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Do young children grasp the inverse
relationship between addition
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Evidence against early arithmetic
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Abstract

This research investigates young children’s reasoning about the inverse relationship
between addition and subtraction. We argue that this investigation is necessary before
asserting that preschoolers have a full understanding of addition and subtraction and use
arithmetic principles. From the current models of quantification in infancy, we also pro-
pose that the children’s earliest ability to add and subtract is based on representations
combining and separating sets of objects without arithmetical operations. In an initial
study, 2- to 5-year-old children was tested on addition (2+ 1), subtraction (3− 1) and
inversion problems (2+ 1 − 1) by usingWynn’s procedure (1992b)of possible and im-
possible events. Only the oldest age group (4–5 years) succeeded on the inverse problem.
In a follow-up study, 3- to 4-year-old children were given a brief training intervention in
which they performed adding and subtracting transformations by manipulating small sets
of objects without counting. The beneficial effects of the training support the claim that
preschoolers respond to the inverse problem on the basis of object representations and
not on the basis of numerical representations.
© 2002 Elsevier Science Inc. All rights reserved.
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Over the past two decades, many investigators have studied the numerical rea-
soning capacities of preschool children and considerable progress has been made
in this domain (e.g.,Cooper, 1984; Gelman & Gallistel, 1978; Ginsburg, 1983;
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Hughes, 1986; Huntley-Fenner & Cannon, 2000; Huttenlocher, Jordan, & Levine,
1994; Levine, Jordan, & Huttenlocher, 1992; Siegler & Robinson, 1982; Sophian
& Adam, 1987; Starkey, 1992; Wynn, 1992a). It has been found that young chil-
dren can carry out numerical reasoning involving simple addition and subtraction
by 2 or 3 years of age, provided that the numbers involved are small. They can
solve calculation problems such as “2+ 1” and “3− 1” in which addition or sub-
traction is carried out on real objects which children can see, but where the final
total is either hidden in some way or displayed by using a violation-of-expectation
paradigm.

Thus it would seem that the ability to reason about numerical transformations
appears early in life, well before children receive explicit education in mathematics
in school. But this prompts the question of the nature of reasoning involved in nu-
merical transformation tasks. In this paper, we argue that young children’s knowl-
edge about numerical transformations is not arithmetically based but object-based.
The hypothesis that the performance of preschoolers does not entail arithmetical
reasoning is based on two assumptions. The first is that young children do not ma-
nipulate addition and subtraction in numerically meaningful ways. The second is
that young children use a non-numerical mechanism to solve addition/subtraction
tasks similar to those of infants. These two assumptions are discussed before pre-
senting empirical data to support our hypotheses.

1. What numerical knowledge underlies arithmetical reasoning?

Even if the ability to appreciate the effects of numerical transformations emerges
early in childhood, can we say that young children have an exact understanding of
addition and subtraction in the fullest sense of the wordarithmetic?Piaget (1952)
argued that someone who can add and subtract correctly does not necessarily
understand addition and subtraction because the additive and subtractive operations
must be coordinated to be really assimilated. Thus, asBryant (1992)asserted,
before asserting that young children use addition and subtraction in an arithmetical
sense, it may be necessary to check that additive and subtractive transformations
are well-known as inverse transformations of each other. ForPiaget and Moreau
(1977), children do not become aware of the inverse relationship between addition
and subtraction before the level ofconcrete operations.

Even if reversibility of displacement is acquired by 18 months (Piaget, 1952b),
reversibility of numerical transformations is not grasped before 6 or 7 years
old. Furthermore,Piaget (1967)introduced a major distinction between “true
reversibility” based on the logical operativity and “empirical reversibility” some-
times calledrenversibilitéor “empirical return”. Two different motor activities
(or perceived events) may be juxtaposed and seem to be the reverse of each
other, but this is remote from the logical reversibility in which they both function
(e.g., addition and subtraction in a group structure). In other words, the empirical
return — contrary to reversibility — is not the same operation as the direct
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operation but in the opposite direction: it is a successive action (or transforma-
tion) that is qualitatively different from the former.

When children understand both addition and subtraction as interdependent op-
erations rather than as independent transformations, they can reason arithmetically
by using the relations between parts and wholes and the additive composition of
numbers. As long as the representation of addition is not coordinated with the
representation of subtraction, the performance of young children in calculation
problems cannot result from an arithmetical reasoning as such. At most, these
children are able to represent the result of numerical transformations regardless
of addition and subtraction operations. The hypothesis of arithmetical reasoning
is untenable when a deficit in conceptual understanding such as addition and sub-
traction are represented as two separate operations that exclude each other.

The idea that very young children might understand the inverse relationship
between addition and subtraction has rarely been challenged empirically. So far
the studies conducted to test or to induce the inverse property have been carried out
only on children from the age of 5 or 6 (Beilin, 1965; Denney, Zeytinoglu, & Selzer,
1977; Field, 1981; Lifschitz & Langford, 1977; Wallach & Sprott, 1964; Winer,
1968; Wohlwill, 1959; and more recently,Bisanz, LeFevre, & Gilliland, 1989;
Bryant, Christie, & Rendu, 1999; Stern, 1992). Only one study (Starkey & Gelman,
1982) reported an attempt to test 3-year-old children’s understanding of inversion.
Children were asked to solve inverse problems in the form ofa + b − b. But,
asBryant et al. (1999)pointed out, the results invalidate the authors’ conclusion
that young children understand that addition and subtraction cancel each other out
because the children solved the inverse problems (e.g., 3+ 1 − 1) as well as the
control problems (e.g., 2+2−1). It is therefore highly probable that they computed
the result of additions and subtractions without the help of the inversion principle.
If this had not been the case, they would have succeeded in solving the inverse
problems better than the control problems. More recently,Bryant et al. (1999)
demonstrated that the scores of 5- and 6-year-old children were higher on inverse
problems than on control problems. Their results prove that after age 5 years, at
least, children are able to use the inversion principle in a genuinely quantitative
way. Does this mean that before age 5 years children lack this principle? Maybe
so, but two objections are possible.

The first is that in Starkey and Gelman’s study, young children were asked to
produce a verbal response to the inverse and control problems. So, even if the
range of problems were presented with concrete material, the use of the inversion
principle could be inhibited by this verbal requirement. It is well known that verbal
reports are problematic in young children. Their ability to reason about numerical
transformations have been forcefully demonstrated with nonverbal tasks.

Recently, an experiment was designed to dispel this objection (Vilette, 2002).
Eighty-nine 2- to 4-year-old children were tested both on the inverse and the
control problems by using a nonverbal task in which they had to construct an array
that is numerically equivalent to another, hidden array. This task requires them
to determine how many objects are in the hidden array after objects have been
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added to and/or taken away from it. The results clearly indicated no difference in
the number of correct answers in the inversion and control problems: the control
scores ranged from .03 to .64 according to age groups, with a median of .29, and the
inverse scores ranged from .03 to .56 with a median of .31. Consequently, the results
confirm that young children fail to use the inversion principle and demonstrate that
this failure is not due to the verbal measure of inversion.

The second objection is more subtle. In inversion studies, children are faced
with control problems which necessarily require them to compute the exact out-
come of numerical transformations. But this requirement is confusing precisely
because children must not compute in the inverse problems. The trouble is that
young children are inclined to compute in all problems even if they understand
the inversion principle. They may choose to compute systematically because, for
example, it is difficult to change strategy in the course of the evaluation, or be-
cause they need to verify the result of the numerical transformations. Hence the
comparable performance in control and inverse problems. We are then faced with
the difficulty of evaluating whether or not young children actually realize — with-
out numerical computation — that addition and subtraction cancel each other out.
An initial experiment addressed this difficulty. Children were asked to make a
judgment (normal or not normal) about the effects of perceived transformations
(addition, subtraction and inversion) with a possible and an impossible outcome
and not to compute the numerical values of such transformations. Before devel-
oping this approach, we will discuss the mechanisms that may underlie children’s
reasoning in nonverbal calculation tasks.

2. What mechanism underlies preverbal quantification?

Although our present concern is not directly with infants’ numerical compe-
tencies, we must refer to the current models of early quantification in order to
specify the nonverbal mechanism of quantification that operates in childhood.
Young children’s quantification necessarily has its roots in infancy. Furthermore,
if the calculation mechanism is already present in infancy, it should be evident
and easily available in young children (Huttenlocher et al., 1994). Two models of
early quantification have been proposed in the literature: the accumulator model
and the object-file model. These models, which are radically opposed about the
nature of early numerical representations, will be sketched and compared (for a
more detailed account of these well-known models, seeKoechlin, Dehaene, &
Mehler, 1997; Mix, Huttenlocher, & Levine, 2002; Uller, Carey, Huntley-Fenner,
& Klatt, 1999).

The accumulator mechanism presented by Gelman (Gallistel & Gelman, 1992,
2000) provides mental representations of numbers in the form of analogical mag-
nitudes (e.g., “ ” being a representation of 1, “ ” a representation of 2; “ ” a
representation of 3, and so on). The numerical values are given by the ordinal po-
sition of the accumulator (“, , , . . . ”). In fact, this mechanism is a specific
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realization of Gelman’s original model (Gelman & Gallistel, 1978) in which nu-
merosities are represented by a list of arbitrary symbols called “numerons” (e.g., “!,
#, &, $,. . . ” or “?, , §, @,. . . ”). In both systems, a counting process determines
the numerical representation in such a way that 2, for example, is represented by
the magnitude “ ” or the numerons “#” or “ ”. Given that the mechanism can
create several accumulators with fullness values stored in memory, different sets
of entities can be counted and compared.

Arithmetical reasoning would then be based on the idea that operations carried
out on the magnitudes or the numerons are isomorphic to operations of conven-
tional arithmetic (Gallistel & Gelman, 1992, 2000; Wynn, 1995, 1998). Addition,
for example, could be achieved by “pouring” the contents from an accumulator
representing one value into an accumulator representing another value, or more
specifically, by transferring the contents of two accumulators into a third empty
accumulator. Subtraction could be similarly achieved by removing the content of
one accumulator until the right amount corresponding to another accumulator has
been removed, or by creating new accumulators to avoid loss of the initial value
in the subtraction operation. In both operations (addition or subtraction), a match-
ing process of any of two symbols produced by accumulator mechanism would
indicate whether the represented numerosities are the same or different. The iso-
morphism postulated between accumulator operations and arithmetic operations
constitutes the critical condition of early arithmetical reasoning.

The object-file model is an alternative view which does not require such arith-
metic knowledge in infants. According to this model, each perceived object is
encoded in a separate file with its coordinates in space and time and its specific
properties such as color, size, direction, location. In this view, a new file object is
opened every time a physical object appears at a novel location. AsKoechlin et al.
(1997)pointed out, the critical difference between the accumulator model and the
object-file model concerns the nature of the representation of numerosity: it is a
representation of numbers in one case, and a representation of objects in the other.
Thus, in the object-file model, an array of two physical objects would be encoded
by a representation of the form “Oi Oj ” or “ Xi Xj ”, or any other representation
given that there is no single symbol for 2 at all, not “” or “#” or “ ” nor any other.
Consequently, according to the object-file model, there is no calculation procedure
in the infant’s mind but only an ability to manipulate mental representation of ob-
jects. As modeled bySimon (1998), reasoning about numerical transformations
would then be based both on the process of one-to-one correspondence and on the
immediate or very short-term memory of object permanence (see alsoBideaud,
1995, for a similar account).

Although there is no conclusive proof for deciding between the two models of
infant number representation, several arguments favor the object-file model (Uller
et al., 1999). Two main arguments can be taken up here to justify the idea that
precise quantification in young children is also done without any knowledge of
arithmetic. Firstly, there are the massive effects of set size on children’s perfor-
mance. In all studies (e.g.,Cooper, 1984; Ginsburg, 1983; Hughes, 1986; Levine
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et al., 1992; Siegler & Robinson, 1982), researchers agreed that 2- or 3-year-old
children only solve calculation problems on the first three numbers, or even on
numbers 1 and 2 (Starkey, 1992), with numerical transformations of one object. It
is not before ages 3 or 4 years that children grasp precisely transformations of two
objects or more. But even at age 4 years, all the problems involving small numbers
(<5) are still not solved by most of the children.

Children’s difficulties with calculation problems always increase significantly
with the numerosity of the result and the numerosity of transformation. These
dramatic effects of numerosity are best predicted by the use of one-to-one corre-
spondence (object-file model) rather than by the use of a matching process (ac-
cumulator model). Indeed, the process of one-to-one correspondence detection
becomes much more complex as the number of objects in the two representations
increases. This is because the memory load also increases with the number of
objects to be compared. This is not the case for the matching process because the
comparison between two numerical symbols, whatever the number of objects they
represent, is made by noticing a numerical mismatch/match between them. So,
remembering one particular symbol does not require more memory resources than
remembering another symbol, and discrepancy detection varies slightly with the
content of the symbols.

Even if discrimination of analogical representations becomes harder with the
size of the number, according to Weber’s law (for example, “” vs. “ ”
is harder to discriminate than “” vs. “ ”), the accumulator model is hardly
compatible with the numerosity effects observed on small sets of 1–3 objects. These
effects are easier to account for with the object-file model owing to the fact that
difficulty and error probability in applying the one-to-one principle start from the
first correspondence and gradually increase with the following correspondences.

Another argument concerning the role of spatio-temporal clues in object percep-
tion also provides support for the object file model. Uller et al. have demonstrated
that infants’ reactions to an impossible outcome following addition and subtraction
operations (Wynn, 1992b) are not observed when clues about object location are
unspecified or sharply reduced. In other words, infants must concretely see where
the objects are placed by the experimenter before grasping the effects of simple
adding and subtracting. What is interesting in this respect is that young children
also fail addition and subtraction tasks when these take place in contexts where
there is no reference to specific objects (Hughes, 1986). It is not before ages 4
or 5 years that children solve calculation problems in a context of hypothetical
objects which are not perceived. Although this fact does not provide conclusive
evidence for one model or the other, the key role of object perception lends empir-
ical support to the object-file model and not to the accumulator model because the
main properties of objects, such as their location and their physical appearance,
are encoded first in the former but not in the latter.

The two previous arguments lead us to think that the calculation mechanism
in young children as in infants might also be based on the process of one-to-one
correspondence and the permanence of three or four objects in working memory.
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This hypothesis, which rejects the arithmetical nature of children’s reasoning in
calculation problems will be tested in a second study. Recall that the first study
assessed the ability of young children to make judgments about the results of
inverse transformations on small sets without computing the numerical values of
such transformations. If children really have a full understanding of addition and
subtraction, they should be able to use the inverse relationship between addition and
subtraction. If this is not the case, we cannot grant them knowledge of arithmetic.
The second study asks whether children’s reasoning about inverse transformation
may improve after a brief training intervention. Different training procedures have
been designed to decide which of the two models of young children’s quantification
might be correct (accumulator model or file-object model).

3. Spontaneous quantification

Children’s ability to reason about numerical transformations were examined
by means of a method adapted for preschoolers within the context of possible or
impossible events paradigm. We used a Wynn-type procedure similar toWynn’s
(1992b)except that the children were asked to verbally indicate whether the results
they saw were “normal” or “not normal”. This procedure has already been fruitful
in other experiments with young children (Houdé, 1997; Vilette & Mazouz, 1998).
Several reasons motivated the choice of this procedure.

As we have seen, the difficulty is to lead children to reason about inverse trans-
formations without computing the numerical values of such transformations. If
the Wynn-type procedure cannot guarantee that the children do not compute, it
does not prompt them to do it. The reasons are twofold: an exact quantification is
never required as it is, for example, in a production task (Starkey, 1992; Vilette,
2002); and no numerical value is mentioned during the procedure. Children are
only asked whether what they saw is normal or not. In addition, if children really
calculated the result of numerical transformations, one would not find differences
of performance between addition, subtraction and inversion since all problems
involve the same small numerosities (cf. as follows).

Of course, the above arguments do not prove decisively that children do not
compute the result of inverse transformations. But if children understand the inverse
relationship between addition and subtraction, the Wynn-type procedure would
have to lead them to use this knowledge. In that case, their performance on the
inverse problem should not be completely hopeless compared to their performance
on the addition and subtraction problems.

Admittedly, we may invoke the highest load in working memory for resolving
inverse problems because children must deal with two successive operations and
not only one as in addition or subtraction problems. But neither the accumulator
model nor the object-file model raise this limitation. Only the numerosity of re-
sult or the numerosity of transformation can increase the memory load and the
difficulty of the task. In both models, the quantification processes are not limited
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to representing only one operation in time and space. There is no reason why a
quantitative representation can not be modified by two successive transformations.

For all the above reasons, we suppose that the violation-of-expectations proce-
dure permits testing young children’s use of the inverse relation without numerical
calculation. So three age groups were given three problems: (1) the addition prob-
lem “2 + 1 = 3” with impossible event “2+ 1 = 2”, (2) the subtraction problem
“3 − 1 = 2” with the impossible event “3− 1 = 3”, and (3) the inverse problem
“2 +1−1 = 2” with the impossible event “2+1−1 = 3”. The numbers involved
in each problem were chosen for three reasons. First, they are smaller than 4 and,
therefore, in the numerosities range that very young children can grasp by direct
perception (subitizing) or by a counting scheme (Starkey & Cooper, 1980). Sec-
ond, the addition and subtraction problems involving other small numbers, such as
1+ 1 or 2− 1, are used in a preliminary phase to familiarize the children with the
material and the procedure. Third, in order to have equivalent problems compared
to numerosity, the final total in all problems is either 2 or 3.

Three age groups (n = 22 each), 2-year-olds (M = 2.5; range 2.2–2.8),
3-year-olds (M = 3.5; range 3.2–3.8) and 4-year-olds (M = 4.6; range 4.2–4.9),
were tested. The younger children were recruited through 4-day care centers and
the older ones through three preschools they attended. All came from a middle-class
population and from homes where French was the primary language.

The children were shown a wooden puppet theater, 66 cm high, 70 cm wide,
and 30 cm deep, resting on top of a table. A revolving screen allowed us to either
reveal or occlude the stage. A side-window allowed the experimenter to add or
take away objects in such a way that the children could see what was happening
(addition, subtraction) without seeing the configuration hidden by the screen. A
trap door behind the stage allowed the objects to be manipulated surreptitiously
when the screen was raised. Instead of Mickey Mouse dolls (Wynn, 1992a, 1992b),
the objects presented to children were the well-known French Babar dolls (20 cm
high and 10 cm wide).

Children were tested individually in a quiet location in a single testing session
that lasted about 15–20 min. The experimenter began by introducing the Babar
dolls and testing the instructions in two “familiarization” events, one for “1+ 1”
addition, another for “2− 1” subtraction. For “1+ 1” addition, the children were
asked to look at one Babar on the stage. Then, the experimenter raised the screen
and conspicuously put another one behind it. Next, the screen was lowered and
the children were shown two or one Babar dolls. They were asked whether “that’s
normal” or “that’s not normal” (the French sentences requested were “ce n’est
normal” or “ce n’est pas normal”). After each trial, a verbal feedback was given
(“that’s right” or “that’s not right”). The same procedure was repeated for “2−1 =
1” subtraction with the impossible event “2− 1 = 2”.

After the familiarization phase, the experimental phase was started and con-
sisted of three problems (“2+1”; “3 −1” and “2−1+1”) with one possible event
and one impossible event. The order of the problems was invariant across children
and over age. The order of possible and impossible events was intermixed to avoid



B. Vilette / Cognitive Development 17 (2002) 1365–1383 1373

Table 1
Experimental trials and order of presentation

Initial display Transformation
realized

Possible event Impossible
event

Order of
presentation

+ P–I
− I–P
+ − P–I

Table 2
Proportions of correct responses on all three problems in each age group

Addition, 2+ 1 Subtraction, 3− 1 Inverse, 2+ 1 − 1

2.5 years (N = 22) .64 .14 .05
3.5 years (N = 22) .73∗ .45 .23
4.5 years (N = 22) 100∗∗ .91∗∗ .91∗∗

∗ P < .026, one-tailed.
∗∗ P < .001, one-tailed.

response bias.Table 1shows the six problems successively administrated to each
child.

The procedure was identical for the three problems. For example, in the first
trial (i.e., the addition problem “2+ 1 = 3”) the initial display (two Babar dolls)
was presented for 5 s and the children were asked to look carefully at the stage
and at what was happening. After having looked at the operation (the addition of
one Babar doll), they were asked whether what they saw (three Babar dolls) was
“normal” or “not normal”1. No verbal feedback was given.

Children’s responses to each problem was scored as correct or incorrect on the
basis of their answers on both possible and impossible events. They were credited
with a correct response (1 point) if and only if their answers were correct on both
the possible (“ce n’est normal”) and impossible (“ce n’est pas normal”) events. In
all others cases, the responses were scored incorrect (0 point). These criteria avoid
the response bias of subjects always giving the same answer irrespective of the
outcome of the event.

Do young children use the inverse relationship between addition and subtrac-
tion? In the two youngest age groups (2.5- and 3.5-year-olds), most children failed
the inverse problem (21 and 22 subjects on a total of 22 in each group, respec-
tively); whereas in the oldest age group (4.5-year-olds), most children succeeded
on the inverse problem (20 on a total of 22).Table 2shows children’s proportions
of correct responses to individual problems in the three age groups. For each con-
dition, abinomial testwas conducted to determine if children succeeded on the

1 Note that no additional justification was requested because in previous experiment (Vilette &
Mazouz, 1998), we have observed that this request inhibited children’s behavior.
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addition, subtraction and inverse problems more often than expected by chance.
The 2.5-year-olds’ performance was at chance level on all three problems. The
3.5-year-olds were successful on the addition problem, but their performance was
still at chance on the subtraction and the inverse problems. Only the 4.5-year-olds
responded correctly above chance on all three problems.

We next turned to the question about the relative difficulty of addition, subtrac-
tion and inverse problems. A non-parametric analysis was conducted to compare
the performance on all three problems. In our total sample (N = 66), 52 chil-
dren responded correctly on the addition problem, 33 children on the subtraction
problem and 26 on the inverse problem. Performance was thus significantly better
on the addition problem than on both the subtraction (X2(1, N = 66) = 6.75,
P < .0094) and the inverse problems (X2(1, N = 66) = 11.08, P < .0009).
No difference was found between subtraction and inversion. Similar results was
obtained for the 2.5-year-olds (addition vs. subtraction:X2(1, N = 22) = 6.75,
P < .0094 and addition vs. inverse:X2(1, N = 22) = 11.08, P < .0009) and
the 3.5-year-olds (addition vs. subtraction:X2(1, N = 22) = 4.17, P < .0412
and addition vs. inverse:X2(1, N = 22) = 9.09,P < .0026). On the other hand,
performance by the 4.5-year-olds was not different on the three problems.

An error analysis was also conducted to determine whether errors on the inverse
problem was due to a response bias. For example, children may have opted for
the outcome that was different from the initial display. This would lead to errors
on the inversion problem but success on the addition and subtraction problems. In
this specific case, the predominant type of error pattern would be “111100” (where
1 and 0 designate correct and incorrect reactions respectively on the possible and
impossible events for the addition, subtraction and inverse problems). The analysis
revealed no predominant type of error pattern both for the 2.5 year group and for the
3.5 year group. Error patterns were not systematic. Moreover, even if we consider
responses on each problem alone (i.e., addition, subtraction or inverse) no error
pattern (“00”, “10” or “01”) was predominant in the two age groups.

Finally, three results should be underlined. All children who succeeded on the
inverse problem (n = 26) also succeeded on both the addition and subtraction
problems. Seven children responded correctly on both the addition and subtraction
problems and incorrectly on the inverse problem. Except for one child, all chil-
dren who responded correctly on the subtraction problem also responded correctly
on the addition problem.

The major finding was the failure of 2.5- and 3.5-year-old children on the inverse
problem. Only 6 out of 44 children performed correctly on the inverse problem.
This finding is very critical in regard to a full understanding of addition and subtrac-
tion in preschool children. It does not fit well with Gelman’s accumulator model
and the claim of early arithmetic.

Even the 4.5-year-olds performance was not conclusive in this regard because
they succeeded all three problems. Only 2 out of 22 children failed the subtrac-
tion and the inverse problems. Children of this age may represent the precise
result of numerical transformations. However this capacity may be based on the
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process of one-to-one correspondence and the objects permanence as proposed
by the object-file model which need not grant arithmetic knowledge to young
children.

Poor performance on the subtraction problem by 2.5- and 3.5-year-olds may
appear flabbergastingly astonishing: only three 2.5-year-olds and ten 3.5-year-olds
performed successfully on the subtraction problem. Furthermore, if children suc-
ceeded better on the addition than the subtraction problem, the lack of near-perfect
performance on the addition problem may also appear inconsistent with previous
studies (e.g.,Cooper, 1984; Starkey, 1992; Vilette, 2002) suggesting that very
young children can solve calculation problems with small numbers. However,
poor performance on addition and subtraction corresponds precisely to the perfor-
mance expected if children do not compute the outcome in our judgment task as
they do in a production task. Furthermore, even if the greater difficulty of subtrac-
tion compared to addition is rarely emphasized (see however,Kamii, 1990; Uller
et al., 1999), it is well known that that additive transformations are easier to grasp
for young children than subtractive transformations (Cooper, 1984; Fuson, 1988;
Siegler & Robinson, 1982; Vilette, 2002; Vilette & Mazouz, 1998; see however
Huttenlocher et al., 1994; Starkey, 1992). As pointed out byKamii (1990), this may
be because addition is more natural than subtraction, and more generally because
cognition and action first operate positively and deal with the positive aspects of
situation before they deal with the negative aspects.

Overall, the results corroboratePiaget’s (1952a, 1952b)contention that chil-
dren can add or subtract correctly without understanding the inverse relationship
between addition and subtraction. If so, then young children do not reason arith-
metically since the inverse property defining the system of arithmetic is not repre-
sented. Contrary to what has been claimed by the accumulator model, it is likely
that preschoolers’ reasoning on the numerical transformations are object-based
and not number-based. A second study tested this hypothesis.

4. Provoked quantification

In order to verify that preschoolers’ reasoning on numerical transformations
are object-based, young children were tested on the inverse problem before and
after a brief exercise in which they were given the opportunity to make adding and
subtracting transformations without mentioning numerical value. Only children
who succeeded on both the addition and the subtraction problems but failed the
inverse problem (baseline criterion) were selected to participate in the study. We
expected that correct responses on the inverse problem may increase following a
training session enabling them to perform adding and subtracting transformations
in concrete situations.

Two experimental groups and two control groups were tested. In the first ex-
perimental group (hereafter referred to as the CAS group), children were asked
to make two inverse transformations of each other (one adding followed by one
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subtracting, andvice versa). This gave them the opportunity to coordinate adding
with subtracting and to infer the inverse relationship between addition and subtrac-
tion. In the second experimental group (hereafter referred to as the SAS group),
children were asked to make two successive adding or two successive subtracting
transformations. This gave them the opportunity to coordinate two identical trans-
formations and to infer the result of such transformations. In the first control group
(hereafter referred to as the NC group), children were asked to compose sets of
objects that are equivalent in number with hidden sets. This control condition gave
them the opportunity to produce numerical correspondences between small sets as
in the experimental conditions (CAS and SAS groups). In the second control group
(hereafter referred to as the NT group), children received no training of adding or
subtracting. They were simply given the inverse problem twice over (as all the
children in the other groups).

Our hypothesis is that it is possible to induce correct responses on the in-
verse problem if children are given empirical knowledge about the adding and the
subtracting transformations by manipulating small sets of objects. We expect the
children in the CAS group to succeed on the inverse task. But how to differentiate
the effect of object manipulations and the effect of the inverse knowledge involved
in CAS training? Hence the second training group in which children also generate
two successive transformations but with the same directional effect on numeros-
ity (two adding or two subtracting). If children’s correct responses on the inverse
problem are provoked by adding and subtracting manipulations without number
representations, we expect the children in the SAS group to succeed on the inverse
problem as well as the children in the CAS group. Finally, children’s performance
on both CAS and SAS groups have to be compared with the performance of chil-
dren who have not been trained in adding and subtracting manipulations. The first
control group was designed to control both the familiarization with materials and
the effects of children’s general involvement in producing the numerical corre-
spondences between sets of objects (as in the CAS and SAS groups). The second
control group was designed to control for the effects of two successive evaluations
on the inverse problem.

None of these children had participated in the first study. They came from a
middle-class population and from homes where French was the primary language.
Thirty-one children were excluded because they did not reach the baseline criterion
of the pre-test. A total of 44 children were therefore included in the sample used
in the final analysis. The mean age of the sample was 3 years 6 months and ranged
between 3 years 2 months and 4 years 1 month.

The children were shown the same wooden puppet theater and Babar dolls. In
addition, 10 miniature objects each representing a Babar elephant were used in the
training procedure.

The procedure for both the experimental and the control groups consisted of
two phases: a pre-test in which children were given the addition, subtraction and
inverse problems; and, approximately 1 week later, a post-test in which children
were re-administered the addition, subtraction and inverse problems after a block



B. Vilette / Cognitive Development 17 (2002) 1365–1383 1377

of training trials for the two experimental groups and the first control group. The
three problems were administered in the same way as in the first study. After the
pre-test, 44 children who succeeded on both the addition (2+ 1) and subtraction
(3 − 1) problems but failed on the inverse problem (2+ 1 − 1) were assigned to
four treatment groups (n = 11). The four groups were closely matched in mean
age (M = 3.6, range 3.2–4.1).

Each training conditions (CAS group and SAS group) consisted of a set of trials
of no fixed number. The training ended when the subject reached the criterion of
success. The materials used were the same in the two training conditions. At the
beginning of each training procedure, the children were shown a box containing 10
miniature objects each representing a Babar elephant. After this presentation, the
experimenter (hereafter referred to as E) placed the box on the table where it was
easily accessible to the children. They were asked to compose equivalent sets by
adding and subtracting miniature objects in two way depending of the condition
to which they were assigned.

In the CAS group, two rows of four Babar elephants were placed parallel to
each other so that both rows were of the same length and those in one row were
directly opposite those in the other. E designated the row nearest to him as his
own and the other as the child’s row and asked: “Do we have the same quantity of
Babar or not?”. Once the child answered appropriately, E said, “Now watch what
I am going to do”. Then E placed a screen between the two rows in such a way
that his row was hidden. After this, E reached behind the screen and either added
or subtracted one or two Babar elephants in the child’s row. Note that the E’s row
was never modified. The added Babar elephant came from the box placed on the
table and the Babar elephant removed was placed in the same box. Following this,
E always asked: “Now, have we still got the same quantity of Babar?. . . . Change
that to get the same quantity of Babar as me”. So, the child was asked to put the
Babar elephants back as they were before, either by adding or by removing some
in his row. After the child’s transformations, the screen was removed, and the child
was allowed to verify the numerical equivalence of the two rows. A simple verbal
feedback was given by E who said either “That’s right” when the child performed
correctly or “That’s wrong” in the opposite case.

A total of four items was administered successively in the following order:
addition of one Babar elephant; subtraction of one Babar elephant; simultaneous
addition of two Babar elephants; simultaneous subtraction of two Babar elephants.
As many trials were presented as were necessary to reach correct responses on the
four items successively. Thus, children were given the opportunity (1) to produce
inverse transformations by manipulating small sets of objects, (2) to verify the nu-
merical correspondence between two sets after such transformations, and thereby
(3) to infer the relationship between addition and subtraction.

The SAS group procedure was similar but with one major modification. After
having placed the screen between the two rows of four Babar elephants, E trans-
formed his row by adding or subtracting either one or successively two Babar
elephants and said: “Now, have we still got the same quantity of Babar? Change
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that to get the same quantity of Babar as me”. Here, the child was asked to carry out
the same operations (and not the inverse operations) that he (or she) had previously
seen. The remainder of the procedure was conducted in the same way as the CAS
procedure.

A total of four items were administered successively in the following order:
addition of one Babar elephant; subtraction of one Babar elephant; two successive
additions of one Babar elephant; two successive subtractions of one Babar elephant.
Here again, as many trials were presented as were necessary to reach correct
responses on the four items in succession. In this training procedure, children were
given the opportunity (1) to produce successively two identical transformations by
manipulating small sets of objects, and (2) to verify the numerical correspondence
between two sets after such transformations.

Only control children assigned to the NC group were administered a series
of single-phase trials similar to the experimental groups. On each trial, E placed
Babar elephants in a row with the number of Babars varying between two and four.
Then, a screen was introduced to hide the row and the children were asked to make
a row with as many Babar elephants as E had placed in the hidden row. The screen
was removed as soon as the children had finished so that they could verify the
numerical equivalence of the two rows. A simple verbal feedback was given by E
similar to that for the two experimental groups (“That’s right” or “That’s wrong”).
This procedure was repeated until the children made no errors. Thus, children in
the NC group were given the opportunity to produce equivalence relations between
two sets of the same size (as in the two experimental groups).

As expected, all children in each treatment group succeeded on the addition
and subtraction problems in the post-test as well as in the pre-test (scoring was
done in the same way as in the first study).Table 3shows the number of children
in each treatment group who answered correctly (and incorrectly) on the inverse
problem. Both control groups did poorly compared to the experimental ones.

Of the 11 children in each experimental group (CAS and SAS groups), 10
showed increases in correct responses on the inverse problem from pre- to post-test
(sign test,P < .0044). Only three children showed a similar drop in performance
respectively in the NC control group (sign test,P > .2482) and 2 children in
the NT control group (sign test,P > .4795). Correspondingly, the number of
children who succeeded on the inverse problem in the post-test was significantly
higher in the two experimental groups than in both NC (X2(1, N = 21) = 5.74,
P < .0166) and NT (X2(1, N = 21) = 8.03, P < .0046) control groups.

Table 3
Number of correct and incorrect responses for inverse problem on the post-test within each treatment
group

CAS group SAS group NC group NT group

Number of correct responses 10 10 3 2
Number of incorrect responses 1 1 8 9
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The difference between the two control groups was not statistically significant
(X2(1, N = 21) = .26,P > .6109).

Concerning the training session administered to the CAS, SAS and NC groups,
all children reached the learning criterion fixed in each procedure. The length of
training never exceeded 10 min. Although the number of trials were not precisely
recorded, the experimenter noted that the CAS training was more difficult for chil-
dren than the SAS and NC ones. However, the maximum number of training trials
never exceeded four blocks (each including four items) whatever the training group.

Since most of the children succeeded on the inverse problem in the two exper-
imental groups (10 out of 11 in CAS and SAS groups) and since most of children
failed the same problem in the two control groups (8 and 9 out of 11 in NC and NT
groups), two conclusions follow. First, 3-year-olds can make correct judgments
about inverse numerical transformations after a brief session of adding followed
by subtracting activities. Second, the beneficial effects of CAS and SAS training
only result from adding and subtracting manipulations. They can not be due to the
use of numbers because numerical values were never mentioned and counting was
unnecessary. Children never counted during the intervention.

It is also difficult to think that inversion was induced by the training sessions.
Clearly, children in the SAS group were not trained to learn the inverse property.
Even in the CAS group, this is very unlikely in view of the small quantity of train-
ing (10 min at most). Besides, as demonstrated by the results for the two control
groups, the training effects are not due to familiarization with the materials, the
opportunity to reason about numerical equivalencies, nor to the double evaluation
on the inverse problem. So, correct responses to the inversion problem are pro-
voked by an experiential knowledge of adding and subtracting. Of course, this is
not proof that children’s reasoning about numerical transformations may not be
number-based. However, the results provide evidence that non-numerical object
representations are a sufficient basis for children’s responses.

5. Conclusion

We investigated young children’s ability to reason about inverse transforma-
tions usingWynn’s procedure (1992b)adapted for preschoolers from 2 to 5 years
of age. We assumed that this investigation was necessary before asserting that
young children have a full understanding of addition and subtraction. As pointed
out by Bryant (1992), the relationship between these two operations has to be
grasped in order to understand either of them properly. The concepts of addition
and subtraction cannot be separated. Each, to a certain extent, is dependent upon
the other because a transformation is not comprehensibleper sebut only in rela-
tion to others. It is the essential reason why Piaget and his co-workers studied all
concepts as systems of reversible transformations.

Overall, the results of our both studies do not support the assumption that
preschoolers understand addition and subtraction as inverse operations before the
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age of 4 or 5 years at least. In the first study, only six 2- and 3-year-old children
out of a total of 44 correctly responded on the inverse problem. In the second
study, only twelve 3-year-old children out of a total of 75 succeeded on the inverse
problem on the pre-test. Therefore, young children’s difficulties in grasping the
inversion relation are clearly evidenced by poor performance on the “2− 1 + 1”
problem. This finding is consistent with training studies which have attempted
to induce the conservation of number by means of the reversibility of additive
and subtractive transformations (e.g.,Beilin, 1965; Schnall, Alter, Swanlund, &
Schweitzer, 1972; Winer, 1968; seeBrainerd & Allen, 1971; Vilette, 1996for
reviews). It is not before the age of 5 years that children can infer the identity
argument (nothing adding, nothing removing) to deduce the equivalence of two
sets of objects in spite of their opposite appearance. This finding is also consistent
with evidence of difficulties young children have with inverse relations in other
quantitative contexts such as fractional quantities (Sophian, Garyrantes, & Chang,
1997), continuous measures (Acredolo, Adams, & Schmid, 1984) or proportional
reasoning (Piaget, Grize, Szeminska, & Bang, 1968). So, this finding invites not
only reconsidering preschoolers’ understanding of addition and subtraction but
even their ability to manipulate addition and subtraction in numerically meaningful
ways.

In this respect, we have suggested that young children reasoning about numeri-
cal transformations might be object-based and not number-based. This alternative
is based on the current models of quantification in infancy. Some investigators
have assumed that quantitative development is guided by a domain-specific mecha-
nism (accumulator model) to represent discrete numbers and arithmetic operations
(Gallistel & Gelman, 2000; Wynn, 1998) while others have claimed that infants use
general-purpose mechanisms for quantification (object-file model) without numer-
ical representations (Simon, 1997; Uller et al., 1999). If young infants possessed
an inborn mechanism for representing small number as well as procedures for
calculating the exact result of simple arithmetic operations, this should be evident
in preschool children. The present research do not support this assumption.

The most important evidence that young children do not use number and arith-
metic principles is their responsiveness to a brief training intervention (CAS and
SAS groups) in which they carry out concrete transformations by manipulat-
ing small sets of objects. Both training procedures have in common focalizing
children’s attention on the numerical transformations and giving them the oppor-
tunity to produce these transformations without counting. The training session just
shaped children’s responses in line with their experiential knowledge of adding and
subtracting. Such experiential knowledge was sufficient to induce correct response
on the inverse problem. This doesn’t means that the children understand the in-
verse relationship between addition and subtraction but only that they managed to
juxtapose two perceived events (without coordinating them) to make correct judg-
ments about inverse transformations. That is whatPiaget (1967)called “empirical
reversibility” based on experiential knowledge and not the “true reversibility”
based on logical operativity.
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Our results are consistent with findings in the literature indicating that the
ability to calculate simple addition and subtraction problems develops gradually
throughout infancy and childhood (Cooper, 1984; Fuson, 1988; Huttenlocher et al.,
1994; Starkey, 1992; Wakeley, Rivera, & Langer, 2000). Even if children are able
to reason about numerical transformations long before the age of 4 or 5 years,
the present research shows that they do not reason arithmetically. At a minimum,
they do not fully understand addition and subtraction since the inversion principle
defining the system of arithmetic is not represented. Their ability to add and subtract
may be based on spatio-temporal representations of physical objects and the use
of one-to-one correspondence as provided by some current conceptualizations of
quantification in infancy (Simon, 1997; Uller et al., 1999) and early childhood
(Huttenlocher et al., 1994; Mix et al., 2002). If so, then, children’s earliest ability
to add and subtract does not involve the processing of number and the use of
arithmetic principles.

Of course, there is much to be learned about arithmetic development during the
preschool period. Major questions concerning this period have been ignored, in par-
ticular how does the system of arithmetic emerge from the quantitative competen-
cies of infants. The present research suggests that a non-numerical representation
of quantities and transformations develops between infancy and early childhood.
From this starting point, new questions arise. How does the number-based rep-
resentations connect to the object-based representations? What is the role of the
one-to-one mapping process in the development of both types of representation?
How does the inverse relation develop gradually with addition and subtraction over
the course of several years? How are they affected by factors such as the size of
sets, the value of adding and subtracting, or the order of transformations? These
are the new directions of research that we are pursuing in our work.
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