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> Problem • There is currently a great deal of mysticism, uncritical hype, and blind adulation of imaginary mathemati-
cal and physical entities in popular culture. We seek to explore what a radical constructivist perspective on mathemati-
cal entities might entail, and to draw out the implications of this perspective for how we think about the nature of 
mathematical entities. > Method • Conceptual analysis. > Results • If we want to avoid the introduction of entities that 
are ill-defined and inaccessible to verification, then formal systems need to avoid introduction of potential and actual 
infinities. If decidability and consistency are desired, keep formal systems finite. Infinity is a useful heuristic concept, 
but has no place in proof theory. > Implications • We attempt to debunk many of the mysticisms and uncritical adula-
tions of Gödelian arguments and to ground mathematical foundations in intersubjectively verifiable operations of 
limited observers. We hope that these insights will be useful to anyone trying to make sense of claims about the nature 
of formal systems. If we return to the notion of formal systems as concrete, finite systems, then we can be clear about 
the nature of computations that can be physically realized. In practical terms, the answer is not to proscribe notions 
of the infinite, but to recognize that these concepts have a different status with respect to their verifiability. We need 
to demarcate clearly the realm of free creation and imagination, where platonic entities are useful heuristic devices, 
and the realm of verification, testing, and proof, where infinities introduce ill-defined entities that create ambiguities 
and undecidable, ill-posed sets of propositions. > Constructivist content • The paper attempts to extend the scope of 
radical constructivist perspective to mathematical systems, and to discuss the relationships between radical construc-
tivism and other allied, yet distinct perspectives in the debate over the foundations of mathematics, such as psycho-
logical constructivism and mathematical constructivism. > Key words • Foundations of mathematics, verificationism, 
finitism, Platonism, pragmatism, Gödel’s Proof, Halting Problem, undecidability, consistency, computability, actualism.

... it is unintelligible to attribute existence to 
anything that cannot or could not at some time be 

perceived. (Ernst von Glasersfeld 2007: 97)

For my part I think, and I am not alone in 
so thinking, that the important thing is never 

to introduce any entities but such as can be 
completely defined in a finite number of words. 

(Henri Poincaré 1952: 45)

Again, nothing infinite can exist; and if it could, at 
least the notion of infinity is not infinite, i.e., does 

not contain an infinite number of marks 
(Aristotle, Metaphysics, 994b27-28, 

in McKeon 1941)

Evidently, the category of number is wonderfully 
consistent and complete as long as it is applied to 
counting real apples, but it becomes paradoxical 

when it is extended to such things as infinite sets, 
which transcend our experience. 

(Gunter Stent in Delbrück & Stent 1986: 11)

Introduction

In this paper we attempt to draw out how 
a radical constructivist epistemology might 
handle mathematical ideas, formal systems, 
and infinities. Our motivation arises from 
a desire to clarify contemporary thinking 
about the nature of mathematical objects, 
formal operations, and proof. We present an 
overview of the different perspectives in the 
debate about the foundations of mathemat-
ics and discuss compatibilities and incom-
patibilities with radical constructivism. In 
turn we discuss mathematical psychologism 
(intuitionism, constructivism), mathemati-
cal realism (Platonism), formalism, and 
finitism. The foundations crisis concerned 
the inability to prove the consistency of 
arithmetic on the natural numbers, but we 
argue that this is not at all a problem for 
the varieties of physically-realizable, finite 
mathematics we use for our computations.

Arguably, the crisis of the foundations of 
mathematics that erupted in the early 20th 
century was precipitated by introductions 
of self-referential meta-mathematical state-
ments and Cantorian infinities into proof 
theory, and there is no crisis provided that 
formal systems are instead kept strictly fi-
nite. In this respect, the “loss of certainty” in 
the logical consistency of mathematics par-
alleled the crisis in the foundations of phys-
ics, which shook realists’ faith in absolute, 
observer-independent physical reality. Be-
cause neither belief in physical reality nor in 
mathematical consistency has any concrete 
practical implications, neither crisis imped-
ed the advance of science and mathematics.

In order to explore what the foundations 
of mathematics might mean for radical con-
structivism and vice-versa, a rough map of 
the philosophical territory is a useful place to 
begin. Although radical constructivist writ-
ings have addressed the development, use, 
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and elaboration of mathematical concepts 
(Glasersfeld 1991, 2006; Piaget 1980), rela-
tively little has yet been written about math-
ematical foundations from this perspective 
(e.g., Stolzenberg 1984). It therefore appears 
that we are treading mostly on new ground. 
Perhaps this is not so surprising, given the 
highly abstract and ontological orientation 
of much of the philosophy of mathematics 
and the observer-grounded, epistemological 
stance of radical constructivism.

Radical constructivism provides onto-
logical and epistemological frameworks, as 
well as theories of observation, action, com-
munication, knowledge, thought, and learn-
ing. We believe that radical constructivism 
as a broader philosophical movement also 
encompasses general theories of observer-
actors, of adaptive cybernetic percept-action 
systems, and of self-constructing neural sys-
tems. Radical constructivism, coming from 
an epistemology of situated, self-construct-
ing observers, is naturally allied with differ-
ent psychological, pragmatist, constructivist 
and finitist perspectives in the philosophy 
of mathematics. Although we want to avoid 
simplistic conflations of radical constructiv-
ism with these different schools of thought, 
neither do we want to understate what they 
have in common.

The different facets of radical construc-
tivist theory have relevance for different as-
pects of mathematics. For example, psycho-
logical approaches to mathematics involve 
understanding how mathematical ideas are 
constructed in our minds. Mathematical 
constructivism, on the other hand, is opera-
tionalistic, not psychological, and involves 
concrete methods by which one constructs 
formal mathematical objects whose proper-
ties can then be examined. Finitism involves 
beliefs about the ontological and epistemo-
logical status of potential and actual infini-
ties.

An important guiding question for the 
radical constructivist project is how far it 
should go, if at all, to avoid talk of the possi-
ble in favor of what is immediately available 
to experience, i.e., how to weigh up the bal-
ance between free imagination and concrete 
demonstration. Opposed to psychologism, 
constructivism, and finitism are realist, pla-
tonic philosophies of mathematics that hold 
that mathematical objects have an objec-
tive existence independent of the mind and 

therefore are discovered by us rather than 
invented. Platonists are consequently will-
ing to accept the existence of entities, such 
as infinities and hierarchies of infinities, that 
they can imagine but not perceive. Much of 
the debate over mathematical foundations 
concerns differences over what counts as a 
real or definite mathematical object, how 
number systems are to be constructed and/
or justified, what constitutes mathematical 
truth, and what logical methods are admis-
sible in mathematical proofs.

Philosophies  
of mathematics
Historically, the different camps in the 

foundations debate have been divided into 
intuitionists and (mathematical) construc-
tivists, formalists, and platonists. Finitists, 
whom we will discuss later, are varieties of 
mathematical constructivists.

The intuitionists (L. E. J. Brouwer, Arend 
Heyting, Hermann Weyl, and perhaps Lud-
wig Wittgenstein) considered mathematical 
concepts to be intuitive, mental constructs 
that require external, concrete constructions 
in order to be reliably tested. Intuitionists 
adopted constructivist approaches because 
they had doubts about the self-evident na-
ture of mathematical truth and the univer-
sal validity of classical logics (such as the 
law of the excluded middle, which asserts 
that statements are either true or false). If 
one adopts a constructivist, verificationist 
concept of truth and meaning, such that 
statements are only meaningful in relation 
to how they are interpreted or verified, then 
there are three truth values: verified true, 
verified false, and unverifiable. This last cat-
egory of “unverifiable” is appropriate for ill-
posed, self-contradictory, and/or meaning-
less statements.

The formalists (David Hilbert, John von 
Neumann) held that mathematical ideas 
should be expressed in terms of explicit, 
concrete formal procedures (computations) 
operating on symbols. Like operationalism 
in physics, formalism allows metaphysical 
issues to be sidestepped, if one wishes, by 
focusing exclusively on the meaningless, but 
reliable, manipulations of symbols. But un-
like constructivism, the central goal of the 
formalist program was to rationalize logi-

cal reasoning about mathematical entities, 
whatever their ultimate nature, and there-
fore the formalist program accepted as valid 
nonconstructive proof methods based on 
logical assumptions that the constructivists 
rejected as unjustified (indirect existence 
proofs of entities that cannot necessarily be 
constructed, undecidability proofs by con-
tradiction, proofs based on properties of 
infinite sets).

Finally, the platonists, or mathematical 
realists (Georg Cantor, Richard Dedekind, 
Kurt Gödel, Alfred Tarski, Alan Turing) be-
lieved in the objective existence of infinite 
sets, the reliability (or infallibility) of classi-
cal logic, absolute mathematical truth, and 
the usefulness of self-referential statements. 
Platonic-realist accounts dominate the phi-
losophy of mathematics literature, where 
representative popular and academic treat-
ments can be easily found (Rucker 1982; 
Moore 1990; Maddy 1990).

Mathematics 
and the physical world
What is the status of mathematical ideas 

from a radical constructivist perspective? 
On the one hand, mathematical ideas are 
concepts that are held by individual human 
beings, and therefore no different qualita-
tively from any other concepts that are con-
structed through experience. On the other 
hand, mathematical ideas, when they have 
proven consistent through their successful 
use, give the illusion that, rather being men-
tal constructs, they are in some sense inevi-
table expressions of the inherent order of the 
universe. In this respect our naïve intuitions 
about mathematical reality parallel those 
concerning physical reality and objective 
truth that radical constructivists have taken 
deep pains to dismantle (Glasersfeld 1996).

This appearance of universality and in-
evitability is reinforced by the consistency 
and reliability of computations that we rely 
on in everyday life. Normally, we do not stop 
to question the consistency of the arithmetic 
operations that we use to count or exchange 
money or to interconvert physical measured 
units and estimate quantities (e.g., time, dis-
tance, volume, weight, temperature). Many 
years ago I came across a New Yorker car-
toon in which a restaurant patron, examin-
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ing his check at the end of a meal, says in 
effect to the waiter, “Although I do not doubt 
the correctness of your arithmetic on this 
bill, I have fundamental doubts about the 
consistency of the foundations on which it 
is based.” What makes the cartoon funny is 
that common sense tells us that the mathe-
matics is sound, yet we hear the distant echo 
of experts telling us that the foundations are 
not settled.

Although there are obvious uncertain-
ties and ambiguities at both microscopic 
and macroscopic levels of description, it is 
hard to escape the feeling that the physical 
universe is fundamentally orderly. There 
are universal physical laws at work, such 
that knowledge of them permits accurate 
and reliable prediction of a huge host of 
physical processes and events. Physics and 
mathematics so often prove to be highly ef-
fective tools for prediction that it is therefore 
not without some justification that Eugene 
Wigner could extol the “unreasonable effec-
tiveness of mathematics” for describing the 
physical structure of the world. As a result 
of the successes of mathematics and physics, 
there exists a deeply held and widespread 
belief that the world itself is mathematical 
in structure (Kline 1980). In what amounts 
to a secular religion, Gödel and Turing are 
regarded popularly as saints, if not demi-
gods, and the prestige of mathematics as 
an oracle of absolute truth is rivaled only 
by that of physics (see Rotman 1993 for an 
embodied deconstruction). To be fair, some 
of this excessive exuberance and reverence 
that we see in the popular press is related 
to the palpable joy of mathematical think-
ing. Nonetheless, many mathematicians and 
physicists believe that mathematical truths 
reveal deep physical truths, and some go so 
far to hold that the universe is inherently a 
gigantic computational process, in the im-
age of deterministic cellular automata.

Against these sentiments that math-
ematics occupies a special relation to real-
ity, constructivist psychological perspectives 
in the philosophy of mathematics hold that 
mathematical ideas are concepts that are 
held by individual observer-actors that are 
constructed through experience with the 
world, much in the same ways that other 
concepts are created (Glasersfeld 2006; De-
haene 2011; Lakoff & Núñez 2000; Piaget 
1980). These free creations of the mind have 

no necessary a priori truth or relation to the 
physical world, and, like other non-mathe-
matical concepts, their usefulness in guiding 
thought and action is only proven through 
their application. Rather than truths that 
are discovered, it is those mathematical 
constructions that effectively model the ob-
served behavior of the material world that 
we select for incorporation into our physical 
theories and retention in our textbooks.

We argue that in most creative process-
es, from structural and functional novelty 
arising through biological evolution to in-
novations arising through human learning, 
there are two phases. There is an expansive 
phase in which many possible alternatives 
are formulated, and a contractive phase in 
which these alternatives are rigorously put 
to tests of efficacy and reliability. In biologi-
cal evolution, the expansive phase involves 
genetic variation, whereas the contractive 
phase involves natural selection. In intel-
lectual creation, the expansive phase is most 
often the realm of combinatorics of ideas 
generated by the unfettered imagination, 
whereas the contractive phase is the realm 
of the real-world testing of the ideas gen-
erated (Cariani 2012). In mathematics, the 
expansionary, imaginative realm occurs in 
the mind of the individual mathematician, 
whereas the rigorous, contractive realm of 
proof occurs within a community of fellow 
mathematicians.

All constructivist psychological theo-
ries seek to explain how new mental con-
cepts arise from the interaction between 
adaptive, neural self-organizing processes 
in the brain and ongoing sensing and acting 
(sensorimotor) interactions with an exter-
nal environment. In locating mathematical 
objects in the experience of the observer-
actor, radical constructivism shares some 
common ground with intuitionist concep-
tions of mathematical objects as purely 
mental constructs. These mental constructs 
have the same ontological status as other 
kinds of ideas. There are no obvious quali-
tative neurological differences that would 
cause us to think that mathematicians re-
ceive some sort of special access to the un-
derlying structure of the world (something 
akin to divine inspiration). Despite the 
present primitive state of our understand-
ing of the neural mechanisms of thoughts, 
eventually these processes will be under-

stood. Thus, even though we presently lack 
crucial neural details, there appears to be 
no inherent barrier to explaining the gen-
eration of mathematical concepts in terms 
of a neurally grounded constructivist psy-
chological theory.

Mathematical realism

The ontological status of mathematical 
concepts is more contentious. From ancient 
times, some philosophical systems have as-
serted the primacy of ideal forms over the 
outward appearances that the material 
world presents to us. We will refer to this 
belief in an absolute, observer-independent, 
objective, ideal realm as Platonism (also 
called formism, Pepper 1942). Platonism is a 
realist ontology in that it holds that (1) there 
is an absolute and objective external reality 
(of ideal forms), and (2) the structure of this 
realm is at least partially knowable (through 
mathematics).

One can compare and contrast platonic 
realism with physical and theological re-
alisms. In physical realism, the objective, 
knowable reality is the material realm rather 
than the realm of ideal forms. In theologi-
cal realism, this realm involves transcendent 
beings and/or dimensions not necessar-
ily accessible via empirical observation (but 
perhaps through personal revelation). These 
are fundamentally ontological differences 
that reflect divergent metaphysical assump-
tions about the ultimate nature of the world, 
and it is extremely useful if one can recog-
nize these modes of thought when they ap-
pear.

All varieties of realism reject an insu-
perable Kantian split between the realm 
of appearances and things-in-themselves. 
Radical constructivism, while it does not 
solipsistically deny the existence of an ex-
ternal world, does deny objective knowledge 
(veridical representation) of it. As von Gla-
sersfeld (2007: 97) put it, “Radical construc-
tivism does not deny an ulterior reality... it 
denies that human rational knowledge can 
attain a God-made world or produce any-
thing that could rightly be called a represen-
tation of it.”

In contrast to radical constructivists, re-
alists of all three kinds maintain a faith that 
the structure of that world is in some deep 
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sense knowable apart from concrete ob-
servations and experiences. For theists this 
faith comes from a belief in God, for physi-
cal realists, it comes from a belief in the pro-
gressive correctness of physics (or science 
in general), and for platonists it comes from 
a belief in the universality of mathematics.

The success of modern science in ac-
counting comprehensively for the behavior 
of the physical world created a centuries-
long crisis in the Western belief in an om-
nipresent, omniscient, and/or omnipotent 
God. The crisis in the foundations of phys-
ics in the early 20th century, precipitated 
by special relativity, wave-particle duality, 
and quantum mechanics, was related to the 
necessity of including the observer and his/
her mode of measurement in descriptions 
of physical events, i.e., it was related to the 
breakdown of realist (“classical”) assump-
tions about the observer-independent na-
ture of physical descriptions.

Similarly, the crisis in the foundations 
of mathematics was precipitated by the real-
ization that consistency could not be proved 
for arithmetic on the natural numbers. As 
we will argue, this is only a “crisis” of belief 
if one believes in the reality and consistency 
of sets of infinite scope. There is no crisis if 
there are no such sets in the first place or 
if these abstract, ideal entities really have 
nothing to do with practical computations.

Formal systems

As far as the imagination goes, radical 
constructivism is completely open-minded, 
and places no limits. Any concept that can 
be conceived may have some usefulness in 
some pragmatic context. In Feyerabendian 
terms, in the realm of the imagination, “any-
thing goes” – even ideas that are incorrect, 
inconsistent, and fanciful can become useful 
in generating hypotheses about the world.

However, in the realm of testing ideas, 
radical constructivism is more conservative 
and skeptical. Purely mental constructs, 
such as belief in imaginary objects and be-
ings, can be distinguished from products of 
our senses (observations, measurements). 
In its critical mode, radical constructivism 
rejects systems based on imperceptible enti-
ties, and restricts consideration to distinc-
tions directly presented to experience, i.e., 

those that can be reliably made by observ-
ers. This permits common distinctions that 
can be shared and verified by communities 
of observers and the formation of intersub-
jectively shared social conventions and mu-
tual understandings.

In its anti-realist empiricism and prag-
matism, radical constructivist epistemology 
is allied with scientific pragmatism, verifi-
cationism, and operationalism (van Fraas-
sen 1980; Murdoch 1987; Bridgman 1936). 
Propositions have no inherent truth or rela-
tion to some absolute external reality, and 
their “truth” is not absolute or observer-
independent, but consists of the means by 
which they are evaluated (verificationism) 
or used (pragmatism). The means by which 
a proposition is to be evaluated, its “truth” 
determined, is a shared, agreed-upon prior 
convention that is collectively implemented 
by a community of observer-actors.

Thus, from this perspective, formal 
(syntactic) truths are propositions that are 
confirmed or falsified by means of mean-
ingless, conventional formal operations 
on signs. For example, evaluation of an 
arithmetic statement (2 + 3 = 5) requires 
symbol recognition coupled with purely 
sign-type-based syntactic rules that succes-
sively rewrite the symbols on two sides of 
the equation until they become the same. 
In contrast, empirical, (semantic) truths 
are propositions concerning states of the 
world that are evaluated using contingent 
measurement processes appropriate to the 
meaning of the statement. For example, 
evaluation of “it is now raining in Rome” 
requires some measurement to ascertain 
whether rain is currently falling in that city.

The two kinds of truths are distinct 
because their modes of verification, via 
rule-governed computational procedures 
or contingent measurements, are funda-
mentally different kinds of operations. As a 
result, the functions of these two kinds of 
statements are qualitatively different. For-
mal truths tell us about the consequences of 
our formal rules, whereas empirical truths 
tell us something about the state of the ex-
ternal world (as registered by our measur-
ing devices). Another way of saying this is 
that mathematics, by itself, tells us nothing 
directly about the physical world, and in 
turn, because formal conventions are ar-
bitrary constructs, empirical observations 

about the physical world do not in any way 
constrain our mathematics.

Our formal systems and computers are 
designed to operate according to their own 
internal rules, to act completely indepen-
dently of external inputs (perturbations, 
measurements, oracles). As theoretical bi-
ologists Howard Pattee and Robert Rosen 
have argued, formal systems are material 
systems so arranged that their functional 
states and state-transition behaviors can be 
effectively described in terms of high-level 
rules, “non-holonomic constraints,” such 
one need not make any reference to the un-
derlying physical laws in order to completely 
describe their behaviors in these terms (Pat-
tee 1985, 2001; Pattee & Rączaszek-Leonardi 
2012; Rosen 1987, 1994). A digital computer 
is isomorphic to a finite formal system in its 
behavior, and a given finite formal system 
can be physically realized by many different 
material systems.

Formal systems are the vehicles by 
which mathematical ideas are externalized 
and outwardly expressed in explicit, sym-
bolic form. In Hilbert’s original conception, 
formal systems can be regarded as external-
ized, constructed conventions of inherently 
meaningless but concrete symbol tokens 
and formal operations on them that are 
agreed upon and understood by a commu-
nity of observer-actors. The operations and 
results are constructed to be unambigu-
ously interpretable, completely reliable, and 
intersubjectively verifiable, such that all 
members of the community applying the 
same rules on the same symbolic objects all 
reliably arrive at the same results. Insofar as 
the community can agree on a set of con-
ventional rules that adequately characterize 
a particular situation (not always trivial, 
and sometimes not possible) logical dis-
putes and mathematical problems related to 
these conventions can be straightforwardly 
resolved through formal construction and 
calculation. As Gottfried Leibniz suggested 
in 1685:

“ The only way to rectify our reasonings is to 
make them as tangible as those of the Mathema-
ticians, so that we can find our error at a glance, 
and when there are disputes among persons, we 
can simply say: Let us calculate, without further 
ado, in order to see who is right.” (The Art of 
Discovery, in Wiener 1951: 51)
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Hilbert’s formalist program

At the beginning of the 20th century, 
the philosopher and mathematician Hilbert 
explicated, refined, and systematized the 
notion of the formal system as the arena for 
explicating mathematical ideas in symbolic 
form so that their consistency could be test-
ed by means of formal procedures on strings 
of symbols (Zach 2009).

Hilbert’s program was based upon the 
construction of formal processes out of 
material tokens (“extralogical concrete ob-
jects”) and physical operations on them. 
While he believed infinite collections of such 
tokens were not physically realizable, he did 
believe that consistent finite representations 
of infinite entities could be constructed and 
implemented through finitary operations on 
finite sets of physical tokens.

“ As a further precondition for using logical 
deduction and carrying out logical operations, 
something must be given in conception, viz., 
certain extralogical concrete objects which are 
intuited as directly experienced prior to all think-
ing. For logical deduction to be certain, we must 
be able to see every aspect of these objects, and 
their properties, differences, sequences, and con-
tiguities must be given, together with the objects 
themselves, as something which cannot be re-
duced to something else and which requires no 
reduction. This is the basic philosophy which I 
find necessary, not just for mathematics, but for 
all scientific thinking, understanding, and com-
municating. The subject matter of mathematics is, 
in accordance with this theory, the concrete sym-
bols themselves whose structure is immediately 
clear and recognizable.” (Hilbert 1964: 142)

These concrete tokens or primitives 
would then be combined in various ways 
to construct more complicated relations 
between the combinations. Von Neumann, 
neatly summarized the goals of the move-
ment:

“ The leading idea of Hilbert’s theory of proof is 
that, even if the statements of classical mathemat-
ics should turn out to be false as to content, nev-
ertheless, classical mathematics involves an inter-
nally closed procedure which operates according 
to fixed rules known to all mathematicians and 
which consists basically in constructing succes-
sively certain combinations of primitive symbols 

which are considered ‘correct’ or ‘proved.’ … We 
must regard classical mathematics as a combina-
torial game played with the primitive symbols, 
and we must determine in a finitary combinato-
rial way to which combinations of primitive sym-
bols the construction methods or ‘proofs’ lead.” 
(von Neumann 1964: 61f.)

The goal of formalist mathematics is to 
construct a system of operations on tokens 
that is internally consistent, that is, no com-
bination of allowed operations should lead 
to a contradiction. Hilbert’s conception of 
formal systems, thus, was operationalist and 
anti-realist and allied in spirit with inter-
pretations of quantum mechanics of Bohr 
and von Neumann. This kind of formalist 
finitary reasoning is generally compatible 
with radical constructivism in that it de-
mands that the symbols and the operations 
involved are fully accessible to the observer 
and also that there is no objective meaning 
or absolute truth attached to those symbols 
and operations apart from how they are 
used.

On the other hand, Hilbert very much 
wanted the conceptual freedom and intuitive 
power of the notion of infinity, and had fa-
mously stated that “No one shall drive us out 
of the paradise which Cantor has created for 
us.” He sought to demonstrate, using finitary 
arguments, the consistency of arithmetic on 
the natural numbers, and he believed that 
this was possible. In other words, he wanted 
to make the use of infinities safe for math-
ematics. Arithmetic with potential infinities 
in its core would be proven consistent using 
Hilbert’s formalist, finitary, concrete “mate-
rial logical deduction” framework.

“ We have already seen that the infinite is no-
where to be found in reality, no matter what 
experiences, observations, and knowledge 
are appealed to. Can thought about things be 
so much different from things? In short, can 
thought be so far removed from reality? Rather 
is it not clear that, when we think that we have 
encountered the infinite in some real sense, 
we have merely been seduced into thinking so 
by the fact that we often encounter extremely 
large and extremely small dimensions in reality? 
Does material logical deduction somehow deceive 
us or leave us in the lurch when we apply it to real 
things or events? No! Material logical deduction 
is indispensable. It deceives us only when we form 

arbitrary abstract definitions, especially those 
which involve infinitely many objects. In such 
cases we have illegitimately used material logical 
deduction, i.e., we have not paid sufficient atten-
tion to the preconditions necessary for its valid 
use.” (Hilbert 1964: 142)

However, the structure of this evalua-
tive formalist framework turned out to be 
inconsistent with his desire to validate the 
intuitive idea of potentially-infinite number 
systems by demonstrating their consistency 
through non-constructive existence proofs. 
Hilbert disagreed with the constructivist in-
tuitionists over the use of the principle of the 
excluded middle, i.e., he maintained that a 
formal proposition is inevitably either true 
or false.

Radical constructivist thinking about 
mathematical foundations might likely 
depart from Hilbert’s program on two 
grounds: because of its end goal of justify-
ing and rationalizing infinitistic entities and 
because of its abandonment of the construc-
tion of mathematical objects.

Gödel’s proof

In 1900, Hilbert outlined 23 unsolved 
problems in mathematics. As the second 
one, Hilbert posed the problem of proving, 
through finitary means, that an arithmetic 
operation on the natural numbers is consis-
tent, i.e., that it does not generate contra-
dictory results. The decades that followed 
were filled with constructivist-platonist 
debates over Cantor’s taxonomy of infini-
ties, paradoxes raised by self-referential, 
impredicative statements (“this sentence is 
false”), the ontological status and meaning 
of mathematical propositions and proofs, 
the validity of proofs based on the excluded 
middle (every proposition is either true or 
false) and by contradiction (a formal system 
is inconsistent if a proposition and its nega-
tion are both generated), and the construc-
tion of sets (what kinds of sets are permit-
ted, such as null sets and sets that contain 
themselves). Depending on one’s degree of 
trust in the concept of infinity, one accepts 
into the proof process sets consisting of 
actual infinities (Cantor, Gödel), potential 
infinities (Hilbert, varieties of constructiv-
ism that assume natural numbers), or only 
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finite, countable numbers of distinguishable 
objects (Goodman 1956).

In 1931, Gödel proposed two theorems 
of logic: his first and second incompleteness 
theorems (Gödel 1931; Nagel, Newman & 
Gödel 1958). The details of the proofs and 
subsequent discussions and elaborations 
form a vast literature. The first incomplete-
ness theorem was interpreted to mean that 
a system such as arithmetic on the natural 
numbers is incomplete because there are al-
ways true statements about the system that 
cannot be expressed from within it, under-
mining Hilbert’s goal of showing that all 
true statements about arithmetic on natural 
numbers could be expressed in that system. 
The second incompleteness theorem is tak-
en to mean that a system such as arithmetic 
on the natural numbers cannot be used to 
prove its own consistency.

To most observers at the time, includ-
ing Hilbert himself, Gödel’s incompleteness 
theorems demolished the Hilbertian pro-
gram of successfully proving the consisten-
cy of arithmetic (Nagel, Newman & Gödel 
1958; Dawson Jr. 1988). Despite the great 
weight of mathematical and philosophical 
opinion behind it, there were always those 
who strongly doubted the significance and 
applicability of Gödel’s approach (Shanker 
1987, 1988), and also whether it necessar-
ily doomed Hilbert’s Program (Detlefsen 
1979). Three decades after Gödel’s proof, 
Bertrand Russell had doubts: “If you can 
spare the time, I should like to know, 
roughly, how, in your opinion, ordinary 
mathematics – or, indeed, any deductive 
system – is affected by Gödel’s work” (Daw-
son 1988: 90).

Gödel’s first proof relies on arith-
metized, self-referential metamathematical 
statements about provability and on Can-
tor’s controversial, platonic, diagonalization 
argument. The self-referential statements 
permit interpretational ambiguities and par-
adoxes to creep in. Cantor’s diagonal argu-
ment, presented lucidly in Beckman (1980), 
counter-intuitively asserts that some infinite 
sets are larger than others. The second proof, 
which denies the provable consistency of 
arithmetic on natural numbers, relies on the 
nonconstructive logic of the first theorem. 
The logic of these nonconstructive existence 
proofs is convoluted and difficult to follow 
(see Nagel, Newman & Gödel 1958 or Beck-

ham 1980 for reasonable expositions). More 
straightforward is Turing’s formally equiva-
lent Halting Problem argument, discussed 
in the next section.

Gödel’s proof could be rejected on con-
structivist and/or finitist grounds. In his 
Remarks on the Foundations of Mathematics 
Wittgenstein disputed the platonic meth-
odological assumptions and interpretations 
embedded in the theorems that essentially 
altered the meaning of “proof ” (Shanker 
1987, 1988; Wittgenstein 1978; Kielkopf 
1970; Wright 1980, Rodych 2011). Because 
Wittgenstein often expressed his ideas 
aphoristically and did not make explicit 
his interpretive framework, there has been 
an ongoing, complicated exegesis-laden 
philosophical debate over what he meant. 
It is possible that more publications have 
been devoted to whether (or in what sense) 

Wittgenstein was a strict finitist than to the 
theory of strict finitism itself or the validity 
of its critique.

One could argue, from a strict finitist 
perspective, that the introduction of actual 
and potential infinities into a formal system 
inherently produces inconsistencies that 
can be avoided by restricting oneself en-
tirely to finite sets (ultra-finitism). Unlike 
potentially-infinite systems, the consistency 
of finite systems can be proven because all 
the possible constructions can be enumer-
ated, evaluated, and compared. We can have 
provably consistent formal systems if we 
keep their scope finite. This interpretation 
of the meaning of Gödel’s Proof and Tur-
ing’s Halting problem is summarized in 
Figure 1. This is why the consistency of the 
computations we actually carry out is un-
problematic from a foundational viewpoint 

consistency of formal systems

halting in turing machines

Infinite formal
systems

Finite formal
systems

Undecidable
(cannot always prove

consistency)

Decidable
(can always prove

consistency)

Arbitrary
Turing Machines

with infinite tapes

= Deterministic infinite
state automata

Never halt
or loop

Halt Loop

Turing Machines
with finite tapes

= Deterministic finite
state automata

Halt Loop

Figure 1: Finitist interpretations of Gödel’s Proof and Turing’s Halting Problem.
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– physically realizable, finite formal sys-
tems are qualitatively different from their 
potentially-infinite and actually-infinite 
counterparts. The latter interpretation and 
the prescription to stick to finite systems 
is almost never discussed in the literature, 
mainly because most mathematicians and 
philosophers of mathematics have strong 
Platonist intuitions that they loathe to ques-
tion, let alone give up entirely.

Decidability  
and the halting problem
A concrete example of how finiteness 

changes the nature of conclusions about 
consistency and decidability can be shown 
by examining the effect that finiteness has 
on the outcome of the halting problem. The 
halting problem is a decision problem in 
which the question posed is whether a single 
algorithm (computational process) always 
leads to a correct yes or no answer. Turing 
posed the question of whether, for any arbi-
trary Turing machine, given a particular set 
of inputs, it is possible to determine whether 
the machine will eventually halt.

Turing machines consist of a machine 
head that is a deterministic finite state au-
tomata (FSA), a tape of discrete locations 
that contains their external inputs for each 
computational step, either a 0 (blank) or a 
1 (mark), and mechanisms for reading and 
writing symbols on the tape, and for mov-
ing the tape one location in either direction 
(Beckman 1980). Depending upon the sym-
bol on the tape and the internal state of the 
FSA, the Turing machine decides its next 
action (read, write 0, write 1, move tape left, 
move tape right, do nothing). The tape is in-
definitely extendable, so that the Turing ma-
chine can construct and handle arbitrarily 
large numbers and other potentially-infinite 
sets of elements. The computational capabili-
ties of the Turing machine, with its finitary, 
deterministic finite-state automaton compu-
tational rules and its potentially-infinite tape 
parallel finitary procedures on natural num-
bers, are such that the halting decision prob-
lem is formally equivalent to Gödel’s incom-
pleteness proofs (Kleene 1967; Davis 1958).

A Turing machine is therefore speci-
fied by the state transition rules of its ma-
chine head and its initial conditions or input 

string, i.e., the pattern of 0’s and 1’s on its 
tape. Its current total machine state is speci-
fied by the state of the tape, i.e., pattern of 0’s 
and 1’s on the tape, the state of the machine 
head, and the position of the read/write 
head on the tape. The Turing machine has 
three possible behaviors:
1  |	 reach a terminal total machine state and 

halt,
2  |	 fall into a computational loop in which 

it endlessly repeats a finite sequence of 
total machine states, i.e., it never halts, 
or

3  |	 transit over an endlessly expanding, in-
finite set of locations on the tape, and 
never repeat a total machine state, i.e., it 
never halts.
Being a machine whose behavior is com-

pletely determined by its total machine state, 
i.e., a “trivial machine” in Heinz von Foer-
ster’s terms, if a total machine state is ever 
encountered a second time, it will loop.

Along lines parallel to Gödel, Turing ar-
gued that, for any arbitrary Turing machine, 
there is no general, finite algorithm that can 
determine in a finite number of steps wheth-
er the machine will eventually halt (Turing 
1936). But if the Turing machine has a tape 
of finite length, then there are a finite num-
ber of total machine states available to it. In 
this case, one can always determine within a 
finite number of steps whether the machine 
will halt or not. The finite tape eliminates the 
possibility of an ever-widening set of tape lo-
cations, so the halting problem becomes one 
of deciding whether the machine will enter 
a terminal state (halt) or a loop (never halt). 
One simply needs another machine that 
keeps track of the total machine states of the 
first and records whether the machine has 
either halted or repeated a previous total ma-
chine state. Even simpler, if one counts the 
number of states traversed, and this is larger 
than the number of total machine states of 
the first machine, then the machine must 
have repeated a total machine state, and 
therefore will never halt. Thus, for finite state 
automata, as opposed to arbitrary Turing 
machines with potentially-infinite total ma-
chine states, the halting problem is decidable.

These profound differences between fi-
nite and potentially-infinite machines tend 
to be completely overlooked both in the 
foundations of mathematics and in theories 
of formal computation. Most often the be-

haviors of finite state automata and finite for-
mal systems are regarded as trivial and unin-
teresting, but sometimes the neglect is due to 
a conflation of finite and infinite automata. 
This arises because every finite state automa-
ton is a Turing machine, but not every Tur-
ing machine is a finite state automaton. It is 
those infinite state Turing machines that do 
not loop and do not halt that do not have 
finite state automaton equivalents. It is thus 
easy to conflate in one’s mind finite state au-
tomata (computers) and the set of “arbitrary 
Turing machines,” despite the nonequiva-
lence of the two sets.

These kinds of conceptual errors arise 
when one tries to discuss the limitations of 
physically-realizable (“real world”) comput-
ers with dyed-in-the-wool platonists. Phys-
ically-realized computers, of course, have 
finite numbers of states and are therefore 
finite state machines (Cariani 1989). In Cari-
ani (1992), I argued along these lines, i.e., 
that computer simulations necessarily have 
closed state spaces of possibility and conse-
quently received hostile responses from out-
raged reviewers who argued that:
1  |	 computers are Turing machines (cor-

rect),
2  |	 arbitrary Turing machines are open-

ended because their behavior is not de-
cidable (correct), and therefore

3  |	 computers and computer simulations 
are unpredictable and open-ended (in-
correct).
These kinds of conflations between finite 

and infinite systems, along with invocations 
of Gödel and Turing, have long been a part 
of the intellectual landscape of mathematical 
physics, computer science, artificial intel-
ligence, and even artificial life (in addition 
to errors of more technical sorts, cf. Franzén 
2005). They are easily found on the current 
pop-science scene, where whole cottage in-
dustries have been spawned to harness the 
interpretation of Gödel (Penrose 1989). This 
species of quasi-religious rhetoric is likely to 
remain with us far into the future.

Because real-world computers are finite 
state devices, computability (limitations of 
decidability in infinite systems) has abso-
lutely no relevance for real world computing. 
On the other hand, computational complex-
ity is highly relevant for practical, real-world 
computing because the numbers of available 
states (memory) and computational steps 
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(processing speed) determine what algo-
rithms can be computed in practice. Limita-
tion of our concept of computation to finite 
state machines thus corresponds much bet-
ter to how we use computations and compu-
tational devices in real life.

To return to the New Yorker cartoon, as 
regards consistency, the finite arithmetic sys-
tems that we use in everyday life are funda-
mentally different from the infinite systems 
that are contemplated in pure mathematics 
and philosophy. It is only if one believes that 
the latter has something to do with the for-
mer that one can be troubled by a crisis in the 
philosophical foundations.

Finitism

We have seen that radical construc-
tivism is naturally allied with varieties of 
mathematical psychologism, constructiv-
ism, and formalism. In the radical con-
structivist psychologist mode, one can con-
ceive of mathematical concepts as mental 
structures constructed through experience, 
action, and thought. In its mathematical 
constructivist mode, mathematical ob-
jects are actively constructed by sequences 
of concrete overt actions that parallel the 
means by which objects and object systems 
are constructed mentally (e.g., numbers 
and counting operations). In the formalist 
mode, the manipulation of concrete tokens 
according to socially-shared conventions 
to reach reliable intersubjectively-verifiable 
agreement parallels radical constructivist 
conceptions of cooperation, communica-
tion, and “shared realities.”

We have also considered where radical 
constructivism, in its epistemologically-
grounded rejection of infinities, might part 
company with Hilbert’s formalist program, 
whose aim was to tame infinities. For sever-
al reasons, the denial of imperceptible infin-
ities effectively commits radical construc-
tivist philosophy of mathematics to some 
form of finitism. Finitism denies the reality 
of infinite sets. Some forms of finitism deny 
only actual infinities (e.g., the uncountably 
infinite set of irrational numbers) but admit 
countably-infinite sets, such as the natural 
numbers (classical finitists including Mar-
kov and Kronecker, who famously said that 
“God made the integers; all else is the work 

of man”). Some deny countably infinite sets 
and potentially-infinite constructions be-
cause these can never be completed (strict 
finitists). In these terms, Aristotle would be 
considered to be a strict finitist.

Still other, more conservative varieties 
deny those numbers for which we do not 
yet have the means at hand to deal with 
them as individual entities. For very large 
numbers whose representations far exceeds 
the capacity of our present and future repre-
sentational systems (e.g. numbers of digits 
larger than the estimated number of fun-
damental particles in the universe), we lack 
the means of actually constructing, reliably 
manipulating, and/or determining some of 
their numerical properties (e.g., how many 
7’s are in their base ten representation). 
These varieties of finitism come under the 
rubrics of feasible numbers, actualism, Es-
enin-Volpin’s ultra-finitism, and “fanatical 
finitism” (Mawby 2005). Under the notion 
of attainable numbers, we have as many 
numbers available to us at any time as we 
have the mental or mechanical means to 
distinguish and manipulate as individuals. 
Thus, as our computers grow in capability, 
the envelope of attainable numbers pro-
gressively expands (i.e., a “Chuck Yeager” 
theory of numbers that keeps on breaking 
the current “number barrier” as machines 
successively improve).

Actualism has the advantage of describ-
ing concretely the domain of numbers that 
we utilize in real life. Although we may have 
generative, computational descriptions for 
astronomically large numbers, we do not 
know them as individual integers. A strik-
ing example, presented in Beckman (1980), 
is f (4, 4) of the doubly recursive Acker-
mann’s function, which consists of three 
lines:
1  |	 f (0, n) = n + 1
2  |	 f (m, 0) = f (m – 1, 1)
3  |	 f (m, n) = f (m – 1, f (m, n – 1)).

Beckman notes,

“ It thus appears that this function is effectively 
computable, and we can compute its value for any 
given pair of arguments. However, [Ackerman’s 
function] is a most remarkable function, and per-
haps we should examine more closely our use of 
the phrase ‘we can compute.’ To find, say f (2, 2) 
is a trivial computation and f (3, 3) (= 61), can be 

computed in a fraction of a second on any mod-
ern computer. But f (4, 4) is another story. … If 
every one of these [1080] particles [in the known 
cosmos] were used in some way to represent one 
digit in the decimal representation of f (4, 4), not 
only would they not be sufficient, but we would 
not even be able to represent that number which is 
the number of digits in f (4, 4) (i.e.,[log10 f (4, 4)]). 
What meaning then is there in the statement that 
‘we can compute’ this function?” (Beckman 
1980: 128)

So, in what senses can we reasonably say 
that this number exists? It certainly exists in 
our minds, as a set of concepts. It also exists 
as the end product of a concrete recursive 
computational procedure, but it does not 
yet exist as a unique integer whose relational 
numeric properties can be interrogated (e.g., 
is it divisible by 5?). If we stick to numbers 
that can be reliably manipulated and sets 
that are constructed from concrete collec-
tions of individuals (Goodman 1956), then 
we can be reasonably assured of the reliabil-
ity of our computations and our logics.

We tend to believe that these philosoph-
ical differences are intellectual, but perhaps 
they simply reflect underlying differences in 
temperament. In religious terms, platonists 
are the mystics, dreamers, true believers, 
and deists, with varying degrees of certainty 
and piety. Formalists like Hilbert are agnos-
tics, who nevertheless would like to believe 
in a benevolent god if one could be proven, 
even indirectly, by rational reasoning. Con-
structivists withhold belief until they see 
concrete evidence. Finitists are the skeptical 
agnostics and atheists of the group, deny-
ing the practical relevance of infinities and/
or their existence (apart from in the minds 
of platonists). In these terms, radical con-
structivists are naturally skeptical atheists 
when it comes to platonic mathematics, 
realist physics, and all philosophical theo-
ries that disconnect reference, truth, and 
meaning from real observer-actors (e.g., 
Putnam’s famous assertion that “meaning is 
not in the head”).

Finally, one can harbor strong doubts 
that the metaphysics of mathematics has any 
practical relevance. The foundations debate 
is so abstract and abstruse that it conjures 
medieval scholastic debates over properties 
of angels. In the end it makes little difference 
for working mathematicians whether they 
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believe in the absolute reality of their math-
ematics – in any case their theorems must 
be unambiguously demonstrated to others 
in the form of a proof. On the other hand, 
we believe that there is inherent utility, for 
both mathematicians and the rest of us, in 
a clearer conception of the nature of math-
ematical constructs. Further, we believe that 
a psychologically- and neurally-grounded 
radical constructivist theory of how math-
ematical concepts are constructed by au-
tonomous human subjects, along the lines 
of Lakoff & Núñez (2000), Dehaene (2011), 
and Glasersfeld (1991, 2006), could play a 
very positive role in developing educational 
strategies that facilitate mathematical cre-
ativity and thought.

Conclusions

In dealing with wide ranges of philo-
sophical and scientific questions, it is useful 
to be able to identify patterns of thought and 
see quickly where their metaphysical prem-
ises lead. For example, Chomskian notions 
that languages are infinite constructs, that 
ideal grammatical form is the essence of lan-
guage, and that the communicative use of 
language is of secondary concern, can be im-
mediately recognized as a platonist research 
program. We see platonic thought pervading 
the possible-worlds “multiverse” interpreta-
tion of quantum mechanics (a metaphysical 
hypothesis that is inherently empirically un-
testable) and in possible-worlds semantics. 
Platonist instincts stoke belief that time trav-
el may be possible because some mathemat-
ics of physics allow it.

The answer is not to ban such platonic 
notions from our discourses. As wacky as 
they sometimes seem, they may eventually 
lead to new ideas that are practically test-
able. Instead we need to learn to demarcate 
clearly those ideas that can have only heu-
ristic value from those that can (eventually) 
be soberly evaluated. The challenge is to 
learn to use each kind of idea in an appro-
priate way, as an aid to the imagination or 
as a testable hypothesis. In this way, radi-
cal constructivism can provide a guide for 
thought that is both creatively open to latent 
possibilities and sensibly critical of those 
ideas that do not lend themselves to practi-
cal evaluation.

Radical constructivist thinkers in the fu-
ture will eventually develop theories of the na-
ture and creation of mathematical objects in 
minds and brains, and in the process perhaps 
demystify the nature of mathematical ideas. 
We think that it is a only matter of time until 
the present platonic wave runs its course, and 
that the world comes around to see the need 
for a new way of looking at mind, matter, and 
mathematics (Cariani 2010).
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