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> context • the position of pure and applied mathematics in the epistemic conflict between realism and relativism. 
> problem • To investigate the change in the status of mathematical knowledge over historical time: specifically, the 
shift from a realist epistemology to a relativist epistemology. > method • Two examples are discussed: geometry and 
number theory. It is demonstrated how the initially realist epistemic framework – with mathematics situated in a 
platonic ideal reality from where it governs our physical world – became untenable, with the advent of non-Euclidean 
geometry and the increasing abstraction of the number concept. > Results • Radical constructivism offers an alterna-
tive relativist epistemology, where mathematical knowledge is constructed by the individual knower in a context of 
an axiomatic base and subject items chosen at her discretion, for the purpose of modelling some part of her personal 
experiential world. Thus it can be expedient to view the practice of mathematics as a game, played by mathematicians 
according to agreed-upon rules. > constructivist content • The role played by constructivism in the formulation of 
mathematics is discussed. This is illustrated by the historical transition from a classical (platonic) view of mathemat-
ics, as having an objective existence of its own in the “realm of ideal forms,” to the now widely accepted modern view 
where one has a wide freedom to construct mathematical theories to model various parts of one’s experiential world. 
> Key words • Knowledge construction, noncognitive knowledge, realism, relativism, platonic world, physical world, 
non-Euclidean geometry.

1. What kind 
of constructivism?
The term “constructivism” has become 

an important referent for the philosophy of 
learning and knowledge. in the literature, 
one frequently finds references to “construc-
tivist learning” and “constructivist teach-
ing,” and also to such notions as “a construc-
tivist education” and “a constructivist view 
of knowledge,” etc. However, when scanning 
the literature in this field, one quickly dis-
covers that there are a great number of dif-
ferent constructivisms around – i.e., many 
disparate uses of the word, signalling the 
difference in approach taken by the authors 
involved. Thus, for instance, one author 
(Geelan 1997) lists some twenty different 
forms that can be found in the literature. 
These forms are then qualified by prefix la-
bels such as: cognitive, contextual, critical, 
dialectical, empirical, humanistic, informa-
tion-processing, methodological, moderate, 
Piagetian, post-epistemological, pragmatic, 
radical, rational, realist, social, sociocultur-
al, sociohistorical, trivial. 

This diversity and its implications are 
discussed in some detail elsewhere (Quale 
2008). From one point of view, it serves to 

demonstrate the power and fertility of the 
notion of constructivism. But it also shows 
very clearly the wide divergence of the re-
search approaches being adopted in this 
field. Clearly, when engaging in a discussion 
involving constructivism, it is necessary to 
state up front which particular kind of con-
structivist theory one is talking about. 

The theory that will be discussed in 
this paper is known as radical constructiv-
ism (RC), which was originally proposed, 
and has been extensively developed and 
discussed, by Ernst von Glasersfeld (1981, 
1984, 1989, 1991, 1995, 2000). it is a fact that 
this theory has become quite controversial, 
creating considerable discussion and heated 
argument in the academic discourse that ad-
dresses the philosophy of science.

Glasersfeld (1995) defines radical con-
structivism in the form of two basic proposi-
tions, which may be summarized as follows: 
 > RC1 – Knowledge is not passively re-

ceived, but is actively constructed by the 
knower.

 > RC2 – The function of this process of 
construction is adaptive, and serves the 
knower’s organisation of her own expe-
riential world, not the discovery of an 
objective reality.

We note that proposition RC1 would 
be acceptable to any theory that purports 
to be “constructivist”; taken by itself, this 
proposition is often said to define a theory 
of trivial constructivism. (This appellation 
may be somewhat unfortunate; the idea that 
knowledge of any kind is constructed by the 
knower, and not “downloaded” from the 
environment in some objective sense, is far 
from trivial. a better name for RC1 would 
perhaps be “minimal constructivism,” since 
it expresses the one common element that 
is shared by all constructivist theories. still, 
the name “trivial constructivism” seems to 
be established in the literature, so i will stay 
with it.) 

on the other hand, RC2 is specific to 
radical constructivism. This is the proposi-
tion that has made the theory controversial: 
charges have been made by critics that it 
“denies reality,” or at least rejects the possi-
bility of attaining a true description of the 
real world! such issues have been discussed 
at length elsewhere (Quale 2008); here, we 
will just state some conclusions of this dis-
cussion, with relevance for the theme of the 
present paper. 

First, we remark that proposition RC2 
highlights the distinction made in this the-
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ory between epistemology (dealing with the 
nature and validation of knowledge) and on-
tology (dealing with existence, or being: in 
this case, the question of whether there exists 
an objective reality, which is independent of 
our perception). and here it is important to 
note that radical constructivism does not 
assert that such a reality does not exist. on 
the contrary, it accepts as a given that we all 
inhabit and share a common environment, 
and that we can interact with each other in 
this environment. Thus the theory takes a 
firm stand against the position of solipsism: 
the assumption that any individual knower 
must resort to inventing her own reality, in 
whatever way she fancies. For the individual 
knower, such a solipsist stance may well be 
logically irrefutable – i.e., she can never have 
a 100% guarantee that the world she per-
ceives around her is not just a hallucination 
in her mind. But it is also existentially irrel-
evant for her – i.e., she will choose to disre-
gard this possibility in the way she conducts 
her life. it is in our nature as human beings 
to assume that the world that each of us ex-
periences is in fact there for us to experience 
– indeed, to call this assumption seriously 
into question would generally be considered 
a sign of mental aberration! Thus, we reject 
the “solipsist fallacy.” 

However, this does not mean that we 
have to retreat to the assumption of an ob-
jective reality. Radical constructivism asserts 
that there can be, for any individual person, 
only one meaningful notion of the term “re-
ality:” namely, the totality of everything that 
can be experienced or imagined by that per-
son – “the world,” in the terminology of the 
philosopher Ludwig Wittgenstein.1 in fact, 
radical constructivists will often refer to this 
totality as the knower’s experiential world, 
avoiding the use of the term “reality” because 
of its unfortunate connotations of “objectiv-
ity.” it is this experiential world that every 
individual knower is living in, and continu-
ally adapting to through the complex and 
life-long process of learning. or, put another 
way: the experiential world is the only avail-
able source of any knowledge that a knower 
will ever have; and such knowledge can then 

1 | The famous first sentence of Wittgen-
stein’s major philosophical treatise, Tractatus 
Logico-Philosophicus, first published in German 
in 1921, reads: “The world is all that is the case.”

only be acquired (learnt) by her through a 
process of personal construction, based on 
individual perception and reflection. (For 
later reference, we note here that this con-
ception of an experiential world includes 
not only the knower’s perception of external 
sense-data and reflection on these but also 
her knowledge of mental constructs that are 
not based on external sensual stimuli – for 
instance, elements of mathematical theory.)

Thus, radical constructivism does not 
preclude the possibility of an objective real-
ity, existing independently of all knowers. 
But it does assert that this issue is a matter 
of preferred belief for the individual knower, 
and as such not within the scope of cognitive 
argumentation.2 in other words, it is in prin-
ciple not possible to obtain cognitive (or, as 
some would put it, rational) knowledge of 
such an entity; whatever knowledge we can 
obtain of it will by definition be noncogni-
tive. This distinction between cognitive and 
noncognitive knowledge is important in 
the discussion that follows below. However, 
it should be noted that the term “cognitive 
knowledge” is used with somewhat different 
meanings in the literature; in the present pa-
per, it may be described as “intersubjective 
knowledge, derived from rules of reasoning, 
that can be shared and agreed on by indi-
vidual knowers.” (i am grateful to an anony-
mous reviewer for indicating the need to 
clarify this point.) 

now, we note that any one knower may, 
for all practical purposes, regard her own 
experiential world as being “real for her”: 
she can gain both cognitive and noncogni-
tive knowledge of it through the process of 
learning, which is a most diverse activity 
of perception and reflection. Thus she can, 
if she is so inclined, choose to think of the 
totality of her experiences – or, equivalently, 
the totality of knowledge that she has con-
structed at any one time – as constituting 
“reality for her,” and claim that this knowl-
edge tells her something about the real 
world that she inhabits. But note that this is 
a subjective notion of reality, not an objective 
reality as envisioned above; it is, in fact, just 

2 | By this we mean: a mode of reasoning that 
does not rely on personal preferences, likes/dis-
likes, or beliefs. The oEd defines cognition as “…
knowing, perceiving, or conceiving, as an act or 
faculty distinct from emotion and volition.”

a synonym for what we have defined as the 
knower’s experiential world. 

This has consequences for the episte-
mology of radical constructivism – in par-
ticular, its conception of the notions of truth 
and knowledge sharing. Radical constructiv-
ism does not allow for knowledge to be val-
idly described by such absolute dichotomies 
as “right/wrong” or “correct/incorrect” or 
“true/false.” (This holds even for mathemati-
cal propositions, as will be discussed below.) 
of course, any particular piece of knowledge 
that has been constructed by one individual 
person may be recorded – say, in written 
form – and made accessible to other individ-
uals. But they must then in turn construct 
their own knowledge, from their percep-
tion and processing of this recorded infor-
mation. and this of course raises the issue 
of whether it is possible for them to share 
knowledge, in a meaningful sense. accord-
ing to radical constructivism, knowledge is 
in essence a private affair: it resides in the 
mind of some individual knower. so, how 
can one ensure that two individuals possess 
the same knowledge about some particular 
topic – indeed, what does “the same” mean 
here? The answer is that this is possible for 
cognitive knowledge because this is based on 
certain rules of argumentation, which can 
be agreed on by the participants. But it is not 
possible for knowledge that is noncognitive: 
in this case, there are no such rules that can 
be agreed on! 

Let us consider some examples: i can 
show someone (assuming she is interest-
ed) how to solve quadratic equations; this 
knowledge is derived from mutually agreed 
rules of mathematical deduction and logi-
cal inference. similarly, i can demonstrate to 
her how newton’s law of universal gravita-
tion operates and how it can explain many 
observable physical phenomena in the solar 
system; this is done by using the same rules 
of deduction and inference, together with 
physical data obtained through mutually 
agreed procedures of observation and mea-
surement. in both these cases (taken from 
mathematics and natural science), the result-
ing knowledge is cognitive: it derives from 
rules that we both agree on, and it can there-
fore be regarded as shared between us. But 
in contrast to this, consider the following in-
stances of personal knowledge, as possessed 
by some individual knower X: she likes 
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Beethoven’s piano concertos; she prefers cof-
fee to tea; she is fascinated by the intuition-
ist approach in mathematics; she believes in 
God. all these are examples of noncognitive 
knowledge, which cannot be communicated. 
Thus X can tell me that she believes in God, 
but she cannot communicate to me the qual-
ity of this belief (how it “feels” for her to be 
a believer), nor can she demonstrate to me 
why i too should believe, using rules that we 
both can agree on. so, the upshot of all this 
is: cognitive knowledge can be shared, non-
cognitive knowledge cannot.

now, we take a look at the opposing 
epistemic positions of realism and relativ-
ism. For our present purposes, these may be 
described in simple terms as follows: 

Realism 
asserts that there exists an objective real-

ity, which is independent of human observ-
ers, and that it is possible through rational 
reasoning to attain true (correct) knowledge 
of this reality. in other words, it is in principle 
possible to discover an objectively true repre-
sentation of at least some part of it – for in-
stance, in the context of natural science it can 
open up the possibility of finding the Final 
Theory of physics (see, e.g., Weinberg 1993). 

This conception of the notion of truth is 
often referred to in the literature as truth by 
correspondence: a proposition is true if and 
only if it corresponds to (i.e., gives a correct 
description of) the real world – in a logical 
formulation: the proposition p is true, iff p. 
This is often supplemented by the assump-
tion that true knowledge must be based on 
a criterion of “justified true belief ”: it is not 
enough that someone claims to know some-
thing – there must also be some demonstra-
ble justification for believing that this knowl-
edge is in fact true. 

Relativism
asserts that it is not rationally mean-

ingful to speak of such an objective reality. 
Any piece of knowledge is (and must be) 
constructed by some individual person, for 
some specific purpose, and in some particu-
lar context; and its “truth-value” can then 
only be determined relative to this purpose 
and context. Moreover, the choice of this 
purpose and context is then solely up to the 
constructing individual; there is no prede-
termined objectively correct way of doing it. 

(This is essentially a paraphrasing of the de-
fining proposition RC2 of radical construc-
tivism.) 

This conception of truth is often re-
ferred to as truth-by-context. it states that a 
proposition cannot be legitimately said to be 
true in itself – that is to say, in an objective 
sense – but only true relative to some given 
context: a conceptual scheme, a social group 
or practice, a person, a religion, an ethical 
code, etc. in mathematics, this conceptual 
scheme would then consist of a set of axi-
oms – we will return to this below.

Clearly, radical constructivism offers 
a relativist epistemology. and note that 
“offers” is the operative word here. Radi-
cal constructivism does not claim that its 
epistemology is the objectively “true way” 
to address issues of knowledge: its genera-
tion, scope, and validation. indeed, such an 
assertion would contradict and undermine 
the theory’s basic tenet that the truth-value 
of any proposition is relative! it would be 
more accurate to say that radical construc-
tivism offers itself as an epistemic approach 
to any individual knower who may find that 
this theory resonates well with her own way 
of thinking about such matters. and, if she 
should then decide to accept this offer (i.e., 
adopt the epistemology of radical construc-
tivism), this would be a choice of personal 
ontology on her part – she would embrace 
this theory as describing her world in a way 
that fits in well with her personal perception 
and comprehension of it. But again, this will 
be part of her store of noncognitive knowl-
edge; and hence she will not be able to share 
it with another person, in the sense defined 
above. she can, of course, tell the other how 
she experiences this knowledge, assuming 
that they both speak the same language. But 
this is a matter of personal belief or prefer-
ence on her part, and she has no means of 
demonstrating to the other that she should 
believe or prefer it too.

2. mathematics

We now ask: how do the various disci-
plines of mathematics fit into the epistemic 
framework of radical constructivism? The 
short answer is that they fit quite nicely: a 
mathematical theory is indeed a prime ex-
ample of a theoretical model, constructed 

by its practitioners (mathematicians). The 
model may then be designed to describe 
and explore, in mathematical terms, some 
part of the natural world; this would then 
identify it as belonging to the realm of ap-
plied mathematics (for instance, theoretical 
physics). on the other hand, it need not be 
associated with any practical application. its 
purpose may be to investigate the logical im-
plications of some particular abstract theo-
retical structure, without relating the results 
to any particular physical phenomena; this 
kind of activity is generally thought of as 
pure mathematics. 

at a second glance, however, the situa-
tion is not quite that simple. Questions arise, 
such as: are there objectively true math-
ematical propositions – i.e., propositions 
that are “true in themselves,” independently 
of any chosen theoretical model? if so, how 
would this constrict the permissible choice 
of mathematical model – surely, a theory 
from which one could deduce a contradic-
tion to a true proposition cannot be trusted? 
Where is mathematics situated in the divi-
sion between realism and relativism, as this 
is described above? 

to illuminate such issues, it is instruc-
tive to look at how mathematics developed. 
The following is just a brief (and necessarily 
simplified) historical run-through, to illus-
trate the connections with constructivism.

2.1 the axiomatic approach
The origin of mathematical thinking 

would seem, as far as can be known to-
day, to have its roots in concrete practical 
needs. as human civilisation developed in 
early times, it became necessary to handle 
a quantitative treatment of various items. 
Thus, for instance, we may consider the 
acts of counting and subdivision (for in-
stance, adding-up and weighing of goods, 
for trade), leading on to the conception of 
integers and fractions, which form the basis 
of arithmetic, the art of using numbers and 
computations. other such deliberations ad-
dressed the topic of geometry – dealing with 
notions of position, angle, length, area, and 
volume – which was clearly also of consider-
able commercial interest (e.g., for the buy-
ing and selling of plots of land). Gradually 
a set of concepts and computational proce-
dures emerged and developed. it should be 
noted that this “proto-mathematics” was at 
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the start a very practical enterprise: a set of 
concrete procedures serving the needs of 
trade, production, and administration.

as experience with the concepts of 
mathematics accumulated, many rules 
and regularities emerged. it was, for in-
stance, noticed early on that the ratio of 
the circumference of a circle to its diameter 
seemed always to have the same value (a 
number slightly larger than three, conven-
tionally denoted today by the symbol p), 
and that the interior angle sum of a trian-
gle appeared always to be the same (a value 
conventionally set to 180°). and the con-
templation of such rules and regularities 
then led to a daring and remarkable leap 
of the imagination: the idea that it should 
be possible to summarise them in a logical 
system, where all valid mathematical results 
(theorems) are logically deducible from 
a small set of fundamental assumptions, 
called axioms. 

The origin of this new “theoretical” way 
of thinking about mathematics is usually 
ascribed to classical Greece, though similar 
ideas also appeared in other societies in ear-
ly history. However, it is the Greek tradition 
that has been the main inspiration for the 
development of science and mathematics, 
from ancient times up to the present day. 
so, let us take a look at how they thought 
about these matters.

First, the basic concepts were sharp-
ened and idealised. Thus, for instance, ge-
ometry was regarded as a set of relations 
between different types of abstract geo-
metrical objects: a point had no extension 
(serving only as a marker of position), a 
straight line had no thickness (serving only 
to mark the shortest way between any two 
points on it), etc. similarly, numbers were 
thought of as quantities that had exact val-
ues. such entities (i.e., objects and quan-
tities) were assumed to actually exist, i.e., 
to inhabit an abstract world of pure ideas, 
which constituted the basic reality of exist-
ence; these entities were often referred to 
as ideal forms. The task of mathematics, ac-
cording to this way of thinking, was to es-
tablish relations between such ideal forms. 
This notion of an abstract ideal reality, 
existing somewhere “above” or “beyond” 
our physical world, dates back to classical 
Greece, to the philosopher Plato; and the 
embodiment of it in an epistemological 

and ontological theory is often designated 
platonism.The physical world that we can 
observe around us was assumed to form 
only an imperfect representation of the ideal 
reality. Thus, any points that we might try 
to draw or mark in a concrete situation 
must necessarily possess some extension, 
any straight line that we can draw between 
points must necessarily have some thick-
ness and can never be “perfectly straight,” 
and an actual concrete measurement (say, 
of the distance between two points) can 
never be performed with perfect accuracy, 
and hence cannot yield an exact value. 
nevertheless, these “fuzzy” and inexactly 
defined physical objects and quantities 
were taken to reflect in some way the cor-
responding entities of the abstract ideal 
world; and moreover, relations between 
these entities (ideal forms) in the abstract 
world were assumed to govern relations be-
tween the corresponding physical entities. 
in other words, logical investigations of the 
abstract ideal world – i.e., mathematics – 
could enable us to draw valid conclusions 
about the physical world that we inhabit!

We may well focus on this last sentence: 
it describes a truly remarkable conceptual 
leap in the way we, as human beings, can 
deal with the world of our experience. in 
fact, this approach has been instrumental 
in the development of modern science and 
technology. Let us outline just briefly how 
the abstract ideal world of mathematical en-
tities was organised conceptually:

The basic idea was to establish a certain 
set of fundamental relations (called axioms) 
connecting the entities of the ideal world, 
and then to deduce other relations (called 
theorems) to follow logically from these axi-
oms. The goal was to define a basic set of axi-
oms that is minimal (no single axiom should 
be deducible from the other axioms of the 
set), complete (all valid theorems should be 
deducible from the chosen set of axioms), 
and consistent (it should not be possible to 
deduce logical contradictions from them). 
it may be noted that the number of axioms 
in the set is generally small; and the beauty 
of mathematical theory is then that so many 
interesting theorems can be deduced from 
such a slender axiomatic base. 

it should be noted that this idea of an 
ideal reality (often called the platonic world) 
that governs phenomena in the observable 

physical world places mathematics firmly 
on the realist side in the epistemic divide. 
it is then possible to discover how physical 
phenomena behave by reasoning about en-
tities and relationships in the abstract pla-
tonic reality. Hence there exist objectively 
true propositions about the world – namely 
those that reflect relations that hold true in 
the ideal world. This hegemony of epistem-
ic realism in mathematics (and in natural 
science) reigned more or less supreme in 
European philosophy up until the last two 
centuries, when it began to give way. We 
may illustrate this process by briefly exam-
ining two branches of mathematics: geom-
etry and number theory.

2.2 geometry
in the tradition of classical Greek phi-

losophy, several attempts were made to col-
lect the various known rules of geometry, 
and present them within the theoretical 
framework of an axiomatic system. The 
most important was that proposed by Eu-
clid, around 300 BC – a theory that has 
become known as Euclidean geometry. a 
modern formulation of this theory now 
features a minimal and consistent set of ex-
plicitly stated axioms.3 

in Euclid’s original formulation, the 
theory featured a number of definitions of 
objects such as points and straight lines. 
The definitions were often rather vague and 
intuitive: for instance, a straight line was 
said to be “a line that lies evenly with the 
points on itself ” – hardly a helpful descrip-
tion! Moreover, Euclid considered the fun-
damental propositions of the theory (from 
which all theorems are to be derived) to be 
of two kinds: axioms (self-evident truths), 
and postulates (true propositions that are 
not self-evident but nevertheless cannot be 
deduced from the other fundamental prop-
ositions of the theory). This was in accord 
with the prevailing philosophy of the time: 
geometrical objects and relations were as-
sumed to actually exist in an abstract ideal 

3 | as it turns out, it is not always possible to 
obtain a set of axioms that is complete. in 1931 the 
logician Kurt Gödel showed that any axiomatic 
theory above a certain (quite modest) level of 
complexity must necessarily contain theorems 
that cannot be deduced from the axioms – a result 
known as Gödel’s incompleteness Theorem.
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world of their own, accessible to us through 
logical reasoning. Hence, it made sense to 
look for the “correct” definition describ-
ing these objects, and the “true” relations 
(whether self-evident or not) that obtain 
between them. 

The approach of modern mathemati-
cal thinking is different – mainly because 
it does not explicitly invoke any “ideal real-
ity” of existing objects. Thus, the notion of 
“self-evident truths” (that hold true in this 
abstract world) is not relevant, and hence 
Euclid’s distinction between axioms and 
postulates is no longer upheld. an axiomatic 
theory, as it is conceived of today, is formu-
lated as a set of fundamental propositions 
(which are all referred to as axioms); and 
from this fundamental set, theorems are 
to be deduced. Moreover, the definitions 
of geometrical objects are not assumed to 
be independent of the axioms: rather, the 
axioms serve to define these objects! This 
difference in viewpoint can be illustrated 
as follows: in the platonic world, there ex-
ist certain entities called “straight lines,” and 
these then turn out to obey the Euclidean 
axioms; in modern mathematical philoso-
phy, the axioms together define a kind of 
specific entities that have certain properties, 
and these entities are then given the name 
“straight lines.”4

now, as it turned out, there was one 
particular axiom (actually a postulate, in 
Euclid’s original formulation) that attracted 
special attention from mathematicians al-
most from the beginning. This was the so-
called Euclidean postulate of parallels, which 
can be stated as follows: 

if a plane α contains a straight line l and 
a point P not on l, then it is possible to draw 
one and only one straight line l' that lies in 
the plane α and passes through the point 

4 | note that this describes the epistemol-
ogy of modern mathematics – a philosophical 
approach that is relativist, in the sense that any 
proposition/theorem requires a formal proof, 
based on some accepted set of axioms and rules of 
logical inference, and that there is a wide range of 
different ways to choose this set. However, it may 
be conjectured that the ontology of most math-
ematicians is, in fact, one of realism – specifically, 
some variant of Platonism: a belief/conviction that 
mathematical reasoning in some deep way reflects 
a platonic world of ideal forms.

P, such that l' does not intersect l. The lines 
l' and l are then said to be parallel to each 
other.

it was suspected early on, not that this 
proposition was incorrect, but that it was 
not an independent postulate – on the con-
trary, that it should be deducible as a theo-
rem from the other axioms and postulates 
of the theory! Through the centuries fol-
lowing Euclid, much effort was expended 
in trying to prove that this was true. The 
work culminated in the first half of the 19th 
century, when two mathematicians – Janos 
Bolyai and nikolai Lobachevsky – showed, 
independently of each other, that: (a) the 
Euclidean parallel postulate is indeed inde-
pendent; and (b) it is possible to replace it 
by another fundamental assumption about 
parallel lines – thus producing a geometri-
cal theory that is different from Euclidean 
geometry but equally consistent! (This non-
Euclidean theory was later, for reasons that 
need not concern us here, given the name 
hyperbolic geometry.) The new (non-Eucli-
dean) postulate of parallels states:

if a plane α contains a straight line l and 
a point P not on l, then it is possible to draw 
an infinite number of straight lines l', l", …, 
lying in the plane α and passing through 
P, that are all parallel to l (in the sense that 
none of them intersect l). 

Here one might well object that this can-
not be true: if we extend the lines l', l", …, 
most of them will surely intersect the line l 
somewhere in the plane! in fact, one might 
feel intuitively that the Euclidean postulate 
“has to be right”: since the lines will come 
steadily closer to each other when both are 
extended, it seems obvious that they must 
eventually intersect. But this argument 
misses the mark: the point is that the the-
ory proposed by Bolyai and Lobachevsky is 
every bit as logically consistent as Euclidean 
geometry. in other words, straight lines in 
the ideal reality may behave in the Euclide-
an way, or in the non-Euclidean way – and 
we have no means of deciding logically be-
tween these two possibilities! one example, 
to illustrate the difference between them: in 
Euclidean geometry, the sum of the interior 
angles of a triangle is (as is well-known) al-
ways equal to 180°; in hyperbolic geometry 
this sum is always less than 180°, and this 
sum decreases when the size of the triangle 
increases!

The appearance of this non-Euclidean 
geometric theory had a truly momentous 
impact on the epistemology of mathematics. 
Recall that the traditional view of geometry 
was that it described factual relations that 
hold true in the abstract world of ideas – and 
therefore in turn determine uniquely corre-
sponding relations in the physical world of 
our experience. since by assumption there 
was only one ideal world, and only one 
physical world, it would seem to follow that 
there can be only one “true geometry” – i.e., 
one uniquely defined geometric theory that 
gives the correct description of the ideal 
(and hence also of the physical) world. up 
till less than two centuries ago, this true the-
ory was naturally assumed to be Euclidean 
geometry, since there were no other candi-
dates at hand. But now a rival theory had ap-
peared, and thorny questions arose such as: 
How can two different geometries be valid 
in the same ideal world? and which one of 
them, if any, describes correctly the physical 
world? Can it be that different parts of the 
physical world obey different geometries? 
indeed, the very connection between the ge-
ometry of ideal reality (as obtained by logi-
cal reasoning) and the geometry of physical 
space (as obtained by observation and meas-
urement) was put into question!

as it turned out, the appearance of hy-
perbolic geometry was only the start. very 
soon after, another – and, from a logical 
point of view, equally consistent – non-Eu-
clidean theory (called elliptic geometry) was 
proposed. This geometric theory featured a 
new “parallel postulate,” saying in effect that 
there are no parallel lines: any two straight 
lines that lie in the same plane will always 
intersect! (to illustrate the difference: in el-
liptic geometry the sum of the interior an-
gles of a triangle is always greater than 180°, 
and this sum increases when the size of the 
triangle increases!) 

in the years that followed, a large 
number of geometric theories were formu-
lated and studied. it is now generally recog-
nised that there is a great deal of freedom 
to define different sets of axioms, thus cre-
ating different geometries, all of which have 
equal logical validity. Hence the notion of a 
unique ideal world, featuring true geometric 
relations that are realised (although imper-
fectly) in the physical world, was no longer 
tenable. Rather, the prevailing attitude now 
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is that scientists (in particular, physicists) 
should look for the geometrical theory that 
fits best with whatever physical phenomena 
is being examined. 

2.3 number theory
The conception of numbers arose out 

of very practical considerations (the count-
ing and measurement of concrete physical 
objects), as was remarked above. Gradu-
ally, however, a theory of these entities (an 
arithmetic) developed, where properties of 
numbers and relations between them were 
to be derived from certain fundamental 
propositions (axioms). The definition of 
the basic entities then went through a well-
known process of extension: starting with 
integers (whole numbers), one extended 
the set of axioms to define rational numbers 
(fractions) – which include integers as a spe-
cial case (fractions with unit denominator). 
From there, the axiomatic basis was further 
extended to define real numbers (compris-
ing rational and irrational numbers), com-
plex numbers (comprising real and imagi-
nary numbers), etc. 

note that this progressive extension of 
the concept of a number rapidly loses direct 
contact with its concrete practical origins. 
Let us consider the operation of a concrete 
measurement of some quantity associated 
with a given physical object. This is, in prin-
ciple, done by comparing the object with 
some conventionally chosen unit; and the 
result of the comparison is then given by 
a rational number a / b, where a and b are 
non-zero integers. Thus, for instance, the 
statement that a given length l is 5 / 8 meters 
long is equivalent to saying: if a meter stick 
is divided into eight equal segments, and the 
length l is laid along the stick, it will cover 
five of these segments. so, the upshot of this 
is: physical measurements yield rational val-
ues. Moreover, measurements can in prin-
ciple be performed to any desired accuracy 
by suitably increasing the numerator and 
denominator of the rational measurement 
value. (Thus, for instance, the statement 
l = 3557 / 10000 m means that the length l 
is given as 35.57 ± 0.005 cm.) note that this 
procedure can never yield an exact value: 
there will always be some inaccuracy in any 
measurement! This relates to the fact that 
the set of rational numbers is infinite and 
dense: for any two rational numbers x and 

y > x, it is always possible to find a rational 
number z lying between x and y, i.e., such 
that x < z < y. 

Early on, it was realised that there are 
numbers that cannot be expressed as frac-
tions: one example is √2 = 1.4142… such 
non-fractional quantities, whose values are 
generally defined by converging infinite se-
quences, were given the somewhat unfortu-
nate appellation irrational numbers. The set 
of irrationals is, like the set of rationals, in-
finite and dense; and moreover, the two sets 
are densely interspersed, in the sense that it is 
possible to find rational numbers with val-
ues between any two given irrational num-
bers, and vice versa. together, the rational 
and irrational numbers constitute the set of 
real numbers. 

it is the real numbers that form the ba-
sis of mathematical analysis, as applied to 
science. But note that it is only the rational 
numbers that are conceptually connected 
with physical measurements: one never 
actually measures (in the concrete sense of 
comparing object and unit) an irrational 
value for a given physical quantity! Thus, 
we may pose the question: Why does the 
formal manipulation of scientific quantities 
require that one uses the complete set of real 
numbers? Would it not be more logical (and 
economical) to stay with the rational num-
bers – which, after all, are the ones directly 
associated with the act of physical measure-
ment – and base the mathematical analysis 
of scientific laws on them? 

The answer is that a theory of mathemat-
ical analysis that admits only rational num-
bers, though possible in principle, would 
be quite intractable in practice! The reason 
is, somewhat loosely speaking, that the set 
of rational numbers by itself is “not dense 
enough.” in this analysis, one considers al-
gebraic equations of a very general kind; and 
it would be extremely cumbersome (to say 
the least) to have to “filter out” all equations 
that have irrational solutions, leaving only 
equations with rational solutions for the 
legitimate description of scientific relation-
ships. (as a very simple example, one would 
then have to allow the equation x2 – 4 = 0, 
which has the rational solutions x = ±2, but 
disallow the equation x2 – 2 = 0, with the ir-
rational solutions x = ±√2.) in fact, since 
rational and irrational numbers are densely 
interspersed, this would play havoc with the 

whole notion of continuity, which is fun-
damental in the treatment of mathematical 
functions. 

to avoid such formal complications, we 
allow both rational and irrational values for 
physical quantities as solutions emerging 
from the mathematical treatment of sci-
entific laws governing these quantities. in 
other words, we accept the physical valid-
ity of propositions such as “the length l of 
this object is √2 m,” and take it to have the 
following operational meaning: when the 
length l is actually measured, the result (in 
meters) will be a rational number that, with 
an increasing accuracy of measurement, 
can be assumed to come arbitrarily close to 
the “exact value” 1.4142… of the irrational 
number √2, as determined by mathematical 
theory. But note that it will never actually 
“get there”; no matter how much we increase 
the accuracy, there will always be an infinite 
number of rational (and irrational!) values 
between the measured value of l and √2. 

Thus, as we can see, the definition of a 
number has been extended from its “physi-
cal origins” (as a result of counting and 
measurement), to allow for a more conven-
ient mathematical treatment of scientific 
relationships. and note that this process of 
extension does not stop here. Many algebra-
ic equations have solutions that are not real 
numbers – one simple example is x2 + 1 = 0. 
The desire to include such equations then 
leads to a further extension of the axiomatic 
set, to define the so-called complex numbers, 
which admit values involving square roots 
of negative real numbers. (such values have 
been given the rather unfortunate name im-
aginary numbers.) and indeed, this exten-
sion has also proved to be very useful in the 
mathematical treatment of science.

2.4 the game of mathematics
The brief discussion presented above, 

addressing some examples from geometry 
and arithmetic, demonstrates how math-
ematical concepts and procedures, though 
originally inspired by very practical con-
cerns (counting and measuring of physical 
objects), have rapidly moved away from the 
“real world” and become part of an intel-
lectual activity in its own right – an activ-
ity that may manifest itself either as applied 
mathematics (a modelling of some particu-
lar physical system) or as pure mathematics 
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(theoretical deliberations that claim no con-
nection with any part of the physical world). 
in fact, the distinction between these two 
areas of mathematics is not always clear-cut; 
numerous links may easily be found. Thus, 
for instance, the conception of number – 
originally a tool for practical needs – has 
developed into many and various abstruse 
specialities, such as the study of prime num-
bers, which have no obvious connections 
with the physical world. (Thus consider, for 
example, the famous Goldbach conjecture, 
which states that any even number can be 
expressed as a sum of two primes. despite 
a lot of effort, no one has up to now been 
able to either prove or disprove this seem-
ingly simple proposition!) and on the other 
hand, purely theoretical constructs, which 
were initially proposed on an abstract lev-
el, have often proved subsequently to have 
applications in physics. Thus, for instance, 
four-dimensional Riemannian geometry 
has turned out to be essential as a basis for 
Einstein’s theory of general relativity, which 
is presently the accepted physical theory of 
gravitational interactions. Here one may 
also cite the example of string theory: the at-
tempts by physicists to describe elementary 
particles in terms of small one-dimensional 
entities (strings) that move and interact in a 
space of at least ten dimensions!

The scenario that emerges from all this 
is that the epistemology of mathematics has 
moved away from an initially realist posi-
tion: i.e., featuring a set of objectively true 
propositions describing properties of the 
ideal platonic world, and hence by exten-
sion also properties of the physical world. 
The present epistemic framework is one 
of relativism, where the truth-value of any 
mathematical proposition is only defined 
relative to some particular context. This 

is the viewpoint advocated by radical con-
structivism: any mathematical knowledge 
– whether pure or applied – is (and must 
be) constructed in the mind of the knower to 
model (i.e., describe and explore) some part 
of her experiential world. Thus there is no 
such thing as “the right mathematics,” lying 
out there waiting to be discovered; in other 
words, there exists no objectively true math-
ematical theory to describe the world that 
we human beings can experience. When we 
want to address some particular topic, we 
are free to construct a mathematical model 
of it by choosing an axiomatic base and ex-
ploring the consequences of this choice; and 
this can be done in many different ways.

This is certainly the case in applied 
mathematics, as has been argued above. But 
it also applies to pure mathematics. For a 
“pure mathematician,” the discipline is well 
worth pursuing for its own sake – for her 
own personal enjoyment, so to speak; cer-
tainly she feels no need to justify this activity 
in her mind by requiring that it should in 
some way describe how the physical world 
works. indeed, it seems more appropriate to 
say that she engages in mathematics as an 
intellectual game! Let us elaborate a little on 
this imagery. 

in the “game of mathematics,” the 
players (mathematicians) adopt certain 
game rules, defining a set of axioms and 
principles of admissible logical inference; 
and they are then free to explore the vari-
ous consequences that follow from these 
rules. note that there is a large amount of 
freedom in the choice of rules; in general, 
they must conform only to requirements 
of consistency (i.e., not lead to logical con-
tradictions). Thus there are no uniquely 
determined “correct rules” waiting to be 
discovered – any set of rules that leads to 

a consistent theory is in principle permis-
sible as a valid object for study. Hence the 
classical idea of an a priori defined “factu-
ally true” set of mathematical rules, resid-
ing in an ideal abstract world and govern-
ing observable phenomena in the physical 
world, is no longer tenable – as has already 
been argued above. We may formulate any 
number of mathematical theories that are 
“true,” in the sense that they conform to the 
selected rules of the game; and these rules 
are then conventional, with a large freedom 
of choice. The fascination of this game is 
that it is so “rich”: i.e., that so many very 
elaborate and (to mathematicians, at least) 
interesting theories can be deduced from 
fairly simple rules. to sum up, mathematics 
is not something we can “find in nature”; it 
is a theoretical construction, made in such a 
way as to satisfy the rules chosen by its crea-
tors (the mathematicians). 

as an analogy, we may consider the 
game of chess. it is defined by a simple set of 
game rules, describing the arena of play (the 
chess board) and the permitted movements 
and interactions of a given set of agents (the 
chessmen). The deployment of these rules 
then yields, as is well known, a game of 
remarkable variation and richness: a chess 
match can evolve in a literally astronomical 
number of different ways; and the planning 
of just a few moves ahead, taking account 
of all possible strategies that can be devised 
by your opponent and your own response 
to them, rapidly becomes prohibitively 
complicated. But note that there is nothing 
inherently unique or mandatory about the 
rules of chess! Historically, these rules were 
proposed some centuries ago; and today 
they are agreed, by universal convention 
among chess players, to define “the way to 
play the game.” nevertheless, it is a notable 
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fact that many chess players have experi-
mented with alternative rules: expanding 
the number of squares on the board, and/
or introducing new kinds of chessmen with 
new rules for moving and interaction (so-
called “exotic chess”); stacking chess boards 
on top of each other, with rules determin-
ing how the chessmen can jump between 
boards (“three-dimensional chess”); con-
ceptually connecting the side edges of the 
board, enabling chessmen to move directly 
from the left-hand edge of the board to the 
right-hand edge (“cylindrical chess”), etc. 
However, these alternative chess games, 
though claimed by the aficionados to be 
great fun, have not acquired a large follow-
ing; in the mainstream, classical chess still 
rules!

of course, this conception of math-
ematics as an intellectual game played by the 
mathematicians for their own enjoyment is 
too simplistic. it does indeed describe the 
attitude that many of the practitioners of 
mathematics have towards their subject; but 
if that were the whole story, it would indeed 
be difficult to defend the strong position that 
this discipline holds in school education. We 
also need to take into account its usefulness: 
it is a fact that much mathematics has been 
developed for the explicit purpose of appli-
cation to science – and that this approach 
has often worked extremely well! The physi-
cist Eugene Wigner once published a paper 
named “on the unreasonable effectiveness 
of mathematics in describing the physical 
world” (1960), remarking on this point. on 
the other hand, others5 have claimed that 
this is not so unreasonable: much math-
ematical theory is, in effect, designed to de-
scribe aspects of the physical world; and so 
one may be gratified, but perhaps not overly 
surprised, to discover that it does the job 
well! Be this as it may, it is a fact that many 
mathematical theories, originally proposed 
and developed as “pure mathematics” with-
out any thought of application in science, 
have subsequently been found to be very 
useful in describing aspects of the physi-
cal world. it is clear that, while mathemat-
ics may not need science, science definitely 
does need mathematics!

5 | notably andrew Pickering (1986), also a 
physicist.

Let us try to push this game metaphor a 
little further. Recall that in radical construc-
tivism, knowledge is taken to be constructed, 
to serve as a model of some part of the experi-
ential world of the knower. Clearly, the meta-
phor fits well in the context of applied math-
ematics: the game is then defined as the act 
of modelling (i.e., describing and exploring) 
some definite set of observed natural phe-
nomena. and in the case of chess, of course, 
the subject of this modelling is obvious: a 
military battle, as this was conceived of in an-
cient times, with two armies (black and white 
chessmen) marched up against each other, 
featuring infantry (the pawns), cavalry (the 
knights), mobile assault towers (the rooks), 
etc. The game is then played, using the agreed 
rules of chess, with the goal to conquer (i.e., 
checkmate) the opponent player.

However, in the context of pure math-
ematics, one may ask: what “experiential 
world” of the knower is being modelled in 
this case – what is the game, and why is it 
being played? The following answer may be 
suggested: the pure mathematician is en-
gaged in playing with some selected set of 
mathematical constructs and axioms, which 
forms the subject of the model, using rules 
of logical inference. These items (constructs, 
axioms, and rules) then form that part of her 
experiential world that she wants to model. 
The goal of the game is to explore the conse-
quences of her choice of subject, i.e., to de-
duce theorems describing various properties 
of the model. and she is playing this game 
for her own personal intellectual enjoyment, 
as already noted, and quite often will not be 
expecting any results of practical value to 
come out of it. 

3. conclusion

according to radical constructivism, 
mathematics does not (and cannot) give us 
a (potentially or actually) correct knowledge 
of the world. on the contrary, it presents it-
self as a technique for modelling the expe-
riential world of individual knowers; using 
this technique, we may generate knowledge 
through a process of individual construc-
tion in the mind of the knower. as is well-
known, this technique has been extremely 
successful in expanding our understanding 
and mastery of the world we live in. 

References

Geelan D. (1997) Epistemological anarchy and 
the many forms of constructivism. science & 
Education 6(1–2): 15–28.

Glasersfeld E. von (1981) The concepts 
of adaptation and viability in a radical con-
structivist theory of knowledge.  
in: siegel i. E., Brodzinsky d. M. & Golinkoff 
R. M. (eds.) new directions in Piagetian 
theory and practice. Lawrence Erlbaum, 
Hillsdale nJ: 87–95. available at  
http://www.vonglasersfeld.com/067

Glasersfeld E. von (1984) an introduction 
to radical constructivism. in: Watzlawick P. 
(ed.) The invented reality. norton, new York: 
17–40. available at  
http://www.vonglasersfeld.com/070.1

Glasersfeld E. von (1989) Cognition, construc-
tion of knowledge and teaching. synthese 80: 
121–140. available at  
http://www.vonglasersfeld.com/118

Glasersfeld E. von (ed.) (1991) Radical construc-
tivism in mathematics education. Kluwer 
academic Publishers, dordrecht.

Glasersfeld E. von (1995) Radical constructiv-
ism: a way of knowing and learning. The 
Falmer Press, London.

Glasersfeld E. von (2000) Problems of Con-
structivism. in: steffe L. P. & Thompson P. 
W. (eds.) Radical constructivism in action: 
Building on the pioneering work of Ernst 
von Glasersfeld. Routledge, London: 3–9. 
available at http://www.vonglasersfeld.
com/233

Pickering A (1986) Constructing quarks: 
a sociological history of particle physics. 
Barnes & noble, London.

Quale A. (2008) Radical constructivism: 
a relativist epistemic approach to science 
education. sense, Rotterdam.

Weinberg S. (1993) dreams of a final theory. 
Random House, new York.

Wigner E. (1960) The unreasonable effective-
ness of mathematics in the natural sciences. 
Communications in Pure and applied 
Mathematics 13(1). available at http://www.
dartmouth.edu/~matc/Mathdrama/reading/
Wigner.html

Received 26 october 2011 
accepted: 14 February 2012


