental calculations (for example, 15(3/100+ 7/15)). The rest were
distracted from the pertinent questions (such as why the denominators can’t be added) and the efforts
necessary to conceive of and validate the concepts by the apparent ease of carrying out the action. They
were invited to learn a method in two stages, with the possibility of some false justifications for the first
stage (if I add 3 hundredths and 5 hundredths that makes 8 hundredths, just the way 3 chairs and 5 chairs
make 8 chairs). They firstlearn that it is possible to add fractions which have the same denominator, and
how to do it. They also learn that it is not to be done, or can’t be done, if the denominators are different
(you can’t add cabbages and wolves!). Then theylearn to solve the other cases by turning them into
the first case, not because of the meaning of this transformation, but because it works. The economy of
this process is strictly an illusion, because there is no representation to support the memorization. It will
furthermore require a large number of formal exercises to make the process stick and to make it possible
to distinguish it from other calculations. Some students never do get it figured out.

Using different denominators, on the other hand, all the children are able to come up with the concept and
solidify their representations with experimentation and verification in a way that makes any formal teach-
ing unnecessary. A delay in algorithmisation can at times be of considerable benefit to conceptualization.

3.2. What should we know now?

The next session comes in two sections which look similar but have quite different functions. Each
contains a series of problems. Those in the first section are designed to let the children make use of what
they have figured out in the first session, both in order to solidify that knowledge and to extend the range
of mathematical activities it can be used for. The first problems are strictly review. The teacher writes
up several pairs or trios of fractions to add, walks the class through the first one, speaking in terms of
thicknesses of the two papers, and turns them loose on the rest. The next problem is to find the thickness
of a sheet obtained by gluing together one of thickness 4/25, one of 18/100 and one of 7/50. Following
that, they work on 8/45+ 5/30. The last in this set returns to asking the question in terms of the sheets
themselves: “A woodworker is making a collage for a piece of furniture. He glues together three pieces of
wood of different thicknesses: 40/50 mm, 5/25 mm and 6/10 mm. List these woods in order of thickness,
then say how thick the resulting sheet will be.”

In each case, the problem or problems are to be solved individually, then presented to the class for
discussion and validation. Included in the discussion is the possibility of having several correct routes to
the same solution.

Remarks at the end of this section of the session emphasize its status as well as how it is to be carried out.
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The object of this phase is to permit the children to make use of the procedures they discovered in the
previous session, to generalize them and make them more efficient. That is, to let them evolve.

This session is thus neither a drill nor an assessment. Also the teacher is not to pass judgment on the
value of the methods used, nor at any moment to say which solution is correct.

For each exercise, she organizes and facilitates the following process:

• Individual effort
• Collection of results
• Comparison of methods
• Discussion andvalidation by the students

A method is accepted if it gives a correct solution (in that case an “acknowledged” and correct method),
rejected if not. Among the methods which have been accepted, remarks on length or facility of execution,
which the teacher solicits, do not become judgments of value which the child can confuse with judgments
of validity. On the contrary, the teacher sees to it that the child takes part in the debate, has a result to
offer, is able to discuss his methods and state his position relative to his own knowledge.

The immediate collective correction and rapid discussion of the problems is thus indispensable. It
enables the teacher and everyone else to know the stage of assimilation of each child and what she is
having difficulty with. The whole class can take part in each student’s effort.

The second phase of the session is a set of individual exercises for drill and assessment. It has a classic
didactical form: written questions to be answered individually and turned in for correction (outside of
class) by the teacher. The problems represent each of the levels of operation with fractions thus far obtained
— ordering of fractions with unlike denominators, addition of fractions with denominators which are
like, or one of which is a factor of another, or which require a common multiple.

This frequently results in some rather poor papers, especially since part of its function is to accustom stu-
dents to the (as yet) unfamiliar task of producing mathematics for which they have no immediate feedback.

3.3. The difference of two thicknesses

The next session proceeds to the subtraction of two thicknesses. It requires more types of paper, with
thickness ranging up to that of heavy card stock, but only one sheet of each of them (for demonstration
purposes).

The lesson starts with a rapid discussion of the problems handed in the day before. Only the ones where
errors were made need be mentioned, and the teacher needs to restrain herself firmly from letting the
discussion of the common denominator in the last problem lead to one of the methods taking on the status
of Official Method.

The next stage begins with a swift return to the initial situations: what does 8/50 mean? (the thickness
of a sheet of paper such that you have to have a stack of 50 of them to measure 8 mm). And what does
8/50+6/100 mean? (the thickness of a sheet made by gluing together an 8/50 thick sheet and a 3/50 thick
sheet).

Remark. It is often useful to insert a reminder like that of preceding situations, for two essential reasons:

• In the first place to allow children who have some difficulties or are little slow to be more thoroughly
involved in the present lesson.
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• Furthermore to allow children who have been absent to understand what happened in the previous
lessons and be able to participate in the following one.

The teacher then writes on the board

8/50− 6/100

and asks the class what that might mean and how to carry out what it says to do.
This launches a discussion which starts with a predictable set of misinterpretations and arrives fairly

swiftly at the realization that it is the card stock which is the very thick one, and it is made up of the thin
one glued to one of unknown thickness. With a drawing on the board to represent this and the equation
6/100+ = 8/50 beside it, the students are turned loose to work individually on finding, “by trial and
error or calculation, for example” just what that thickness might be, and how to verify their results.

The resulting discussion includes many variations, a number of them correct. Students who have not
succeeded give the results they got and say whether they are too large or too small.

Next the class solves (and interprets at the same time) 4/15− 1/15.
The problem 4/50− 3/40 is launched by getting the class to state the need for a common denominator,

then left for individual work. Then for a final problem, worked individually, they take on 12/8− 2/5.

3.4. Thickness of a fat piece of cardboard: product of a rational number and a whole number

This lesson requires 10 sheets each of four highly distinguishable types of paper, each with a known
thickness. Students are set up in groups and each group is assigned a single type of paper. They are to
determine the thickness of a sheet made up by gluing 3 sheets of their own paper together, then 5 sheets,
then 20, 100 and 120. Each group figures out all of their own, then writes the results on the blackboard.
Each group then checks one other group’s results and either signifies agreement or supplies an alternate
answer. Enough students are solidly in control of the material so that the ensuing discussion produces a
general agreement, and the table of values can be successfully corrected.

The final phase of this session is a comparison of the thickness of the various cardboards with 1 mm.
The teacher chooses one of the thicknesses in the table, for instance 57/35, and asks the students whether
they have any idea how thick that card really is. Is it thicker or thinner than 1 mm, or equal to it?

In groups of two or three, students set to work. A lot of them take out their rulers to have a more precise
idea of a millimeter. Some work out elaborate approximations, many point out that 35 sheets would make
up exactly a millimeter, so 57 of them must be thicker than that (“but not 2 mm thick!”) and a few are
completely bewildered. After a certain amount of discussion of this particular thickness, the assignment
becomes: “Look at the table and see what else you can say about the thicknesses.” This gives rise to a
lively discussion and a lot of joy in discovery.

Remark. This last part proceeds informally and spontaneously for the pleasure of exchanging and
discussing ideas without any pressure from the teacher. The teacher listens to the remarks and says
nothing unless the students ask him to clarify or explain something.

It is essential to insist on the fact that the teacher has not set out any contract of learning or acquisition.
Some children may take the analysis of the situation a huge distance and make subtle, profound remarks.
Others have intuitions which they are unable to communicate. These “discoveries” meander a bit, but it
doesn’t matter — the jubilation of the ones who have found something wins over the ones who listen,
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approve, look at them in incomprehension or contradict them. Anyone can advance a notion or even say
something “dumb.”

The teacher restricts himself to making sure people take turns, without interfering with the order or the
choice of speakers, in order to maintain the group’s pleasure in this game. To do that, he has to register
his own pleasure, but make sure that his pleasure is not the children’s goal.

He takes note of errors and difficulties without trying to correct them right away. If no one notices
them, then in general an explanation at that point would do no good. The teacher has to consider it as an
obstacle which needs to be taken up later in a prepared didactical activity. But frequently after a moment
a student notices the error and the debate revives. Obviously, it has to be clear that the teacher’s silence
doesn’t indicate either acceptance or rejection. And it’s not enough tosayit — he has todo it.

3.5. Calculation of the thickness of one sheet: division of a rational number by a whole number

First the students remind themselves how to multiply by figuring the results of gluing together 5 sheets
each 3/9 of a millimeter thick. Then they are presented with: “I’ve glued 9 equally thick sheets of paper
together and the resulting card is 18/7 mm thick. What could we ask about it? (the thickness of each
sheet). Can you figure out the thickness? If so, write it in your notebook.”

Individual work very swiftly produces the correct result and reasoning. Also the idea of writing the
problem as 18/7÷ 9. This requires a little delicacy in handling, since they only know for sure that
division is defined between whole numbers, but the idea certainly needs confirming, especially after
students observe that the operation here can be successfully inverted with a multiplication by 9. The
major point to emphasize is that it is the whole fraction (the thickness) which is to be divided, not just the
numerator or denominator. This becomes clearer with the next situation: “Now I’ve glued 9 other equally
thick sheets together and made a new card. This one is 12/7 mm thick. Can you find the thickness of each
of the sheets I glued together?”

Students work in groups of 2 or 3, then share their results. Since two of the most accessible solutions
are multiplication of the original fraction by 3/3 and 9/9, the resulting discussion is likely to include a
brief furor until somebody observes the equivalence of 12/63 and 4/21.

The final activity is to work individually on (13/5)÷ 9, first giving it a meaning, then calculating the
result. Students tend to bypass the former and work on the latter, which means the teacher has to lean
on them to write the sentence in question. After 5 min or so, the teacher stops the work and sends one
or more students to the board to write up their solutions. By and large they multiply by 9/9 and then
divide the numerator by 9. Only occasionally does somebody observe that the denominator has just been
multiplied by 9, and the level of generality of this observation remains undiscovered.

3.6. Assessment

The module finishes with a set of problems for a summative evaluation.

4. Module 3

The third module extends the students’ thinking beyond sheets of paper, with the objective of giving
them enough similar experiences to make generalization plausible and legitimate.
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4.1. Fractional measure of weight, capacity and length

The lesson requires a considerable collection of materials:

8. To measure weight, a balance beam and five different categories of nails,
9. To measure capacity, five small glasses of different sizes, one colored glass to serve as a unit and two

(largish) test tubes, one of them with a sticker on it so that they can be distinguished, and
10 To measure length, strips of construction paper of equal width but different lengths, a single strip of

gray cardboard (same width, yet another length) to serve as the unit and a big piece of poster paper
to work on.

The glasses and the strip lengths need to be chosen in such a way that none is an integer multiple or
divisor of the unit. Seven nails of one sort have the same mass (balance on a scale) as eleven of another.
If the first serves as a unit, the second weighs 7/11 unit. The contents of three “unit” glasses emptied into
one tube comes to the same height as the contents of five glasses A emptied into the matched tube. Glass
A holds 3/5 of a unit.

The class is divided into groups, each responsible for only one category of measurement. Each group
proceeds as in the first session of Module 1 — decides as a group on a “code” to denote a particular type
of nail or a particular glass or paper strip. They then repeat the communication game (choreographed this
time in such a way that there is no need for additional sets of nails, etc.!) The codes used in the game
are listed on the board (together with their success or failure) and each is explained by the group that
invented it.

The class concludes that fractions can be used to measure weight, capacity, etc. The session finishes
with some practice questions, e.g., “What does it mean that this glass has a capacity of 3/4 of the unit?,”
“If I stick together a nail weighing 17/25 of the unit and one weighing 40/75 of the unit, how much will
the resulting object weigh?”

4.2. Construction of fractional lengths (a return to the classical conception)

This session is one which builds a clear (albeit temporary) bridge between this lesson sequence and the
more familiar ones. We have therefore chosen to reproduce it with minor alterations rather than summarize
it.

In the previous session, the children attached numbers to sizes (they designated a measurement). In
this session, they will construct objects whose measurement in terms of a unit is given (they will realize
a size). We deal only with lengths for material reasons.

This construction will suggest a technique based on a new representation of the notion of fraction.
To represent a strip of length 5/4 of the unit, the representation already introduced permits several

methods. Either one takes a random length, repeats it 4 times, compares the result with the length of 5
units and then corrects by trial and error, or one repeats the unit 5 times and divides this length in 4. This
method requires the student already to have a fairly flexible ability to use the definition given.

There is a third, more efficient method if one wishes to construct a number of strips with denominator
4: divide the unit in four and repeat the resulting piece five times. This is the method we are going to try
to induce, without hoping that the children will show or say that it is equivalent to the other.
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4.2.1. Materials
Note: all the strips are the same width, around 2 cm, and are made of construction paper.

• 12 unit strips (gray) 20 cm;
• 4 identical sets of 6 strips (green) whose lengths are respectively

5 cm (1/4 unit), 10 cm (1/2 or 2/4 unit), 15 cm (3/4 unit), 30 cm (3/2 or 6/4 unit), 35 cm (7/4 unit), and
45 cm (9/4 unit);

• 4 identical sets of 6 strips (blue) whose lengths are respectively
• 4 cm (1/5 unit), 8 cm (2/5 unit), 16 cm (4/5 unit), 24 cm (6/5 unit), 28 cm (7/5 unit), and 36 cm (9/5

unit);
• 4 identical sets of 6 strips (yellow) whose lengths are respectively

2.5 cm (1/8 unit), 5 cm (2/8 unit), 12.5 cm (5/8 unit), 17.5 cm (7/8 unit), 22.5 cm (9/8 unit), 27.5 cm
(11/8 unit);

• scissors;
• strips of poster paper 50 cm long and 5 cm wide; and
• long strips of construction paper, all 2 cm wide.

4.2.2. Phase 1: communication game
The class is divided into 12 groups of 2 or 3 children. Each group has 1 unit strip and 1 set of 6 strips

of the same color.
Assignment. “Each group is to find fractions representing the lengths of their six colored strips using

the (gray) unit strip and write all of them on the same message pad. So each group starts off as a
message-sender.

Each group will receive a message from another group. At that point you all become message-receivers.
You are to cut strips of white paper in the six lengths indicated on your message.

Next, each receiver-group will meet with the group that sent the message they decoded and verify
together (by superposition) that the white paper strips are indeed identical to the ones used to produce
the message. If they are identical, the message-senders are winners.

If you need extra materials (paper, scissors,. . . ) they are available”.
Development: measurement phase. Children may use the habitual technique represented inFig. 3a.
Some may notice that of the six strips, five are multiples of the smallest. That means they need only

measure that one. Further, when they repeat that little one they can observe that it fits an exact number of
times into the unit. They can then use it as an intermediate unit (seeFig. 3b).

Development: communication phase. For convenience, it is the teacher who passes the messages. Groups
need to receive messages from other groups whose strips are of a different color (and hence a different
set of lengths). Strips of white paper and scissors are given out at the same time as the message.Even if
they started out measuring other lengths, this choice of strip-lengths encourages useful observations on
the part of the ones who can use them to save time.

4.2.3. Phase 2: report on the results
Students come to the board to present their messages and indicate how they figured out lengths and

how they made their constructions. The teacher resists giving personal judgments on the methods used.
She restricts herself to making sure the children give clear descriptions of their methods and results.
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(a) 

 unit 

strip X

X is 3/5 unit long 

(b) 

Unit strip 

Strip A A measures 1/4 unit 

Strip B B measures 3 x 1/4 = 3/4 unit  

Strip C C measures 7 x 1/4 = 7/4 unit 

Etc. 

Fig. 3. Representing (a) 3/5, and (b) 1/4, 3/4 and 7/4.

4.3. Comparison of strategies

This session begins with a follow-up discussion in which by use of the solutions written on the board by
the children and a process of observations (by students) and (student-proposed) verifications the teacher
guides the class to a conviction that this method of “intermediate units” provides a general solution.

The follow-up is a pair of problems to be worked on individually and then discussed.

• A cloth merchant sells first half of a piece of velvet cloth and then a quarter of the same piece. What
fraction of the piece is left at the end of the day? The piece was originally 24 m long. What is the length
of the remaining piece?

• Claude has a bag of marbles. In the course of a game he loses first 2/3 of his marbles and then another
2/9 of his marbles. What fraction of his marbles has he lost? What fraction of his marbles does he still
have? At the beginning of the game, he had 63 marbles in his bag. How many does he have at the end
of the game?

The second problem is very difficult for them, both because it is not recognizable as being any of the
meanings of fraction they have previously encountered and because they have trouble understanding that
the unit here is the bag of marbles. They need help on this one.

Is this difficulty an indication that ratios between discrete quantities are genuinely more complex for
the students, as we had deduced from our preparatory studies of ergonomy and of various psychological
works, or is it entirely due to the didactical option which caused us to choose to introduce ratios as a
means of measuring “continuous” quantities? We think that ratios are indispensable in the measurement
of continuous quantities and that their application in discrete measurements (with natural numbers) is a
reification3.

3 By way of clarification of that comment: a classical order for introducing ratios consists: (1) of showing fractions metaphor-
ically: cakes cut in four (never in seven), of which one takes three parts; (2) of using this “definition” to carry out problems of
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In the process of which the three modules summarized here are a part, it wasn’t until the end of the
students’ work on embedding the natural numbers and decimal in the rationals (Modules 4–7) that they
had available the notion of ratio in discrete measurements as well as continuous ones.

5. Conclusion

The classic pattern for lessons on fractions is almost invariably the following: just as soon as the formal
manipulation of a concept or operation or use has been introduced and explained in some particular
situation there is a rush to present the students with all the other formally similar uses as “applications” or
even “re-labeling” of the same idea. Thus as soon asa division has been introduced in the natural whole
numbers it becomes for the teachersthedivision, no matter what the circumstances and the structures are
in which “it” is being used, and even if its properties have been drastically modified without the students’
knowledge.

The same could happen here. The few lessons which we have just presented would make it possible to
handle almost every formal operation on fractions. To be sure, they are a bit different from the standard
lessons, but the knowledge they produce is pretty comparable. One could thus imagine that the course could
stop there and that it would suffice for exploring the entire universe of classic problems on fractions and
rational numbers. These lessons could be followed up by the classical introduction of decimal numbers,
which consists of extending the number system with the aid of decimal fractions, but only in order
to express measures less than unity. But it seems to us that the didactical procedure of “analogical” or
“metaphoric” extension of the use of knowledge is unworthy of mathematics. Is it really necessary to cheat
the students on this point? Is it really necessary to make them carry the responsibility of not understanding
as identical a bunch of objects which really are very different, but which we wish to confuse? Is it really
necessary to declare that what is simply familiar to us should be logically clear to them?

We didn’t think so. And that is why we wanted to look into each different mathematical aspect of the
uses of fractions and rationals made in the required curriculum, treating each one as a specific problem.
Mathematics cannot be reduced to a sequence of algorithms and definitions to be “applied.” Mathematics
consists of answers to questions, of opportunities to pose new questions and an art of arranging those
questions and those answers so as to support the use and learning of them.

This is what we hope to demonstrate in articles to appear as sequels to this one.
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