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> Problem • Evidence is quantified by statistical methods such as p-values and Bayesian posterior probabilities in 
a routine way despite the fact that there is no consensus about the meanings and implications of these approach-
es. A high level of confusion about these methods can be observed among students, researchers and even profes-
sional statisticians. How can a constructivist view of mathematical models and reality help to resolve the confusion?  
> Method • Considerations about the foundations of statistics and probability are revisited with a constructivist at-
titude that explores which ways of thinking about the modelled phenomena are implied by different approaches to 
probability modelling. > Results • The understanding of the implications of probability modelling for the quantifica-
tion of evidence can be strongly improved by accepting that whether models are “true” or not cannot be checked from 
the data, and the use of the models should rather be justified and critically discussed in terms of their implications for 
the thinking and communication of researchers. > Implications • Some useful questions that researchers can use as 
guidelines when deciding which approach and which model to choose are listed in the paper, along with some impli-
cations of using frequentist p-values or Bayesian posterior probability, which can help to address the questions. It is 
the – far too often ignored – responsibility of the researchers to decide which model is chosen and what the evidence 
suggests rather than letting the results decide themselves in an “objective way.” > Key Words • Mathematical model-
ling, foundations of probability, p-values, frequentism, Bayesian subjectivism, objective Bayes, reality.

1. Introduction

This paper is about the principles that 
statisticians apply to quantify the strength 
of the evidence provided by statistical data 
in favour of or against certain hypotheses. 
Most of these quantifications belong to the 
framework of statistical hypothesis tests, 
such as p-values and Bayesian posterior 
probabilities. 

Here is an example.1 Assume that there 
are two different species of Acacia trees, 
which I will call species A and B. Biolo-
gists were interested in finding out whether 
colonies of ants have any preference for one 
of the species. They first cleared the area 
around 28 trees (15 of species A and 13 of 
species B), and then they placed 16 ant colo-
nies at approximately equal distances from 
all trees. Each of these colonies then invaded 

1 | Note that examples are presented in a 
very simplified way here in order to not distract 
the reader too much from the focus of the paper; 
but see the remarks given in Sections 2 and 3 
about the extent  to which such simplifications are 
needed on the one hand, but the extent to which, 
on the other hand, they suppress potentially rel-
evant details.

a tree (apparently it can be assumed that 
never more than one colony invades the 
same tree). The experiment resulted in the 
data shown in Table 1. ►

Obviously, not all ant colonies chose the 
same species, but many more colonies chose 
a tree of species B rather than one of species 
A. The number of colonies, 16, does not look 
like a large sample size, so one may wonder 
how clear an indication this experiment 
gives that species B is generally preferred. A 
statistician can quantify the strength of evi-
dence, but unfortunately for the biologists, 
most of whom would like to have a simple 
number with a clear interpretation, the stat-
isticians have several different methods of 
doing this, which may lead to different re-
sults and interpretations, and all methods 
are riddled with conceptual difficulties. 

A constructivist may even wonder 
whether it makes sense to postulate that 
there is any (objective) truth regarding the 
general Acacia preferences of ant colonies, 
and therefore whether it is sensible at all to 
ask how strong the evidence in the data is 
about any conceivable truth. The quantifi-
cation of evidence as a general problem, as 
well as the problem of assuming a probabil-
ity model on which a statistical analysis can 

be based, are instances of the mathematical 
modelling of reality. 

Statistical quantification of evidence is 
applied in a wide variety of situations. Here 
is a collection of further, more or less typical 
applications: 

Does better street lighting reduce  �
crime?
Does potassium make a breakfast cereal  �
taste better?
Do the products of a company satisfy an  �
industrial standard?
Can it be a coincidence that many pa- �
tients died when a particular nurse was 
at work?2 

2 | The Dutch nurse Lucia de Berk was con-
victed of murder, but the decision was later re-
vised, both decisions strongly based on statistical 
arguments, see Derksen (2007).

Acacia 
species invaded Not 

invaded Total

A 2 13 15
B 10 3 13

Total 12 16 28

Ants data (from Sokal and Rohlf Table 1: 
1981: 740).
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Does homeopathy work against allergies? �
Is a new teaching method/therapy/fer- �
tilizer better than the old one?
Is the spectrum of a certain celestial  �
object compatible with a standard star 
type?
How strongly should evidence from  �
DNA analysis be weighed in court? 
In Hennig (2009), I have outlined a 

constructivist perspective on mathematical 
modelling, based on the idea that math-
ematical modelling can be seen as a tool for 
arriving at an agreement about certain as-
pects of reality, and therefore for construct-
ing a stable and consensual reality. In Sec-
tion 2, I give a brief summary of the ideas in 
Hennig (2009), including my personal ver-
sion of constructivism, on which the present 
paper will be based as well. Even though I do 
not claim any particular originality for “my” 
constructivism, which is strongly influenced 
by authors such as Ernst von Glasersfeld, 
Heinz von Foerster, Ludwik Fleck, Niklas 
Luhmann, and Kenneth Gergen, I regard 
it as a main consequence of constructivism 
that every constructivist constructs his or 
her version of constructivism. So it cannot 
be taken for granted that a concept such as 
“radical constructivism” has an objective or 
at least a clearly defined meaning within a 
given community. (My use of terms such as 
“objective” and “realist” is explained in Sec-
tion 2.)

Even among those scientists, statisti-
cians and philosophers of science who more 
or less adhere to realism, the principles 
of statistical hypothesis testing are highly 
controversial. Furthermore, the standard 
approaches to presenting and teaching sta-
tistics leave many intelligent and critical 
beginners confused and frustrated. Appar-
ent paradoxes, such as the observation that 
most professional statisticians on one hand 
do not believe that, except in the most el-
ementary and exceptional situations, the 
statistical models are “really true,” but on the 
other hand insist that any statistical method 
is only valid if its model assumptions “hold,” 
are nowhere discussed in the standard lit-
erature in a satisfactory way.

A constructivist view, as opposed to a 
naive realist one, shifts the focus of atten-
tion away from the question of “truth of the 
models.” Instead, the models and quantifica-
tions are regarded as items of personal and 

social construction of perception that may 
be adopted only temporarily in order to 
make and communicate systematic observa-
tions, without forgetting that there may be 
more relevant aspects, in personal or social 
reality, that are ignored in the model but 
may still enter the discussion of the impli-
cations and results of modelling and quan-
tification. It also highlights that and where 
personal or consensual subjective decisions 
have to be made about how to perceive and 
conceptualise reality in order to arrive at 
helpful quantifications. Quantifications of 
evidence are produced by such decisions, 
and can therefore never be fully objective. 
Accepting this instead of looking for the 
“best method” and the “correct number” 
leads, in my opinion, to a much clearer and 
less problematic view of what statistics can 
and cannot do, what is required from the 
scientists in order to arrive at meaningful 
results and what the price of quantification 
is. In this sense, I hope that a constructiv-
ist view of the statistical quantification of 
evidence also has something to offer that is 
helpful to the critical realist who struggles, 
for good reason, with the confusing way in 
which the foundations behind the statistical 
methodology are usually presented.

Based on the general ideas given in Sec-
tion 2, Section 3 comes back to the example 
above and introduces the problem of quan-
tifying evidence in more detail. Sections 4 
and 5 are devoted to the two major statistical 
approaches to quantifying evidence, namely 
p-values connected to the framework of fre-
quentist hypothesis testing, and Bayesian 
posterior probabilities.3 Frequentism and 
subjectivist and objectivist Bayesianism (as 
explained in Sections 4 and 5) are the major 
schools in the more than 100-year-old con-
troversy about the interpretation of proba-
bility and the foundations of statistics. There 
is still no agreement between these schools. 
Section 6 compares the schools from a con-
structivist point of view, focusing on the 
question of which way of perceiving and 
constructing the world they (and the addi-
tional model assumptions that are required 
for a statistical analysis) entail. This means 

3 | There are also further probability-based 
approaches not dealt with here, such as interval 
probabilities (Walley 1991) or non-Bayesian ver-
sions of the likelihood principle (Edwards 1972).

that the choice between these approaches is 
not a question of optimality or correctness, 
but should be guided by decisions on how 
the scientist wants to think about reality in a 
given situation, based on personal and social 
perceptions of the subject matter prior to the 
data analysis and the research aims. Section 
7 concludes the paper with some general 
considerations about the role of model as-
sumptions and by listing some questions 
that may serve to guide researchers when 
deciding how to quantify evidence in a given 
situation.

2. Mathematical models  
and reality

Domains of reality
Before turning to mathematical mod-

els, I will give a overview of my personal 
interpretation of constructivism as applied 
here. In Hennig (2009), I distinguished dif-
ferent domains of reality, namely “observer-
independent reality,” “personal reality” and 
“social reality.” 

1. Personal reality is the reality experi-
enced by an individual. There is a personal 
reality for every individual. It comprises 
all4 sensual perceptions, thoughts and con-
ceptions about the world. The term “con-
structivism” refers to the idea that personal 
reality is constructed by the individual, in-
terpreted as a self-organising system. As a 
constructivist, I do not interpret personal 
reality as a reflection or representation of an 
observer-independent reality outside the in-
dividual, but as a result of the self-organising 
activity of the person (see Foerster 1984 for 
a condensed overview). Construction is not 
necessarily meant to be explicit and con-
scious here; for example, a construct can be 
regarded as made up of behaviour implying 
tacit assumptions.

2. Social reality is the reality made up 
(constructed) by all4 acts of communication. 
This establishes social reality as something 
between communicating individuals, sepa-
rated from the personal reality within each 
individual. This is similar to, and inspired 

4 | The quantifier “all” is used in a definitory 
sense rather than in a sense that would suggest 
“knowing that it is really all.”
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by, the distinction in Luhmann (1995) be-
tween the psychological and the social self-
organised systems. Bearing in mind that 
there is a heated debate among constructiv-
ists about the relation between personal and 
social construction (see, e.g., Glasersfeld 
2008 and the many open peer commentar-
ies on that paper), further reflections may be 
appropriate. Obviously, following the con-
ception above, the idea of social reality (like 
all the ideas I present in this text) is my per-
sonal construct. It may be shared or partly 
shared (these words obviously refer to per-
sonal constructs, too) by other individuals. 
The text itself, as something that is meant to 
convey a meaning, is part of social reality. 
As part of my personal reality, I distinguish 
between my personal perception of the text 
(and of acts of communication in general) 
and the text itself by means of the idea that 
the text may be outside of myself in such a 
way that it is possible that other individu-
als may have a different perception of what 
I perceive to be the same text. This does not 
mean that the text belongs to any observer-
independent reality and “exists” outside any 
personal reality, but it does put forward the 
claim that the idea that there is something 
outside myself and that the text and some 
potential readers belong to it is part of my 
personal reality. It also means that the idea 
is part of my personal reality that other in-
dividuals have potentially different perspec-
tives on what I see as social reality. Like all 
authors, I write this text hoping that some 
readers will make some sense of it. This re-
quires that I assume some related personal 
constructs on their side.

Social reality can be seen as a personal 
construct, but once the idea of social reality 
is part of a personal reality, the idea of per-
sonal reality can be seen as a social construct 
(a construct in social reality, made up by 
communication) as well. Communication 
(more precisely, my perception of it) is the 
origin of my having language. It inspired me 
to all the ideas that I outline here, and to the 
very concepts of personal and social reality, 
with which I was confronted in perhaps not 
an identical but a closely related form before 
I made them explicitly my own personal con-
structs. My whole attempt to make my ideas 
more precise here is communication. It is in-
tended to contribute to social reality, to have 
an effect outside my own personal reality. 

Therefore, at least among those individuals 
for whom something like my social reality is 
part of their personal reality, it makes sense 
to refer to and analyse social reality and so-
cial constructs in their own right. By regard-
ing personal and social reality as separated 
domains of reality and by distinguishing 
personal and social construction as taking 
place in these separate domains, I think that 
it is possible to embed radical constructiv-
ism (according to, e.g., Glasersfeld 1995, fo-
cusing on personal construction) and social 
constructivism (according to, e.g., Gergen 
2000, focusing on social construction) in a 
common constructivist framework.5

various different social realities can be 
defined as belonging to different social sys-
tems, but the separation of these systems 
and realities is usually not as clear cut as 
the separation between the personal reali-
ties of different individuals. Different social 
realities are not necessarily disjoint (an ex-
change of letters discussing scientific ideas 
may be seen as belonging to a friendship 
and to science at the same time). Note that 
these constructivist concepts are themselves 
constructs that belong to certain social and 
personal realities. So how and how strongly 
certain different social systems and social 
realities are separated from each other de-
pends on the degree to which individuals 
perceive and communicate them as sepa-
rated concepts. Whereas social and personal 
reality are conceptually separate domains, 
there exists strong feedback between them. 
Individuals try to communicate personal 
constructs and these communications (to 
be distinguished from the personal con-
structs themselves) enter social reality. On 
the other hand, the personal perception of 
social interaction and communication is a 
very influential part of personal reality, and 
many personal constructs can be interpreted 
as personal adaptations of social constructs 
(this again refers to the distinction between 
personal perception of social reality and the 
idea of social reality itself that is potential-
ly perceived in a different way by different 
individuals, both of which are part of my 
personal reality and of the personal realities 
of those who make such a distinction them-
selves).

5 | Some related ideas are outlined by raskin 
(2008), Krippendorff (2008), and Baecker (2008).

3. The observer-independent reality out-
side the individual observers (called “world 
outside” later on) can be said to exist at least 
as a personal construct of those individuals 
who construct it, and as a social construct in 
the social realities in which it is communi-
cated. It is not directly accessible. regarding 
the ontological existence of a unique observ-
er-independent reality, at least my personal 
interpretation of constructivism takes an 
agnostic position. 

This means that it is not incompat-
ible with constructivism to believe that an 
observer-independent reality exists and 
that my personal constructs and the social 
constructs I am aware of have something 
to do with it. In this sense, constructivism 
is compatible with a relatively weak form of 
realism. Constructivists may want to build 
up stable and reliable personal and social 
ideas about the world outside, if they sub-
scribe to this “world outside” construct 
(which as constructivists they may or may 
not, and which also may or may not include 
the belief in the ontological existence of 
a unique observer-independent reality). I 
interpret the “scientific method” as aiming 
at an agreement about social constructs, 
which can also lead to stable and reliable 
personal constructs. With this interpreta-
tion in mind, constructivists can take part 
in science as well as realists and objectivists. 
It distinguishes constructivists from (my 
interpretation of) objectivists in that, from 
a constructivist point of view, science can 
reasonably be only about personal reality – 
and personal constructs of social reality and 
the world outside – whereas for objectivists 
it is about the observer-independent real-
ity (usually calling something “objective” 
means “observer-independent”6), and for 
them social agreement is merely a vehicle 
for achieving knowledge about it. Construc-
tivists do not think that knowing anything 
objectively is possible in the sense above, 
and to constructivist scientists, arguments 
that refer to the uniqueness of (or any other 
objectivist assumption about) the observer-
independent reality should not be accept-
able in order to enforce agreement. Apart 

6 | Weaker definitions of the term “objective” 
exist, for example related to observability and re-
producibility, that may be connected to social and 
personal realities. 
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from the philosophical issue, however, con-
structivist scientists in this sense will follow 
the same scientific standards as objectivists 
in their work, as long as these standards 
seem appropriate and suitable to achieving 
general agreement (including that of objec-
tivist scientists).7

Mathematical reality and 
mathematical modelling 
Mathematical reality is a particular and 

quite well-delimited social reality, made up 
by formal communication involving math-
ematical objects. According to the formalist 
philosophy of mathematics (see, e.g., Hilbert 
2004),8 abstract mathematical objects, con-
structed formally by axioms and definitions, 
evolved historically from the use of fingers 
and notches for counting and the use of ide-
alised geometrical shapes for thinking and 
communicating about reality (see Hennig 
2009 for more details and references; I agree 
with Glasersfeld 2006 that what is abstracted 
are mental operations and not the physical 
objects themselves that occur as sensory ma-
terial of these operations). The emergence 
of abstract and well-defined mathematical 
objects can be attributed to the desire to 
construct a domain that enables absolute 
agreement. This is explicitly apparent, for 
example, in Euclid’s axiomatic system. So 
the idea of absolute truth in mathematics 
can be explained by a historical process of 
construction that made binding agreement 
the essential aim of mathematical communi-
cation. In order to make such an agreement 
possible, mathematical objects needed to be 
defined in an abstract way, which is devoid 
of traces of individually different personal 

7 | This is certainly very different from (and 
more constructive than) the caricature that au-
thors such as Searle (1997) draw of the “postmod-
ern challenge to Western traditions.” 

8 | I do not regard formalism as the “cor-
rect” philosophy of mathematics, but as the cur-
rently still strongest element in the – not necessar-
ily consistent – social construct of the essence of 
mathematics among mathematicians. Formalism 
may be legitimately criticised, for example, for not 
giving a proper account of the intuitive aspects 
of mathematics, which according to the present 
terminology would be located outside the clearly 
delimited social mathematical reality, but inside 
many personal mathematical realities. 

perception. As with other social constructs, 
there is a strong feedback loop between the 
social mathematical reality and its personal 
counterparts. There are strong personal ad-
aptations of mathematical reality (strong in 
the sense that the individuals holding them 
ascribe high authority to them), and, on the 
other hand, the strength of social mathemat-
ical agreement is based on individual contri-
butions of intuition, doubt, and convincing 
arguments. This process was very successful 
in the sense that almost all people either 
agree with proven mathematical truths or 
regard themselves as unqualified. Within 
mathematics, “truth” can be interpreted as a 
formal construct in the sense that (accord-
ing to the formalist philosophy) truth values 
are established through axioms and trans-
mitted by transparent and formalised logic 
and proof techniques. Therefore, the math-
ematical concept of truth is much less prob-
lematic, in terms of social agreement, than 
informal objectivist truth claims concerning 
the observer-independent reality. 

Mathematical modelling consists of as-
signing mathematical objects to (personally 
or socially) real entities.9 usually it is applied 
in order to interpret mathematical truths 
about the mathematical objects as informa-
tion about the modelled real entities (a stan-
dard example is the use of the mathemati-
cally derived physical laws in engineering). 
Quantification of evidence is an instance of 
this; it assigns numbers to the social or per-
sonal construct of “the strength of evidence 
that certain observations carry in favour of 
or against something unobserved that may 
or may not be true.” “Truth” here is informal 
and therefore potentially controversial, and 
may refer to constructs of  “existing aspects 
of the world outside unknown to the ob-
server,” “uncertain implications of a system 
of personal or social constructs,” or “ideas 
that will be useful to hold in the future.” 

But how do we arrive at mathematical 
objects in the first place? This is the basic 
problem of mathematical modelling, i.e., 
the impossibility of formally analysing the 
assignment of non-abstract personal or 

9 | Note that this use of the term “model” is 
different from the one in mathematical model 
theory, see, e.g., Manzano (1999). The latter one is 
fully formal and therefore belongs, according to the 
terminology here, fully to mathematical reality. 

social constructs to mathematical objects. 
Non-abstract constructs are, by virtue of 
being non-abstract, essentially different 
from mathematical objects. Furthermore, 
it is inherent in the process of abstraction 
that some properties of the constructs to 
be abstracted have to be cleared. Many re-
alists hope that mathematical models allow 
insights into observer-independent real-
ity, because mathematical truths seem to 
be observer-independent. But the strong 
agreement about mathematical truths can 
be explained as a result of the construction 
process of mathematics. Formal truth about 
mathematical objects is only informative 
about the modelled non-abstract objects to 
the extent that individuals and social sys-
tems treat the modelled objects in an abstract 
way. This involves suppressing all aspects of 
personal and social reality that are lost in 
abstraction. In other words, mathematical 
modelling is a way of thinking about, and 
operating on, reality, which here may mean 
quite general aspects of personal and social 
reality including the world outside, but it is 
not a way of getting closer to the observer-
independent reality. Quite often individuals 
and social systems attach more authority to 
the results of mathematical modelling than 
these results deserve. The idea that science 
aims at agreement and stability makes the 
use of mathematical modelling as part of 
the scientific method seem natural. How-
ever, general science is not restricted to what 
can be formalised, and therefore it cannot 
rely on mathematical truth but has to deal 
with the basic problem of modelling as well, 
which requires negotiation about and ex-
change of differences between personal and 
social realities. 

regarding the history of mathematical 
modelling, in Hennig (2009), the following 
pattern has been observed: abstract math-
ematics evolved from re-organising some 
practical operations; first, mathematics and 
the practice from which it arose were not 
considered to be separate; the Greeks started 
to consider mathematical objects as a differ-
ent, more ideal domain of reality; only much 
later, starting with modern science, was al-
ready existing abstract mathematics deliber-
ately used to model objects and operations 
that historically had not been connected to 
mathematics. Mathematical modelling may 
therefore be considered as thinking about 
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modelled non-abstract constructs in terms 
of those operations that gave rise to the 
mathematical structures. In this sense, it is 
metaphorical thinking.   

Most discussions about mathematical 
modelling in scientific contexts focus on 
the question of whether the models “really 
hold.” From a constructivist point of view, 
this can never be decided independently of 
the observing system. Hence a different set 
of questions becomes relevant: 

What is the pragmatic aim of the ��
model, and is it constructed in order to 
achieve this aim? In Hennig (2009), I list 
several aims and potential benefits of math-
ematical modelling apart from “approximat-
ing objective reality,” such as improving mu-
tual understanding, stimulating creativity 
and decision support. 

Which aspects of the respective re-��
alities of involved individuals and social 
systems are not captured by the model? 
What implications does this have? Asking 
this question does not mean that all aspects 
should always be included because this is 
generally impossible due to the nature of ab-
straction and the limited complexity that can 
be handled mathematically. My impression 
is that a major problem with the objectivist 
way in which mathematical models are usu-
ally discussed in scientific practice is that dif-
ferences between model and modelled real-
ity tend to be swept under the carpet because 
the existence of such differences is usually 
regarded as a weakness of the model.

What are the implications of thinking ��
about and communicating the concerned re-
ality in the way implied by the mathematical 
model? The feedback of mathematical mod-
elling to the personal and social realities of 
those involved should be acknowledged. Is 
this desirable in the given situation?

3. Quantification of evidence

Quantification of evidence is an in-
stance of mathematical modelling. It con-
nects direct perceptions to (more or less) 
general statements or theories such as “ant 
colonies do not prefer any particular Acacia 
species.” Quantitative or categorical data are 
the perceptions with which statistics deals. 
Measurements are general operations of 
transformation of socially real items into 

mathematical objects. They produce data. 
For example, a count is a (rather basic) 
measurement.

The term “direct perception” requires 
some clarification. I treat as a widely held 
social construct that it is possible to dis-
tinguish between what is directly, “mate-
rially” observable and what is not directly 
observable, but may still be real (in a cer-
tain domain of reality, see above). This 
construct is based on the (usually) strong 
agreement about what is directly observ-
able in a given situation. It depends, how-
ever, on observer-dependent constructs 
such as the delimitation of Acacia species. 
The data in Table 1 were directly observable 
at the time of the experiment, assuming a 
clear definition of the categories. In some 
instances, not only is the definition of the 
measured values observer-dependent in a 
non-trivial way, but also how they are re-
lated to the issue of interest. For example, 
there are various personal and social con-
structs of intelligence around, and depend-
ing on these constructs, the IQ may be seen 
as a measurement of “general intelligence,” 
certain aspects of intelligence, or inappro-
priate for any reasonable measurement of 
intelligence (but possibly still appropriate 
for measuring another potentially interest-
ing property of the test person such as fit-
ness for certain jobs).

When quantifying evidence, the extent 
to which data support a statement like “ant 
colonies do not prefer any particular Aca-
cia species,” which does not refer to direct 
perceptions, is expressed by a hopefully eas-
ily interpretable and comparable number.10 
This obviously assumes that it makes sense 
to believe, or at least to act as if, ant colonies 
either do or do not prefer a particular Aca-
cia species, so it assumes a construct of a 
“not directly observable reality, about which 
observations are informative though not 
necessarily conclusive.” I do not see prob-
lems with this from a constructivist point of 
view, but it is probably helpful to acknowl-
edge it because constructivism does not 
take the objective existence of such a reality 

10 | In some cases evidence is evaluated con-
cerning statements that refer to events that are 
constructed as “directly observable in principle, 
but not actually observed by those who evaluate 
the evidence,” such as “Mrs B is a murderer.”

for granted – personally and socially, it ex-
ists if and only if it is constructed.

In many cases, the pragmatic aim of the 
quantification of evidence is decision sup-
port, as illustrated in the following example. 
Table 2 shows the results of a study on coffee 
consumption and coronary heart disease in 
men aged 40–55 employed by the Western 
Electric Co., Chicago, after eight years of fol-
low-up. One obviously observer-dependent 
element of these counts is the class defini-
tion of “heavy coffee drinking” with a cutoff 
value of 100 cups/month. The reader may 
wonder whether more precise information, 
namely the number of cups/month for ev-
ery single observed person, should be used, 
but it is conceivable that the actual measure-
ment procedure for this would seem to be 
much less reliable than the given assignment 
to just one of two classes.

The question of interest is whether, 
speaking in constructivist terms, it is sen-
sible to construct coffee consumption as a 
cause of coronary heart disease.11 The results 
of this study may, for example, be used for 
deciding whether people should be advised 
to limit their coffee consumption or whether 
it makes sense to try to produce less harmful 
coffee. But it is not only relevant to decide 
whether people should limit their coffee 
consumption or not, but also to have an idea 
of how conclusive the evidence actually is. 
Should more observations be made before 
any recommendation is given? If further 
observations are made, what weight should 
the present study have compared to others? 
In order to address these practical questions 

11 | Much more comprehensive evidence 
concerning this question is available in the litera-
ture, which I omit here to keep things simple; fur-
thermore, I disregard the question of “effect size” 
that would be relevant in practice.

≥ 100 
cups/

month

< 100 
cups/

month
Total

CHD 38 39 77

Non-CHD 752 889 1641

Total 790 928 1718

Coffee consumption and Table 2: 
coronary heart disease. Data taken from 
Greenland & Mickey (1988: 338), original 
study by Paul (1968). 
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transparently and to support general agree-
ment, a number quantifying the strength of 
evidence would be helpful.

The ant preferences data do not seem 
to address an immediate practical decision 
problem. A number quantifying the strength 
of evidence could be used for communicat-
ing the “message” of the table regarding the 
question of interest more efficiently, contrib-
uting to a larger body of scientifically agreed 
knowledge in the field that at some point can 
be used for decision support or other aims. 
There is a clear difference between “con-
structivistically valid” aims, concerning de-
cisions, behaviour, and personal and social 
construction processes and the aim to “find 
out whether the statement is really true.”

“Strength of evidence” is an abstract 
construct. It is not directly connected to op-
erations that initiated mathematical objects, 
and therefore it cannot be expected to be 
quantifiable in a straightforward way. Mea-
surement theory is generally concerned with 
quantifications. There are various different 
approaches to measurement theory (see, e.g., 
Hand 1996). The one that is probably the 
most popular, “representational measure-
ment theory,” requires a numerical system to 
represent an assumed (already formalised) 
empirical relational system (ErS) of objects 
to be quantified. For some other approach-
es mentioned in Hand (1996), such as the 
“classical theory of measurement,” require-
ments are even stronger. On the other hand, 
the “operational theory of measurement” is 
rather concerned with the precise definition 
of quantifications and the relations implicit 
in this definition while not being restrictive 
in terms of interpretation. Questions such as 
deriving admissible transformations of mea-
surements from the ErS are relevant for the 
former approaches but not for the latter one. 
Constructivists need to acknowledge that no 
ErS can be objective but would always de-
pend on the personal and social constructs 
of empirical relations. Furthermore, con-
structivists would regard the ErS itself as a 
formal model and would therefore keep in 
mind that the representation of the ErS by 
numbers may not cover all relevant aspects 
of the measurement to construct. A benefit 
of a constructivist interpretation of represen-
tational measurement theory is that it relates 
such constructs explicitly to quantifications, 
though there is no reason for constructivists 

to accept it as a universal dogma about how 
measurements should be related to reality. 
However, for the lack of connection to di-
rect observations and obvious operations, 
an ErS seems to be difficult to construct for 
the “strength of evidence.” 

A possible starting point for setting up 
an ErS is to analyse how people assess the 
strength of evidence informally. If consider-
ations can be restricted to 2 ⨉ 2 contingency 
tables, it will be possible to start with some 
– for reasons of simplicity, somewhat im-
precise – axioms such as “assuming that the 
marginal totals remain constant, evidence 
against independence of rows and columns 
is the stronger, the more the row-wise rela-
tive frequencies for the columns deviate 
from the marginal relative frequencies for 
the columns” or “assuming that the row-
wise relative frequencies for columns deviate 
from the marginal relative frequencies for 
the columns, and all of these are constant, 
evidence against independence is the stron-
ger, the larger the overall number of obser-
vations.” using such axioms is an attempt 
to formalise the way that “rational people” 
think about a construct. In some cases they 
may lead to an exhaustively specified math-
ematical model. (As will be illustrated later, 
a scientific discussion about what “rational” 
denotes in this respect is necessary as it is by 
no means straightforward.)

Statistical evidence in general is con-
cerned with all kinds of different types of data 
(for simplicity, the examples in the present 
paper only concern 2 ⨉ 2 tables), and there-
fore a direct axiomatic approach would be 
quite cumbersome. However, the problem of 
quantifying the tendency of certain events to 
happen under uncertainty is closely related, 
and this is modelled by the probability cal-
culus, which itself is based on axiomatic con-
siderations about relative frequencies and has 
been applied to very general types of events 
and data. Therefore, most approaches to the 
quantification of evidence use probabilities, 
which can at least be properly related to an 
ErS for relative frequencies, even though it 
is not immediately clear that this ErS is ap-
propriate for “strength of evidence” as well. 
There is no scientific agreement about the in-
terpretation of the probability calculus, and 
it can be used in different ways to formalise 
apparently rationally the strength of evidence 
(as discussed in Sections 4–6).

Most of the remainder of the paper 
deals with the evaluation of evidence from 
data based on probability models.12 In this 
regard, it is important to keep in mind that 
by virtue of being mathematical objects, the 
data as well as the probability models differ 
from the personal and social constructs that 
are really of interest. Knowledge about how 
precisely the ant preference experiment was 
carried out, for example whether and how 
interaction between ant colonies was pre-
vented, is relevant to deciding whether the 
data could be seen as a reliable source of evi-
dence. For the coronary heart disease data, 
one problem is that it cannot be taken for 
granted that statistical dependence between 
rows and columns can be interpreted as in-
dicating causality. It is for example conceiv-
able that an unobserved confounding factor 
causes both the desire to drink a lot of coffee 
and susceptibility to coronary heart disease. 
There are scientific principles to back up a 
scientist’s decision to regard some problems 
as irrelevant, such as controlled randomised 
trials for confounding factors. However, dif-
ferences between model and personal and 
social realities can never be completely re-
moved (data from a controlled randomised 
trial are obviously observed under circum-
stances that deviate from the uncontrolled 
realities to which the results are to be ap-
plied) and are ignored by the statistical 
method. This is an important factor when 
interpreting statistical results.

An essential aspect of the statistical ap-
proaches discussed here is that they attempt 
to quantify evidence in a unified way regard-
less of the subject matter. Computations are 
only based on the data, cleaned of their 
meaning, and the probability models under 
examination. This kind of unification may be 
seen as an aim in itself, and it may also sup-
port communication between disciplines. 
However, it is not clear, and is a matter of 
case-wise negotiation, whether it is appro-
priate to treat very different subject matters 
in the same way. For example, the applica-
tion of probability models may be assessed 

12 | Generally, probability models are de-
fined as [0, 1]-valued functions on certain systems 
of sets, interpreted as “events,” that obey Kolm-
ogorov’s (1933) axioms such as additivity, which 
are derived from empirical properties of relative 
frequencies. 
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differently depending on whether situations 
are concerned that can be interpreted as rep-
etitions of more or less identical conditions 
such as routine tests of the quality of prod-
ucts produced under very similar conditions, 
or singular situations such as somebody be-
ing suspected of murder. An implication of 
the unification is that it tempts researchers 
to separate the statistical work from the 
subject matter expertise. very often, when 
statisticians collaborate with subject mat-
ter researchers (or when the researchers use 
statistical software), subject matter expertise 
is used for deciding whether the data prop-
erly reflect the issue of interest, setting up 
the model, and deciding whether the model 
assumptions are regarded as sufficiently ful-
filled (see Section 7 about a constructivist 
view of the role of model assumptions), but 
apart from this, statistical calculations are 
carried out in an abstract way without mak-
ing reference to the meaning of the data, 
and the researcher does not worry about 
not understanding them. Statistics is often 
expected to come up with some kind of “ob-
jective result” for which the researcher does 
not have to assume responsibility. But the 
actual way data are statistically processed 
implies certain ways of thinking about the 
subject matter and therefore reveals certain 
ways of constructing it. If computations are 
treated as separated from meaning, what 
they imply and how they transform mean-
ing remain opaque. Therefore it seems to be 
desirable that the statistician and the subject 
matter researcher attempt to have a shared 
understanding by using knowledge of both 
areas.13 The constructivist way of discussing 
the quantification of evidence may even be 
useful for realists because it explicitly em-
phasizes where observer-dependent deci-
sions have to be made. Its focus on the ques-
tion of agreement between observers makes 
more transparent where and why stronger 
or weaker agreement can be expected (re-
lated to what is constructed as “directly 
observable”), what has to be negotiated, 
and to what extent disagreement cannot 
be expected to disappear. I think that one 
does not need to be a constructivist to see 

13 | Since, however, this paper focuses on 
statistical aspects, much potentially relevant sub-
ject matter knowledge about the example data will 
have to be ignored here.

the benefit of this. Furthermore I also think 
that the realist focus on objectivity encour-
ages researchers to ignore the problems of 
observer-dependence and differences be-
tween personal and social realities, and that 
this ignorance is responsible for much of the 
confusion about statistics. 

4. Frequentist p-values

How p-values work
In order to quantify the evidence 

against an independence hypothesis in a 
2 ⨉ 2 table – such as the hypothesis in Ta- table – such as the hypothesis in Ta-
ble 1 that ants do not prefer any of the two 
Acacia species – statisticians use a standard 
probability-based method, namely a p-val-
ue from Fisher’s exact test of independence 
(Fisher 1935).

The general idea behind p-values and 
statistical significance tests is to address the 
question “Could the given data have oc-
curred by chance?” Depending on the prob-
lem at hand, “by chance” may have different 
meanings. When testing independence in 
a 2 ⨉ 2 table, “by chance” refers to a situa- table, “by chance” refers to a situa-
tion in which the row and column variable 
(Acacia species and ant invasion) are inde-
pendent. In other situations it may mean: 
“application of homeopathy does not, on 
average, change an allergy indicator” or “all 
nurses have the same probability of their 
patients dying.” More complex constructs 
are also possible: “all nurses’ probabilities 
of their patients dying depends only, and in 
the same way, on how their work shifts are 
organised.”

It is then necessary to set up a probabil-
ity model for “by chance,” so that the prob-
ability can be evaluated that something that 
is as “far away” as the given data from what 
would be expected under the model could 
have occurred if this model holds. under 
the not unproblematic but standard addi-
tional assumption that what the ant colo-
nies do is independent of each other, it is 
straightforward to set up such a model for 
the situation in Table 1. Table 3 shows the 
expected frequencies under such a model, 
given the marginal totals.14  

14 | Fisher’s approach treats the marginal 
sums as fixed, as opposed to the famous approach 
of Neyman & Pearson (1933), which, in the given 

Given the fixed marginal totals, Table 
1 can be entirely reconstructed from the 
value of a single cell. Therefore it suffices to 
ask whether the fact that only two trees of 
species A were invaded by ants is compati-
ble with the model that expects, on average, 
6.4 in this cell. This leads to the so-called 
“hypergeometrical distribution,” which was 
originally developed for urn problems. The 
situation is equivalent to computing the dis-
tribution of the number of black balls when 
drawing 12 balls (invaded trees) from an 
urn with 15 black (species A) and 13 white 
(species B) balls. Therefore, it can be said 
that using this model amounts to thinking 
about the ant colonies as if they were balls 
from such an urn.

The probability that two or fewer black 
balls are drawn in this situation is 0.001. 
This is the “one-sided p-value.” It is obvi-
ously a very small value and can be inter-
preted by saying that the observed data are 
quite incompatible with the model, or, in 
terms of quantification of evidence, that the 
data provide strong evidence against the 
hypothesis that the ants do not prefer any 
species, and not species B in particular.

The corresponding computation for 
the data in Table 2 yields a probability of 
0.31 for having 38 or more CHD cases 
among 790 heavy coffee drinkers if these 
are drawn out of a population of 77 CHD 
and 1641 non-CHD individuals under in-
dependence. p = 0.31 is not very small and 
it is therefore well conceivable that such a 
distribution is observed if the model holds. 
In other words, there is no evidence against 
independence.

Two things are worth noting. Firstly, the 
method depends on probabilities for events 

situation, would make things much more compli-
cated and will therefore be omitted in the present 
paper. In general, however, it is based on the same 
underlying principle, only using an additional op-
timality criterion. 

Species Invaded Not invaded Total

A 6.4 8.6 15
B 5.6 7.4 13

Total 12 16 28

Expected frequencies given the Table 3: 
marginals under the independence model.
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that did not actually happen. Not only is the 
probability for 2 invaded A trees computed, 
but the sum of the probabilities for 0, 1 and 
2 invaded A trees. In the coffee example, the 
probability for the precise result, 38, is 0.07, 
which is much smaller than the p-value 
above. But this probability is not useful un-
der the logic discussed here because if there 
are many possible outcomes, the probability 
for any precise outcome will be small. This 
in itself, however, cannot be reasonably 
interpreted as evidence against the model. 
Therefore, the p-value is the probability that 
under the model something happens that is 
as far or farther away from what is expected 
than what was actually observed. Some stat-
isticians find it counter-intuitive that under 
this conception, for example, the result of 
2 in the ants example would be defined to 
provide weaker evidence against a model 
under which 2 had the same probability 
as before but the unobserved values 0 and 
1 had higher probabilities. A controversial 
discussion about this is going on among 
statisticians and philosophers of statistics, 
and as far as I know, almost all protagonists 
hold that this intuition is either “correct” 
or “wrong.” From a constructivist point of 
view, it can be observed that the inclusion 
of probabilities of unobserved events entails 
a certain way of looking at the situation, 
in which rather “the observation is much 
smaller than expected” than “the observa-
tion is 2” counts. It is certainly legitimate to 
point out that this view may have odd con-
sequences. unfortunately, the opposite view 
based on the so-called “likelihood princi-
ple,” which holds for Bayesian statistics, as 
examined in Section 5, may have similarly 
odd consequences in other situations (see, 
for example, Mayo & Kruse 2001, Davies 
2008). There is no objective way to decide 
the issue. It seems much more helpful to ac-
cept that different intuitions exist and to ex-
plore what they imply in order to negotiate 
case-wise decisions.

Secondly, a decision is needed on 
whether the p-value should be evaluated in 
a one-sided or a two-sided way. Above, one-
sided probabilities were computed: only 
whether the number of colonies A trees un-
der the model could have been 2 or smaller 
was taken into account. But the outcomes, 
11 and 12, are farther away than 2 from the 
expected value of 6.4 as well, only they are 

not smaller but larger. Adding these proba-
bilities yields a two-sided p = 0.0018, which 
is still very small, but situations are conceiv-
able where different conclusions would be 
drawn from one- and two-sided p-values. 
The decision as to whether a one- or a two-
sided p-value should be used depends on 
the focus of interest. Is the research ques-
tion rather whether the ants prefer species 
B (one-sided question)? If the data indicate 
that species A is preferred, this would not 
count as evidence against the model be-
cause independence and preference for A 
are identified in terms of interpretation). Or 
is it whether they prefer either of the two 
species (two-sided question)? Generally, sig-
nificance tests and p-values do not depend 
only on the null (“chance”) hypothesis, but 
also on an alternative hypothesis of inter-
est – even though in practice it may happen 
that data may be compatible neither with 
the null hypothesis nor with the alternative. 

To summarise, the quantification of ev-
idence based on p-values has four require-
ments:

A “null model” usually formalising  �
“chance” or “no effect” 
An alternative model formalising the  �
direction of deviation of interest from 
the null model 
A statistic to measure how far away the  �
observed data are from what is expect-
ed under the model in the direction (or 
directions) of the alternative 
The mathematical derivation of the dis- �
tribution of this statistic under the null 
model. 
The p-value is the probability under 

this distribution that the statistic is as far 
or farther away from the expected value 
under the null model than observed value. 
The smaller the p-value, the stronger the 
evidence against the null model. Large p-
values do not provide evidence against the 
null model. p-values are “large” if they do 
not make the observed value of the statis-
tics seem very unlikely; normally any value 
above 0.1 is interpreted to be “large.”

It is crucial that a large p-value by no 
means indicates that the null model is true. 
This does not have anything in particular to 
do with constructivist philosophy. Even as-
suming that there is a true model, it has to 
be accepted that data that are perfectly com-
patible with the null model are also compat-

ible with many other models. p = 0.31 in 
the coffee example by no means excludes 
the possibility that strong coffee drinking 
slightly increases the risk for CHD, so weak-
ly that  this cannot clearly be seen from the 
data at hand. Furthermore, p-values may be 
affected by violations of the model assump-
tions that are not related to the intended in-
terpretation – for example, the dependence 
between ant colonies or a common unob-
served factor behind both coffee consump-
tion and CHD. This means that self-critical 
thinking about conceivable effects of real 
aspects ignored in the model and a careful 
experimental design are required. 

The concept of p-values is based on an 
interpretation of probabilities as something 
that governs the observed phenomena. 
Probabilities are constructed as modelling 
an aspect of the “world outside” the ob-
server (which may mean an objective world 
outside to a realist, or a personally and so-
cially constructed one to a constructivist). 
The most prominent interpretation of prob-
abilities referring to the world outside is 
frequentism, and p-values are usually inter-
preted in a frequentist way. However, as il-
lustrated in Section 5, not all interpretations 
of probability refer to the “world outside.” 

The frequentist interpretation  
of probability
Like all interpretations of probability, 

frequentism is a way to connect the prob-
ability calculus to reality.15 The basic idea 
of all frequentist approaches to interpreting 
the probability P(A) of a set A is as follows. 
Imagine that there is an experiment that can 
be repeated in an identical and independ-
ent way. The outcomes of the experiment 
are measurements. Let A be a subset of the 
set of possible outcomes. Imagine that the 
experiment is carried out n times, n con-
verging to infinity. Imagine further that the 
frequency of outcomes in A, divided by n, 
converges to a limit. This limit is interpreted 
to be P(A). 

Obviously this idea is an idealisation. 
It requires ignoring conceivable sources 
for dependence and non-identity – actually 
whenever two executions of the experiment 

15 | See Section 6 for a historical note on the 
idea of separating the probability calculus from its 
interpretation.
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can be distinguished, strictly speaking they 
cannot be identical. Furthermore, infinitely 
many repetitions cannot be observed and 
therefore probabilities cannot be observed. 
This implies particularly that, even under 
an objectivist idea of material existence, it 
is not observable whether probabilities ex-
ist. relative frequencies for finite repetitions 
of experiments perceived to be sufficiently 
identical and independent are observable 
and can be interpreted as “approximations” 
of probabilities. From a mathematical point 
of view, however, this is not valid, because 
a limit point of a mathematical sequence 
is invariant against arbitrary alterations of 
any finitely long subsequence. Frequentism 
has often been criticised for these problems 
(Finetti 1970, Howson & urbach 2006). Its 
defence, usually carried by realists, led to 
several variants of frequentism, but most ar-
guments about the (approximately observa-
ble) existence of frequentist probabilities in-
volve the law of large numbers and are open 
to charges of circularity. The law of large 
numbers is a fundamental theorem of the 
probability calculus and states that, assum-
ing independence and identity of repetition 
of an experiment, the relative frequency of 
the observation of A converges in a proba-
bilistic sense to P(A).16 It even gives bounds 
for the difference between P(A) and a rela-
tive frequency for a fixed n that can only be 
exceeded with a very small probability, so 
that it can make the connection between 
probabilities and relative frequencies for fi-
nite repetitions precise in some sense. How-
ever, the law is itself formulated in terms of 
probability. “Independence” and “identity” 
are used with their probability theoretical 
formal meanings, and thus are not identi-
cal to their intuitive meanings, but rather 
mathematical models of them.17 As a con-

16 | Actually there is more than a single such 
law in probability theory but I avoid here the sub-
tleties of discussing their differences.

17 | In what is probably  the most well-
known reference for the foundations of fre-
quentism, Mises (1928) avoided the terms “in-
dependence” and “identity” as basic concepts for 
his version of frequentism in order to avoid cir-
cularity. However, his own suggestion, attempt-
ing to formalise the same intuition, was riddled 
with difficulties as well and did not gain general 
acceptance.

sequence, its interpretation needs to assume 
already a probability interpretation. 

I maintain that, when attempting to 
make precise the connection between math-
ematical models of relative frequencies of 
experimental outcomes under uncertainty 
and reality, circularities cannot be avoided 
because if the outcome of an experiment is 
uncertain, it is also uncertain how closely 
the corresponding relative frequencies un-
der repetition will match any conceivable 
value of a probability. Whatever is observed 
cannot prove or disprove any limiting value 
for relative frequencies, but the implications 
of the law of large numbers for finite n can 
be tested – using the probabilistic methods 
for quantification of evidence.

From a constructivist point of view, 
the objections against frequentism are not 
severe, because constructivists are not con-
cerned about the most critical issue, i.e., 
establishing the observer-independent ex-
istence of probabilities. For a constructiv-
ist, adopting a frequentist interpretation of 
probability means treating a situation – at 
least temporarily – as if it were a realisa-
tion of an experiment that can be repeated 
infinitely many times in identically inde-
pendent ways obeying the rules of probabil-
ity theory. Following von Foerster’s (1984) 
ideas about stable constructs as eigenvalues 
of self-referential behaviour, constructiv-
ists can accept that they have to live with 
the kind of circularities encountered above 
if they want to establish concepts such as 
quantitative values for uncertainty and evi-
dence. Frequentism becomes a particular 
way of perceiving and analysing situations 
in which uncertainty arises. It can be tem-
porarily adopted but is not right or wrong 
or good or bad in any objective sense. What 
needs to be decided is whether it serves the 
aim of the data analysis in the given situ-
ation properly or not. Assuming that the 
model holds, the constructive power of 
frequentist models is that it is possible to 
mathematically describe what pattern of 
outcome can be expected, and this can al-
ways be compared with some observed re-
ality. In order to learn from such a model, it 
is not necessary to assume it to be the “true” 
one. 

Frequentist interpretation  
of p-values
Interpreting p-values in a frequentist 

way means that the whole experiment (ob-
serving all 28 ant colonies, or all the indi-
viduals in the coffee dataset) is constructed 
as repeatable. In the ant example, the p-value 
then gives the expected relative frequency, 
under infinite identical and independent 
repetition, of observing 2 or fewer invaded A 
species trees under the null model. It is up to 
the researcher (and her audience) to decide 
whether this is a reasonable construct. Such 
an experiment can certainly be repeated, 
though whether it is convincing to model 
these repetitions as independent and identi-
cal depends on the precise conditions. The 
model-implicit treatment of the ant colonies 
as independent of each other seems more 
doubtful to me, but such things can more 
convincingly be assessed by the subject mat-
ter experts.

A very frequent misinterpretation of p-
values is that they give the probability of the 
null hypothesis being true (“the probability of 
the occurrence of CHD being unaffected by 
heavy coffee drinking is 0.31”). It has been ar-
gued, particularly by Bayesians, see Section 5, 
that researchers really should be interested in 
this latter probability, because this would be 
a direct measurement of whether the model 
should be believed or not, given the available 
evidence. The p-value is only a rather indi-
rect indication of the strength of evidence, 
because the information on how likely the 
observed outcome is under the model does 
not tell the researcher directly how valid the 
model is. under the frequentist interpreta-
tion, however, a probability for the model to 
hold does not make sense except under the 
rather curious construct of a repeatable de-
velopment of the observable world so that the 
null model is true in a constant limiting rela-
tive frequency of cases. The frequentist idea is 
that the model either holds or not, unknown 
to the researchers, and that probabilities de-
scribe what the model does, but not how the 
researchers should think about it. As said be-
fore, even an arbitrarily high p-value cannot 
exclude the possibility that many other mod-
els are compatible with the observed data as 
well. This also implies that p-values are not 
unique as a frequentist way of measuring the 
strength of evidence, though they are by far 
the most popular one.
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5. The Bayesian approach

Bayesian interpretations  
of probability
Bayesian posterior probabilities are the 

most widespread statistical alternatives to 
p-values. Their adherents claim that they 
have two major advantages over p-values. 
Firstly, they deliver a value P(H0), H0 being 
the null hypothesis, which apparently al-
lows direct interpretation as the “probability 
that the null hypothesis is true,” as opposed 
to p-values. However, to some extent this is 
a misinterpretation as well, see below. Sec-
ondly, their computation does not involve 
probabilities of unobserved events. 

Before carrying out Bayesian computa-
tions, it makes sense to discuss how Baye-
sian probabilities are interpreted. Bayesian 
statistics is named after Thomas Bayes’s 
(1763) Theorem. Omitting some formal de-
tails and assuming that H0 and H1 together 
cover all possibilities, Bayes’s Theorem 
roughly states that 

“p.i.” stands for “prior information,” “|” 
stands for “conditionally on.” Note that 
all probabilities are interpreted in Bayes-
ian statistics as conditional probabilities 
“P(A | some information)” but some con-
ditions are usually omitted by “lazy nota-
tion”: P(H0 | data) would be more precisely 
denoted by P(H0 | data & p.i.), and P(A), as 
I will use it below, implies conditioning on 
the state of information in the given situa-
tion, whatever it is. In the context of objec-
tive Bayes, the case of “no prior information 
available” is looked at later, which in the for-
mula above can be interpreted as a special 
case of p.i.

Bayes’s work was only published after 
his death, and it is quite brief about the in-
terpretation of probability. Therefore there 
is no agreement about Bayes’s own inter-
pretation, and his name is nowadays used 
for different interpretations. In this paper, I 
concentrate on the two most popular ones, 
often branded “subjectivism” and “objective 
Bayes.” Both of them have in common that, 
as opposed to frequentism, probabilities do 
not model a world outside, but a “rational 
strength of belief ” of an individual in the 

occurrence of a certain event. In the objec-
tive Bayes approach, the individual is ideal-
ised to be unbiased by any prejudice and the 
probability value is assumed to be uniquely 
determined by the available information. In 
subjectivism the probability value is allowed 
to depend on the individual. 

Not knowing whether A will occur (or 
has occurred) or not, the probability value 
P(A) can be interpreted as the fair “betting” 
rate in a gamble where the individual gets 1 
unit back if A occurs but nothing if A does 
not occur. Assuming that the individual can 
be forced to bet either on or against A, op-
erationally this means that the individual 
will bet on A if a rate below P(A) is offered 
to her, and against A with one minus the of-
fered rate, otherwise. In this way, at least the 
subjectivist Bayesian interpretation can be 
linked to the individual’s behaviour.

The problem with the expression P(H0) 
is that such an approach does not allow re-
garding H0 as a frequentist probability model 

that could be true or false in the world out-
side the individual. Therefore, P(H0) cannot 
be the “probability that H0 is true” under 
Bayesian interpretations either (but is often 
misinterpreted in this way). The most im-
portant proponent of an operationally sub-
jectivist interpretation was Bruno de Finetti 
(1970), who stressed that the expression P(A) 
only makes sense for events A for which it is 
possible to decide later – by future observa-
tions – whether A has occurred or not. This 
does not apply for probability hypotheses in 
the sense discussed above. Finetti’s interpre-
tation of P(H0) is indirect. When assigning 
probabilities to events A of which the occur-
rence can be observed in the future, they can 
be computed by P(A) = P(A | H0) P(H0) + 
P(A | H1) P(H1), so that P(H0) and P(H1) be-
come technical devices for computing P(A). 
A more careful direct interpretation of P(H0) 
is that with probability P(H0), it makes sense 
to compute Bayesian probabilities for events 
observable in the future as if they were gen-
erated by a frequentist model H0. This is 
still not fully operationally understandable 
because it still assigns a probability to some-
thing unobservable, but many Bayesians do 

not find operational definitions as important 
as Finetti does. 

For most models, the use of P(H0) to 
specify probabilities of observable future 
events involves the concept of “exchange-
ability,” which is the Bayesian formulation 
of independent (conditionally, under a 
probability model that itself is uncertain) 
and identical (in terms of probabilities as-
signed to future events) repetition. Whereas 
the Bayesians do not assume independence 
and identity to hold in the reality outside 
the observer, the Bayesian application of the 
probability calculus requires the individual 
to assign probabilities that follow similar 
assumptions to make learning from expe-
rience (inference from past data to future 
data) possible. 

Instead of using the probability calculus 
to obtain probabilities from a model that is 
assumed to be located in the outside world 
and may be “true” or not, in Bayesian sta-
tistics the calculus governs how prior beliefs 
should be modified in a supposedly rational 
way in the light of the data. Bayes’s Theorem 
requires the knowledge P(data | H0) and 
P(data | H1), which are obtained from the 
calculus, as in the frequentist approach, giv-
en H0 and H1, but it also requires the prior 
probability P(H0 | p.i.). The prior probability 
distribution is the key ingredient that makes 
the computation of P(H0 | data) possible in 
the Bayesian approach, and the dependence 
of Bayesian inference on the prior distribu-
tion is a standard frequentist criticism. It is 
also the major difference between subjectiv-
ists and objective Bayesians. According to 
the subjectivists, the prior distribution re-
flects the prior state of belief of the subjective 
individual, and they allow, in principle, any 
distribution as a prior distribution, although 
there are some suggestions in the literature 
about which principles to apply when de-
signing it in a given practical situation. Ac-
cording to the objective Bayesians, however, 
the prior distribution should be unique. In 
the case that there is no prior information, 
it should be a distribution modelling the ab-
sence of any information, and in the case of 
prior information existing, it can itself be a 
distribution resulting from Bayes’s Theorem, 
starting at some point from an absence of 
information and updating the information 
with data that had been collected and evalu-
ated before the study for which, then, a prior 
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distribution is required. However, there is no 
agreement about what an “objective” non-
informative prior distribution should look 
like, which will be illustrated in the follow-
ing section; see Kass and Wasserman (1996) 
for an overview of problems with selecting 
non-informative priors. 

Apart from the selection of prior prob-
abilities, another issue with the Bayesian ap-
proach is whether Bayes’s Theorem and the 
probability calculus really provide “rational” 
updates of probabilities in the light of the 
data. This is again a question of the connec-
tion between mathematical modelling and 
reality. The Bayesian approach models ra-
tionality in a particular way. This is based on 
the idea of “coherence.” Coherent betting in a 
Bayesian sense means that betting rates (and 
therefore probabilities) have to be chosen by 
the betting individual in a way that no oppo-
nent can apply a betting system based on the 
individual’s betting rates so that the individu-
al loses money regardless of the outcomes of 
the statistical experiments. It can be shown 
mathematically that this demand (properly 
modelled) entails the axioms of probability 
theory for betting rates. Here is an illustra-
tion of this. Assume that an individual D 
specifies probabilities for the outcome of roll-
ing a single (not necessarily fair) die. Assume 
that D specifies P({1}) = P({2}) = 0.2 (there is 
nothing to stop a subjectivist Bayesian from 
doing this, and objective Bayesians may do 
so in certain situations if indicated by prior 
information). Assume further that D violates 
the axiom of additivity (for disjoint events) 
by setting the probability for rolling a 1 or a 
2, namely P({1,2}) = 0.3 (instead of 0.4). As-
sume now that a betting opponent E offers a 
rate of 0.18 < 0.2 to D for betting on 1 and 2 
separately, and 0.32 > 0.3 for betting on {1,2}. 
According to the operational definition of 
Bayesian probabilities, D will pay 0.18 twice 
to bet on 1 and 2 each, and 1 – 0.32 = 0.68 
to bet against {(1,2)}. This means that D pays 
E 1.04, overall, but will only win 1, whatever 
the outcome of the roll is (either 1 or 2 or any 
other number, i.e., “non-{1,2}”). So D loses 
0.04 in each case. It can be shown that such a 
situation is not possible if D obeys the prob-
ability axioms.  

A crucial assumption of this result is 
that the individual can always be forced to 
bet either in favour of or against an out-
come, according to her specified betting 

rates. Several aspects could be controversial 
(see, e.g., Dawid 1982 and Walley 1991):

Does it make sense to think about ��
any given situation in which evidence 
should be quantified in terms of bets and 
betting rates? Even if this is accepted for the 
situation of interest, it is still not clear that 
all available prior information can be prop-
erly formalised in terms of betting rates/
probabilities. 

Should the assumption be accepted ��
that the individual is forced to bet? There is 
an alternative concept of “imprecise prob-
abilities,” in which the individual is allowed 
to leave some room between the high-
est rate at which to bet in favour of A and 
one minus the highest rate at which to bet 
against A, leading to probabilities that are 
intervals rather than single numbers (see 
Walley 1991), in which case the individual 
would not be assumed to be forced to bet if 
the offered rate is in the interval.

Does Bayesian coherence model ��
what is meant by “rationality” in every 
situation? Exceptional situations involving 
real betting may be constructed in which 
the individuals, on average, could be better 
off – even if they allow the opponent to win 
something – regardless of the outcome, than 
if they strictly adhere to the probability cal-
culus. Such examples particularly concern 
situations in which individuals change their 
opinion about the situation after having ob-
served some data but where they had speci-
fied a prior distribution that does not allow 
for radical enough changes. Some Bayes-
ians accept that it is sometimes necessary to 
adapt the prior distribution retrospectively 
to information that comes in later, even if 
this leads to incoherence (Box 1980; Dawid 
1982). Apart from that, it cannot generally 
be taken for granted that rationality should 
always be interpreted in terms of gains and 
losses of money (see Habermas 1984 for a 
completely different perspective on ratio-
nality).

Should another implicit assump-��
tion be accepted, namely that what happens 
later is independent of the behaviour of the 
betting individuals? This is obviously prob-
lematic for setups like the stock market, but 
even more so from a constructivist point of 
view that treats future observations as per-
sonal and/or social constructs. It can often 
also be observed in scientific setups that the 

way experiments are carried out and data 
are gathered is indeed designed to be de-
pendent on earlier assessments of evidence.

To these questions, again, the general 
remarks about mathematical modelling ap-
ply. Idealisations such as assuming the indi-
vidual to be forced to bet or a formalisation 
of rationality in terms of money are neces-
sary to set up any formal model in the first 
place. However, there is no objective answer 
to the questions of whether these particu-
lar idealisations are the ones to be adopted, 
and whether the benefits of formal model-
ling outweigh its problems. A constructiv-
ist way to decide in favour of or against 
such idealisations analyses the implications 
of them on the world view and decides 
whether they are desired (which includes, 
if social acceptance is desired, whether they 
can be convincingly communicated). Here 
is an example. A university decides about 
applications for a certain programme and 
wants to use Bayesian posterior probabili-
ties for later success in the programme as 
a decision criterion. Applicants come from 
two different regions. The applicants have to 
carry out a test. Assume that the informa-
tion that the university has to base its deci-
sion on is only the region and the test result 
of an applicant. Assume that past experi-
ence suggests that the probability is higher 
that applicants from region A are eventu-
ally more successful in the programme than 
applicants from region B. It is known that 
the test result is associated positively with 
the probability of later success in the pro-
gramme, modelled by assuming that there 
is an underlying “true” ability of every ap-
plicant of which the distribution of the test 
results and the probability of later success 
are monotone functions that do not depend 
on the region (but ability distributions are 
allowed to differ between regions). Apply-
ing Bayes’s Theorem then yields (without 
proof here) that the posterior probability 
of success of an applicant from region A is 
higher than that of an applicant from region 
B with the same test result.This means that 
the university, if it selects the applicants ac-
cording to their success probabilities, com-
mits itself to discriminating against equally 
qualified applicants from region B. Math-
ematically there is nothing wrong with this. 
However, the university cannot pass the re-
sponsibility for its discriminating behaviour 
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on to Bayes’s Theorem. It is actually a result 
of the university’s decision (implied by the 
way the model was set up) to reduce the 
admission problem to a temporary betting 
rate problem, ignoring completely the effect 
that the admission policy of the university 
may have on future abilities (for example by 
denying potential applicants from region B 
“role models”) and any possibility that the 
bad past success rate of region B students 
may have been caused by some issues in the 
university’s education about which it could 
actually do something.18 Note that the term 
“underlying ability” is an interpretative 
wrapper for all kinds of factors that influ-
ence the success probability of an applicant, 
not just pure personal ability

There are various attempts in the phi-
losophy of statistics to come up with “so-
lutions” for these issues (such as interval 
probabilities), and they may lead to im-
provements in certain situations. However, 
they still have to deal with the basic prob-
lem of modelling. They come with their 
own implications, which can be analysed 
and criticised in a similar way, depending 
on the situation and the aims of those who 
model it or who are involved. 

Bayesians often criticise the frequentists 
for making supposedly objective assump-
tions about the world outside that cannot 
be verified. Constructivists may feel attract-
ed to Bayesian subjectivism, in particular, 
because of the explicit allowance for indi-
vidual differences, and many frequentists 
(and some objective Bayesians) certainly 
appear to be philosophically naive by using 
this as a major objection against subjectiv-
ism. However, in the light of the discussion 
about mathematical models and reality, the 
frequentist assumptions about the world 
outside seem to stand on a more or less 
equal footing with the Bayesian ones about 
rational reasoning. They are idealisations 
that are not made because they are believed 
to be objectively true, but that are necessary 

18 | I received this example from Deborah G. 
Mayo by personal communication. Mayo used it 
to illustrate what she thinks to be a general flaw 
in Bayesian reasoning, but I rather think that it 
demonstrates that in some situations the implica-
tions of  modelling run counter to personal and 
social constructs, and that the modellers should 
therefore try to be aware of these implications.

in order to take advantage of the benefits of 
mathematical modelling. Only the mod-
elled domains to which they are applied are 
different for frequentists and Bayesians.

Computation of Bayesian posterior 
probabilities
The computation of the Bayesian meas-

ure of evidence, the posterior probability 
P(H0 | data) for the null hypothesis that the 
ants do not prefer any of the Acacia species 
or for CHD being independent of strong 
coffee drinking, requires the specification of 
a prior distribution first. Following the sub-
jectivist approach, the individual researcher 
(or a group of researchers; it would certainly 
make sense to involve at least one subject 
matter expert and one statistician) would 
need to think carefully about the situation 
in order to come up with a quantification of 
her prior belief, and also with convincing 
reasons for this to enable others to accept a 
result that depends on her choices. 

An objective Bayesian, or a subjectivist 
without clear prior information and opin-
ions, needs a prior probability distribution 
that models the absence of information. 
2 ⨉ 2 tables are no standard case for Baye- tables are no standard case for Baye-
sian statistics and are not addressed in every 
introductory book. I found two surprisingly 
different approaches of how to do this.

The first approach was suggested by 
Jim Albert (2009: 194–196). It is assumed 
(as in the second approach below) that the 
behaviour of the ant colonies is exchange-
able. under H0, the probability for an A tree 
to be invaded is the same as the probability 
for a B tree to be invaded. under H1, these 
probabilities are assumed to differ. Non-in-
formativity enters in two ways. Firstly, P(H0 
| p.i.) = P(H1 | p.i.) = 0.5. This is based on the 
“principle of insufficient reason” to give any 
of the hypotheses more probability than the 
other one. Secondly, in order to compute 
P(data | H1), it is necessary to specify a dis-
tribution of probabilities for colonising spe-
cies A and B trees within H1, which is cho-
sen to be the uniform distribution. Based 
on these choices, P(H0 | data) = 0.005. A 
straightforward subjectivist way to use this 
approach of specifying the prior distribu-
tion is simply  to change P(H0 | p.i.). Even 
if for some reason (which may merely be 
a sensitivity analysis) P(H0 | p.i.) = 0.95, 
P(H0 | data) is still as small as 0.09, so the 

evidence clearly seems to indicate that the 
ants prefer species B (it can be computed 
that almost all the remaining probability is 
assigned to a preference for species B and 
almost none of it to preference for species 
A). Note that 0.09 is still a small value for 
a posterior probability, it still clearly points 
against H0, whereas a p-value of 0.09 would 
rather be a borderline case. For the CHD 
data, this yields P(H0 | data) = 0.959 (non-
informative prior) or P(H0 | data) = 0.528 
for a P(H0 | p.i.) as small as 0.05, to illus-
trate another potentially extreme subjective 
choice.

Choosing P(H0 | p.i.) = 0.5 (or even 
any number larger than zero) means that a 
positive probability is assigned to the idea of 
precise independence, and it can be argued 
that it is not realistic to believe in precise 
independence and the researcher should 
rather be interested in “practical independ-
ence,” meaning very weak dependence (but 
keep in mind that the precise independence 
discussed here is not frequentist, and there-
fore does not entail believing in precise in-
dependence in the world outside – though 
it is often carelessly interpreted in this way). 
Though assigning a nonzero to precise 
independence can be interpreted as ap-
proximating this in some sense, it can also 
be formalised in an alternative way, which 
is suggested by Peter Lee (2009: 152–153). 
Lee’s approach starts by assuming a non-
informative distribution for the two prob-
abilities p and q, modelled as independent 
of each other, for a strong or a weak (or 
no) coffee drinker to get CHD, considering 
the CHD example (uniform distributions 
could be used for this but Lee suggests the 
so-called “Haldane prior”). The H0 of “prac-
tical independence” can then be chosen by 
looking at the “odds ratio,” r = p(1 – p) / 
q(1 – q) which is close to 1 if q and p are 
about the same. So H0 could for example 
be taken as “0.99 < r < 1/0.99.” This yields 
P(H0 | data) = 0.029, which is totally differ-
ent from the value of 0.959 following Al-
bert’s approach with non-informative priors. 
Note that Lee’s approach involves a subjec-
tive decision about how close r has to be to 
1 in order to speak of “practical independ-
ence” (though the posterior distribution as 
a whole does not depend on subjective deci-
sions apart from the not-so-objective choice 
of an “objective prior”). If H0 is taken as 



A Constructivist View of the Statistical Quantification of Evidence   Christian Hennig

Constructivism

51

A Constructivist View of the Statistical Quantification of Evidence   Christian Hennig

Constructivism

               http://www.univie.ac.at/constructivism/journal/5/1/039.hennig

“0.8 < r < 1 / 0.8,” P(H0 | data) = 0.528, which 
is still much lower than Albert’s value. Ana-
lysing the posterior distribution further, it 
can be seen that the data still leave a strong 
uncertainty about p and q with large or at 
least non-negligible probabilities for both 
r < 0.8 and r > 1 / 0.8. Choosing a positive 
probability such as 0.5 for precise inde-
pendence in Albert’s approach has the ef-
fect that much of this uncertainty collapses 
into P(H0 | data). Interpreting the Lee prior, 
it can be seen that prior independence of p 
and q is a very strong form of non-informa-
tivity, because it entails that a very small rate 
of CHD cases among strong coffee drinkers 
is by no means informative about the CHD 
rate among weak or no coffee drinkers – it 
is not taken into account that CHD may be 
a rare disease overall (in Albert’s approach, 
similar rates are more likely a priori through 
P(H0)). This leaves the researcher with 
strong uncertainty even after having ob-
served more than 1700 workers. Thinking 
it over, I realised that p and q should prob-
ably be restricted to be quite small and po-
tentially similar a priori, and then the odds 
ratio approach would probably give more 
sensible results. It is quite a frequent phe-
nomenon in statistics, as well as in science 
in general, that striving for objectivity basi-
cally implies that some standard approaches 
are chosen that cannot take into account the 
peculiarities of the given situation in a sen-
sible way, whereas subjectivism allows for 
non-standard choices that may adapt better. 

For the ants data, Lee’s prior points even 
more strongly against H0 than Albert’s, so 
that the practical conclusions would prob-
ably be the same.

There is a Bayesian result stating that, 
under some assumptions, enough data even-
tually swamp the prior distribution so that, 
even if starting with different prior distribu-
tions, posterior distributions become more 
and more similar if more data are collected. 
However, this does not apply to a situation 
such as the one above, where different prin-
ciples of modelling were applied (nonzero 
vs. zero prior probability for precise inde-
pendence). The computations show that dif-
ferent priors can lead to quite different pos-
terior probabilities for H0, and that it is not 
easy to understand all the implications of a 
chosen prior distribution, but this is needed 
in order to design it in a useful way. 

6. Differences and 
connections between 
interpretations
Keeping in mind the idea that science 

aims at agreement, how problematic is it that 
there are several different approaches around 
to quantifying evidence, sometimes leading 
to quite different results? Many practition-
ers are not very happy with this state of af-
fairs, and in the statistical literature there are 
several attempts to “reconcile” the different 
approaches (see, for example, Berger 2003). 
However, another more or less explicit value 
of the scientific method (or, rather, my per-
sonal rather benevolent construct of it with 
which the reader may or may not agree) is 
that agreement should not be enforced ar-
tificially, and an agreement that is reached 
in an arbitrary way just because agreement 
is desired is not scientifically valid. Such 
attempts at reconciliation usually suppress 
some aspects of the original concepts that 
some people find worthwhile to keep visible, 
and they therefore rarely satisfy everyone 
(see, for example, Mayo’s comment in the 
discussion following Berger’s 2003 paper). 
In such a situation, there may be better 
chances of agreement by accepting that dif-
ferent approaches have different merits and 
fulfil different aims. Destroying the myth 
of the “objectivity and unity of statistics” 
may be more worthwhile than looking for 
ways to pretend that it is more efficient. It 
becomes more interesting to find guidelines 
about what to use when and where irreduc-
ible elements of subjective decision cannot 
be removed.

As explained before, a major difference 
between the frequentist and the Bayesian 
interpretations of probability is that the fre-
quentist interpretation is about modelling 
mechanisms in the world outside whereas 
the Bayesian interpretations are about mod-
elling rational reasoning. This alone is not 
of great help because in many situations, 
researchers are interested in rational rea-
soning about the world outside. However, I 
can outline some guidelines for deciding be-
tween frequentist and Bayesian approaches:

The Bayesian approach delivers a ��
probability for H0, given the data at the price 
that P(H0 | p.i.) has to be specified at first. If 
there is prior information or prior belief that 
can be convincingly formalised as such a 

prior distribution, and the researcher is hap-
py that the outcome will depend on this, the 
Bayesian approach suggests itself. (Typically 
it is not “objective Bayes” then, because the 
prior distribution is actually informative.)

On the other hand, there are deci-��
sion problems in which it is explicitly not 
desirable to have an outcome that depends 
on prior beliefs, in which case, obviously, 
subjectivism cannot be used (though there 
are still irreducible subjective elements in a 
model and prior specification and selection 
of cutoff values for p-values and posterior 
probabilities in the less explicitly subjective 
approaches). This is, for example, the case 
if fair and impartial decisions are desired 
about issues that affect people with oppos-
ing interests, such as in court.

p�� -values are about assessing the 
compatibility of data with certain idealised 
models for relative frequencies under repeti-
tion. A small p-value allows a statement of 
the kind “under the null model it would be 
almost inconceivable for what actually hap-
pened to happen.” This kind of statement 
may often be of interest, for example when 
checking the plausibility of certain scientific 
hypotheses about the world outside (with-
out actually attempting to make the state-
ment that they are “true”) that can be for-
malised properly as such models19. Note that 
the evidence collected in this way can never 
be in favour of but only against the hypoth-
esis, though evidence may be observed that 
is not against the null hypothesis of interest 
but against certain alternatives, so that at 
least some competitors of the H0 could be 
discarded.

In some situations, the aim is pre-��
diction and potential future benefits can 
be properly quantified, for example if it is 
about financial issues or (involving further 
complexities) something like drilling for oil. 
In such situations, the betting rate metaphor 
for Bayesian probabilities can be seen as 
more or less directly related. 

19 | The connected Neyman-Pearson ap-
proach to hypothesis testing (Neyman & Pearson 
1933), which does not exactly deliver a “quantifi-
cation of evidence” but rather a binary decision, 
utilises the frequentist interpretation to give “er-
ror probabilities” for making wrong decisions, 
which may be of interest as well, based on the 
model assumptions.
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Generally, the social system to which ��
the researchers belong or wish to commu-
nicate their results to plays a role as well, 
particularly if and how it can be expected 
that agreement can be reached about the 
involved choices of a model, prior distribu-
tions and decision rules. 

Note that in the present approach, an 
“optimal” procedure can never be found in 
an automatic fashion. The decision on how 
to proceed in a given situation always in-
volves subjective decisions (which should 
be transparent and open to discussion) and 
negotiations among the involved individu-
als. up to now, the focus was on the differ-
ences between interpretations. On the other 
hand, they use the same label (probability) 
and the same calculus, and the connection 
between them is not only mathematical. The 
perception of a separation between the two 
interpretations of probabilities as degrees of 
belief on the one hand and related to ran-
domness in the world outside on the other 
hand came up in around the middle of the 
19th century (Gillies 2000: 19 traces it back 
to a remark by Poisson in 1837), more than 
100 years after the beginnings of probability 
calculus. In response to the formalist ideas 
that Hilbert started to present in around 
1900 (see Hilbert 2004), Kolmogorow (1933) 
axiomatised probability mathematically in 
a way that is compatible with both betting 
rates and relative frequencies, which sepa-
rated the calculus explicitly from its various 
interpretations. In very early works (for ex-
ample, Bernoulli 1713), probabilities were 
defined as ratios of numbers of favourable 
and existing events (for example 1/6 for a 
die to roll a “2.” Note that because Bernoulli 
had not yet separated the mathematical for-
malism explicitly from its real world inter-
pretation, the word “definition” is chosen 
here instead of “interpretation”). These were 
treated as identical with fair betting rates 
and expected relative frequencies under 
repetition. A difference between these ideas 
was not yet constructed. Applying the prob-
ability calculus to new problems and wider 
areas (biased dice, death probabilities in age 
classes, reliability of astronomical observa-
tions, etc.) required some extensions from 
which the differentiation of the interpreta-
tions emerged. My interpretation of this is 
that using probability calculus for many 
phenomena involved dealing with them in 

terms of a dice/gambling metaphor, but for 
some of the phenomena, the “fair betting 
rate” aspect of this metaphor worked better, 
whereas for others, the “relative frequency” 
aspect became dominant. At some point, 
some people realised that, unless cases such 
as fair dice are dealt with, these aspects may 
have quite different implications. However, 
instead of accepting them as essentially dif-
ferent views, both of which have their merits, 
most probabilists (if they were interested in 
the issue at all) started to advocate either of 
these points of view as the “best” or “correct” 
one. The use of the same word “probability” 
for them and the general myth of “objectiv-
ity of science” suggested that there should 
only be one correct meaning. To some ex-
tent, these views still persist today.

Despite the pluralist position that I take 
in most parts of the present paper, I find it 
helpful to acknowledge the deep histori-
cal connection between the different ap-
proaches in order to understand why they 
are still so often perceived as directly com-
peting and why there is such a large amount 
of statistical literature that uses frequentist 
and Bayesian approaches in a very eclectic 
way without bothering about differences in 
interpretation. 

There is a vast literature comparing Baye-
sian and frequentist interpretations of prob-
ability, including some further interesting 
aspects that could also be relevant for decid-
ing in a given situation between approaches, 
see for example Finetti (1970), Fine (1973), 
Bernardo and Smith (1994), Mayo (1996), 
Gillies (2000). Most of these authors high-
light issues with the interpretations as rea-
sons to attack or defend one of them for 
use in more or less general situations. A 
constructivist way of reading these argu-
ments would be different: they can illustrate 
what kind of “ideal” world view is entailed 
by these interpretations, and therefore they 
help with the casewise decision between the 
approaches, but also with keeping in mind 
what aspects of reality are suppressed when 
adopting one of them. Obviously, there is no 
need for a constructivist to adopt one of the 
interpretations exclusively. However, given 
that constructivists aim at understanding 
how their construction processes work, it 
seems unsatisfactory, as well, to follow the 
kind of eclectic approach that is often found 
in the scientific literature and that ignores 

the deep philosophical issues of interpreta-
tion. In a given situation, it seems sensible 
to adopt an interpretation explicitly and to 
discuss honestly its implications and the re-
strictions and ignored aspects involved in it, 
making it clear that this is always a matter 
of choice, even though good case-dependent 
arguments may exist. 

7. Conclusion

As far as I see it, applying constructiv-
ism to the statistical quantification of evi-
dence does not necessarily lead to either new 
methodology, or to discarding old ones. It is 
rather about considering the methodology 
and its underlying assumptions in a particu-
lar way. For a constructivist, the following 
questions could be of major importance:

How do we (the researchers) see our top- �
ic, which aspects do we wish to model, 
and which aspects do we wish to ignore, 
considering our aim in modelling? 
What point of view is entailed by the  �
models that we use and our interpreta-
tion of them, and how does this relate to 
what we think about our topic? 
What is the communicative value of  �
the model and the quantification of 
evidence, how can it help to support 
understanding and agreement, to make 
decisions, draw conclusions, and to give 
others the chance to disagree in a con-
structive way?
Do we really want and/or need to mea- �
sure evidence by a single value in the 
given situation? 
These questions emphasise the responsi-

bility of the researchers, and are far too often 
ignored by an attitude that the data should 
decide “objectively” what the correct model 
is and what the evidence suggests. Much of 
the discussion in the previous sections was 
about exploring the points of view implied 
by various ways of quantifying evidence. 
Such considerations are hopefully useful 
when addressing the questions above. Note 
that the present paper restricts itself to the 
quantification of evidence and does not deal 
with statistics in general (a referee pointed 
out correctly that its role as part of theoris-
ing is ignored here); some implications can 
be applied to more general issues of statistics 
and data analysis.
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In particular, the role of model assump-
tions changes when adopting a constructiv-
ist point of view. By interpretation, model 
assumptions translate into ways of thinking 
about a situation. Frequentist models mean 
that the researchers think of the modelled 
phenomena using a metaphor of repetitive 
result-generating mechanisms. Bayesian 
models mean that the researchers think 
about the way in which they should ration-
ally learn from data using a metaphor of bet-
ting rates. Note that in Bayesian as well as 
frequentist statistics, assumptions interpret-
ed as regarding situations as in some sense 
identical repetitions are required in order to 
get the calculus going, regardless of whether 
it is believed that these are “true” or “ration-
al.” Gillies (2000: 77–81) demonstrated that 
Bayesian exchangeability has interpretation-
al implications that are no weaker than fre-
quentist independence. In Hennig (2007), 
I showed that attempts to test frequentist 
independence necessarily lead to a para-
dox. Probability is always about what could 
have happened as apart from what actually 
happened. In this sense, it always involves 
what is essentially unobservable. Probability 
statements, and therefore quantifications of 
evidence, can never be checked by observa-
tion alone.

Much more detailed analyses of the 
models are possible, for example, giving the 
frequentist probabilities of observing low 
p-values if the H0 is wrong in certain ways 
(power analyses), and giving the Bayesians 
predictive probabilities for all kinds of con-
ceivable future events. To the constructivist, 
these analyses show what her constructions 
imply, and therefore they enable a very pre-
cise understanding of the implications of the 
modelled ways of thinking. This is a major 
benefit of probability modelling. The role of 
the model assumptions (and comparing their 
expected implications with the data at hand, 
which can be interpreted as a constructivist 
version of “model checking”) is then rather 
to assist the researcher in finding out whether 
the chosen data analytic method may lead to 
undesired or misleading results for the given 
data. unfortunately, this is often totally ob-
scured by the usual way of communicating 
results from probability modelling, such as 
p-values and posterior probabilities, which 
attempts to hide the responsibility of the re-
searchers. This is particularly obvious in the 

teaching of statistics, which regularly leaves 
many intelligent students confused about the 
contrast between the apparent necessity to 
check whether model assumptions “really” 
hold and the striking impossibility of doing 
this in any satisfactory way. The result is that 
many of them lose all interest in statistics, 
whereas others adapt to the “usual scientific 
rituals” and start to apply the formal calculus 
in an unreflecting and uncritical way. 

The subjectivist Bayesian approach 
could be a positive exception in this respect, 
but unfortunately many researchers who fol-
low this approach shy away from openly as-
suming responsibility for their prior choices. 
From a constructivist perspective, however, 
all interpretations share the general prob-
lems and merits of mathematical modelling, 
and each of them could be applied with a 
constructivist attitude.

There are many potential practical im-
plications of the view outlined in the present 
paper. Above all, the constructivist approach 
has proven useful for statistical consultancy 
and collaborating with non-statisticians. 
Dealing with models in terms of decisions 
on how to see a problem makes the statisti-
cal modelling process seem much less mys-
terious, and it makes the connection of the 
researcher’s decisions to the chosen models 
and the results much clearer. It also gives the 
researchers clearer ideas about the existing 
possibilities for seeing the problem in a dif-
ferent way. 

However, it seems more difficult to give 
these ideas a stronger influence on teaching. 
In my experience, in teaching there is always 
limited time and the constructivist view runs 
counter to what most students expect and 
are told in other courses. There is certainly a 
lot of potential here for innovative teaching 
ideas. How much constructivist attitude can 
and should students learn (and how) in their 
statistics courses?   

The use and presentation of statistics 
and quantification of evidence to the general 
public is another interesting issue. Although 
the ideas presented imply a reasonably op-
timistic view of the potential of science and 
the value of statistical modelling, to some 
extent they undermine the way people per-
ceive the authority of scientific results that 
are based on such quantifications. Will it be 
possible to communicate their potential val-
ue along with the view that “finding out how 

the world really is” is not exactly what this 
value is? Quite often, in discussions in which 
quantifications of evidence played a role, I 
have experienced that less objectivistically-
minded (and probably more constructivis-
tically-minded) persons were generally very 
sceptical of the use of statistics and statisti-
cal models. The way these models are often 
used gives good reasons for such a sceptical 
attitude. But I think that they can be used in 
many situations in a constructive and help-
ful way, if often with a more modest attitude 
that is more open to criticism than the one 
that currently dominates.  
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